JPS6335764A - Surface treatment of iron or iron alloy material - Google Patents
Surface treatment of iron or iron alloy materialInfo
- Publication number
- JPS6335764A JPS6335764A JP17923986A JP17923986A JPS6335764A JP S6335764 A JPS6335764 A JP S6335764A JP 17923986 A JP17923986 A JP 17923986A JP 17923986 A JP17923986 A JP 17923986A JP S6335764 A JPS6335764 A JP S6335764A
- Authority
- JP
- Japan
- Prior art keywords
- iron
- vanadium
- alloy material
- layer
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 126
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 59
- 239000000956 alloy Substances 0.000 title claims abstract description 38
- 229910000640 Fe alloy Inorganic materials 0.000 title claims abstract description 37
- 238000004381 surface treatment Methods 0.000 title claims description 11
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 76
- 239000000463 material Substances 0.000 claims abstract description 72
- 238000011282 treatment Methods 0.000 claims abstract description 48
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 37
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 11
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 11
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 11
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 11
- -1 borofluoride Chemical compound 0.000 claims abstract description 6
- 229910000756 V alloy Inorganic materials 0.000 claims abstract description 3
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 68
- 239000002344 surface layer Substances 0.000 claims description 44
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 40
- 238000000034 method Methods 0.000 claims description 38
- 150000003839 salts Chemical class 0.000 claims description 34
- 239000003795 chemical substances by application Substances 0.000 claims description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 19
- 238000003672 processing method Methods 0.000 claims description 7
- 150000001913 cyanates Chemical class 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 150000002825 nitriles Chemical class 0.000 claims description 5
- 150000001642 boronic acid derivatives Chemical class 0.000 claims description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 3
- 150000002222 fluorine compounds Chemical class 0.000 claims description 3
- 150000004694 iodide salts Chemical class 0.000 claims description 3
- 150000002823 nitrates Chemical class 0.000 claims description 3
- FBMGKRKUOZTARV-UHFFFAOYSA-N F.OB(O)O Chemical class F.OB(O)O FBMGKRKUOZTARV-UHFFFAOYSA-N 0.000 claims description 2
- 239000011812 mixed powder Substances 0.000 claims description 2
- 150000003682 vanadium compounds Chemical class 0.000 claims description 2
- 150000003842 bromide salts Chemical class 0.000 claims 1
- 150000003841 chloride salts Chemical class 0.000 claims 1
- 235000002639 sodium chloride Nutrition 0.000 abstract description 35
- 239000000843 powder Substances 0.000 abstract description 12
- 150000004767 nitrides Chemical class 0.000 abstract description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract description 6
- 239000011780 sodium chloride Substances 0.000 abstract description 3
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 abstract description 3
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 abstract description 2
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 abstract description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 abstract description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 abstract description 2
- 229910002651 NO3 Inorganic materials 0.000 abstract description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 abstract description 2
- 238000005260 corrosion Methods 0.000 abstract description 2
- 230000007797 corrosion Effects 0.000 abstract description 2
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- MNWBNISUBARLIT-UHFFFAOYSA-N sodium cyanide Chemical compound [Na+].N#[C-] MNWBNISUBARLIT-UHFFFAOYSA-N 0.000 abstract description 2
- 239000007769 metal material Substances 0.000 abstract 4
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 abstract 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 abstract 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 abstract 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 abstract 1
- 229910021551 Vanadium(III) chloride Inorganic materials 0.000 abstract 1
- 239000001110 calcium chloride Substances 0.000 abstract 1
- 235000011148 calcium chloride Nutrition 0.000 abstract 1
- 229910001628 calcium chloride Inorganic materials 0.000 abstract 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 abstract 1
- 239000002994 raw material Substances 0.000 abstract 1
- 235000017550 sodium carbonate Nutrition 0.000 abstract 1
- 229910000029 sodium carbonate Inorganic materials 0.000 abstract 1
- 235000013024 sodium fluoride Nutrition 0.000 abstract 1
- 239000011775 sodium fluoride Substances 0.000 abstract 1
- HQYCOEXWFMFWLR-UHFFFAOYSA-K vanadium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[V+3] HQYCOEXWFMFWLR-UHFFFAOYSA-K 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 94
- 238000012545 processing Methods 0.000 description 18
- 238000012360 testing method Methods 0.000 description 10
- 239000002585 base Substances 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- PNXOJQQRXBVKEX-UHFFFAOYSA-N iron vanadium Chemical compound [V].[Fe] PNXOJQQRXBVKEX-UHFFFAOYSA-N 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000006104 solid solution Substances 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 238000007654 immersion Methods 0.000 description 6
- 238000005121 nitriding Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229910000628 Ferrovanadium Inorganic materials 0.000 description 3
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 150000001649 bromium compounds Chemical class 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- 229910017464 nitrogen compound Inorganic materials 0.000 description 3
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- SEQUALWBCFCDGP-UHFFFAOYSA-N [C].[N].[Fe] Chemical compound [C].[N].[Fe] SEQUALWBCFCDGP-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- YYXHRUSBEPGBCD-UHFFFAOYSA-N azanylidyneiron Chemical compound [N].[Fe] YYXHRUSBEPGBCD-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007373 indentation Methods 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000007550 Rockwell hardness test Methods 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 description 1
- 239000013040 bath agent Substances 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical class FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L magnesium sulphate Substances [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000007581 slurry coating method Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Chemical Treatment Of Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、金型、治工具類及び機械部品などの鉄または
鉄合金材料の表面にバナジウム(V)の炭窒化物層を形
成せしめる表面処理方法に関するものである。Detailed Description of the Invention [Industrial Application Field] The present invention provides a method for forming a carbonitride layer of vanadium (V) on the surface of iron or iron alloy materials such as molds, jigs, and machine parts. This relates to a processing method.
鉄または鉄合金材料(以下、被処理材とする)の表面に
バナジウムの炭化物、窒化物または炭窒化物から成る表
面層を被覆すると、被処理材の耐摩耗性、耐焼付性、耐
酸化性、耐食性などの諸性質が改善されることはよく知
られている。この表面層を被覆する方法について、近年
多くの提案がなされている。例えば、バナジウムのハロ
ゲン化物などを利用してプラズマCVD (化学的気相
蒸着法)などにより被処理材表面にバナジウムの炭窒化
物から成る表面層を形成しようとする方法が提案されて
いる(例えば、特開昭55−65357号、特開昭55
−154563号)。これらの方法では、鉄のA(1変
態点である約700″C以下の温度域で処理するため、
被処理材の母材に熱による歪みを与えることなく表面層
を形成することができるものの、形成された表面層のつ
きまわり性や密着性が良好なものを得ることは難しい。When the surface of iron or iron alloy material (hereinafter referred to as the treated material) is coated with a surface layer consisting of vanadium carbide, nitride, or carbonitride, the wear resistance, seizure resistance, and oxidation resistance of the treated material are improved. It is well known that various properties such as corrosion resistance are improved. Many proposals have been made in recent years regarding methods of coating this surface layer. For example, a method has been proposed in which a vanadium carbonitride surface layer is formed on the surface of a treated material by plasma CVD (chemical vapor deposition) using a vanadium halide (e.g. , JP-A-55-65357, JP-A-Sho 55
-154563). In these methods, since the treatment is carried out at a temperature range below approximately 700"C, which is the A (1 transformation point) of iron,
Although it is possible to form a surface layer without imparting thermal distortion to the base material of the material to be treated, it is difficult to obtain a formed surface layer with good throwing power and adhesion.
また、処理工程が複雑で、装置が筋価である。また。In addition, the processing steps are complicated and the equipment is expensive. Also.
水素中あるいは減圧中で実施しなければならないので能
率も悪い。It is also inefficient because it must be carried out in hydrogen or under reduced pressure.
本発明は、上記従来の問題点を解消して、きわめて簡単
な装置で、能率よく、低温での加熱処理により一1母材
に歪みを発生させることなく、被処理材に母材との密着
性の優れたバナジウムの炭窒化物から成る表面層を形成
する方法を提供しようとするものである。The present invention solves the above-mentioned conventional problems and efficiently heats the workpiece at low temperatures using extremely simple equipment. The present invention aims to provide a method for forming a surface layer made of vanadium carbonitride with excellent properties.
本第1発明は、鉄または鉄合金材料と、バナジウムを含
む材料と、アルカリ金属またはアルカリ土類金属のシア
ン化塩、シアン酸塩のうちの1種または2種以上から成
る処理剤とを共存せしめて。The first invention coexists an iron or iron alloy material, a material containing vanadium, and a treatment agent consisting of one or more of cyanide salts and cyanates of alkali metals or alkaline earth metals. Forgive me.
650℃以下において加熱処理し、バナジウム。Vanadium by heat treatment at 650°C or less.
窒素及び炭素を上記鉄または鉄合金材料表面に拡散せし
めることにより、鉄または鉄合金材料表面にバナジウム
の炭窒化物から成る表面層を形成せしめることを特徴と
する鉄または鉄合金材料の表面処理方法である。A method for surface treatment of iron or iron alloy material, comprising forming a surface layer made of vanadium carbonitride on the surface of iron or iron alloy material by diffusing nitrogen and carbon onto the surface of the iron or iron alloy material. It is.
本第2発明は、鉄または鉄合金材料と、バナジウムを含
む材料と、アルカリ金属またはアルカリ土類金属のシア
ン化塩、シアン酸塩のうちの1種または2種以上及びア
ルカリ金属またはアルカリ土類金属の塩化物、ホウ弗化
物、弗化物、酸化物。The second invention provides an iron or iron alloy material, a material containing vanadium, one or more of cyanide salts and cyanates of an alkali metal or an alkaline earth metal, and an alkali metal or an alkaline earth metal. Metal chlorides, boron fluorides, fluorides, and oxides.
臭化物、ヨウ化物、炭酸塩、硝酸塩、硼酸塩のうちの1
種または2種以上から成る処理剤とを共存せしめて、6
50℃以下において加熱処理し、バナジウム、窒素及び
炭素を上記鉄または鉄合金材料表面に拡散せしめること
により、鉄または鉄合金材料表面にバナジウムの炭窒化
物から成る表面層を形成せしめることを特徴とする鉄ま
たは鉄合金材料の表面処理方法である。One of bromide, iodide, carbonate, nitrate, or borate
or a treatment agent consisting of two or more types,
A surface layer made of vanadium carbonitride is formed on the surface of the iron or iron alloy material by heat treatment at 50° C. or lower to diffuse vanadium, nitrogen and carbon onto the surface of the iron or iron alloy material. This is a surface treatment method for iron or iron alloy materials.
本発明において、鉄または鉄合金材料はバナジウムの炭
窒化物層を表面に形成する被処理材である。該鉄または
鉄合金材料としては、炭素を含むもの9例えば炭素鋼1
合金鋼、鋳鉄、焼結合金等でもよく、また純鉄のような
炭素を全く含まないものでもよい。また、窒素は含まれ
ている必要はないが、含まれていてもさしつかえない。In the present invention, the iron or iron alloy material is the material to be treated on which a vanadium carbonitride layer is formed. Examples of the iron or iron alloy material include those containing carbon 9, such as carbon steel 1
It may be made of alloy steel, cast iron, sintered alloy, or the like, or it may be made of something that does not contain carbon at all, such as pure iron. In addition, it is not necessary that nitrogen be included, but there is no problem even if it is included.
本発明において、上記被処理材と、バナジウムを含む材
料と、処理剤とを共存せしめて、加熱する加熱処理は、
被処理材の表面にバナジウムと窒素と炭素とを拡散させ
て、バナジウムの炭窒化物から成る表面層を形成するも
のである。In the present invention, the heat treatment in which the above-mentioned material to be treated, a material containing vanadium, and a processing agent are made to coexist and heated is performed by:
A surface layer made of vanadium carbonitride is formed by diffusing vanadium, nitrogen, and carbon onto the surface of the material to be treated.
なお、−以降の作用で述べるように、形成されるバナジ
ウムの炭窒化物から成る表面層とは、バナジウムを主成
分とする炭窒化物から成る層(外層)と、その直下の鉄
の炭窒化物から成る層(内層)との2層である。また、
該鉄の炭窒化物層(内層)の直下には窒素の鉄への固溶
体層(拡散層)が形成されている。Furthermore, as described in the following operations, the surface layer formed of vanadium carbonitride is the layer (outer layer) consisting of vanadium-based carbonitride, and the carbonitride layer of iron immediately below the layer (outer layer). There are two layers: a layer made of objects (inner layer). Also,
A solid solution layer (diffusion layer) of nitrogen in iron is formed directly below the iron carbonitride layer (inner layer).
上記バナジウムを含む材料とは、被処理材の表面に拡散
させるバナジウムを供給するものであり。The vanadium-containing material is one that supplies vanadium to be diffused onto the surface of the material to be treated.
バナジウムを含む金属あるいはバナジウム化合物等を用
いる。該金属としては、金属バナジウムやその合金が挙
げられる。上記化合物としては、VCl 3+ V F
s、V z Os等の塩化物、臭化物、酸化物等が挙
げられる。しかして、これらバナジウムを含む材料は、
これらのうち1種または2種以上を用いるが、バナジウ
ム金属あるいは鉄バナジウム合金を用いるのが最も実用
的である。A metal containing vanadium or a vanadium compound is used. Examples of the metal include metal vanadium and alloys thereof. The above compound includes VCl 3+ V F
Examples include chlorides, bromides, oxides, etc., such as VzOs and VzOs. However, these vanadium-containing materials are
One or more of these may be used, but it is most practical to use vanadium metal or iron-vanadium alloy.
また、前記処理剤は、被処理材表面に拡散させる窒素と
炭素とを供給すると共にバナジウムが被処理材の表面に
拡散する媒介となる働きを有している。該処理剤として
は、アルカリ金属またはアルカリ土類金属のシアン化塩
、シアン酸塩の1種または2種以上(以下、これを第1
処理剤とする)のみでもよく、あるいは該第1処理剤に
アルカリ金属またはアルカリ土類金属の塩化物、弗化物
。Further, the processing agent has the function of supplying nitrogen and carbon to be diffused onto the surface of the material to be treated and serving as a medium for vanadium to diffuse onto the surface of the material to be treated. As the treatment agent, one or more types of cyanide salts and cyanates of alkali metals or alkaline earth metals (hereinafter referred to as the first
The first treating agent may be a chloride or fluoride of an alkali metal or an alkaline earth metal.
ホウ弗化物、酸化物、臭化物、ヨウ化物、炭酸塩。Borofluorides, oxides, bromides, iodides, carbonates.
硝酸塩、硼酸塩のうちの1種または2種以上(以下、こ
れを第2処理剤とする)を混合したものでもよい。なお
、第1処理剤が鉄合金材料表面に拡散する窒素と炭素と
を供給する。また、第2処理剤の融点、粘性、蒸発量な
どを調節し、処理の安定性を増す働きを有しており、加
熱処理方法によって適宜選択して使用する。One or a mixture of two or more of nitrates and borates (hereinafter referred to as the second treatment agent) may also be used. Note that the first treatment agent supplies nitrogen and carbon that diffuse to the surface of the iron alloy material. It also has the function of adjusting the melting point, viscosity, evaporation amount, etc. of the second processing agent and increasing the stability of the processing, and is appropriately selected and used depending on the heat processing method.
例えば、第1処理剤としては、NaCN、KCN、Na
CN0.KCNO等が挙げられ、これらのうちの1種ま
たは2種以上を使用する。For example, as the first treatment agent, NaCN, KCN, Na
CN0. Examples include KCNO, and one or more of these may be used.
また、第2処理剤としては、NaC1,KCI。Further, as the second treatment agent, NaCl, KCI.
CaC1zlLiC1,NaF、KF、LiF、KB
F * + N a z COs + L I CO3
1K CO:l l N a N 03、 N a z
o等が挙げられ、これらのうちの1種または2層種以上
を使用する。CaC1zlLiC1, NaF, KF, LiF, KB
F * + N az COs + L I CO3
1K CO: l l N a N 03, N a z
o, etc., and one type or two or more layer types of these are used.
処理剤とバナジウムを含む材料との配合割合は。What is the mixing ratio of the processing agent and the material containing vanadium?
バナジウムを含む材料に対して0.5〜30重量%(以
下1重量%を%とする)の処理剤が望ましい。It is desirable that the treatment agent be used in an amount of 0.5 to 30% by weight (hereinafter 1% by weight is referred to as %) based on the vanadium-containing material.
この範囲外であると連続的に表面層を形成することが困
難になり、またこの範囲の中心に近づくと。If it is outside this range, it will be difficult to form a continuous surface layer, and if it approaches the center of this range.
連続的な表面層形成が容易になる傾向にある。Continuous surface layer formation tends to be easier.
加熱処理方法としては、溶融塩浸漬法、溶融塩電解法、
ペースト法等がある。Heat treatment methods include molten salt immersion method, molten salt electrolysis method,
There are paste methods etc.
以下、これらにつき説明する。These will be explained below.
上記溶融塩浸漬法とは、前記処理剤を溶融して溶融塩浴
を形成し、該溶融塩浴にバナジウムを含む材料と被処理
材とを浸漬するものである。The molten salt immersion method is a method in which the processing agent is melted to form a molten salt bath, and the vanadium-containing material and the material to be treated are immersed in the molten salt bath.
上記溶融塩浴にバナジウムを含む材料を浸漬するのは、
溶融浴塩中にバナジウムを溶入させるためである。バナ
ジウムを溶入させる手段としては。Immersing the vanadium-containing material in the molten salt bath is
This is to dissolve vanadium into the molten bath salt. As a means of dissolving vanadium.
該材料を粉末状(好ましくは200メツシユ以下)また
は薄板状で溶融浴に添加する方法あるいは棒状または板
状の該材料を陽極として溶融浴中に浸漬して電解しバナ
ジウムを陽極溶解させる方法等がある。バナジウムを含
む材料からバナジウムが溶融塩中に溶入する速度は用い
るバナジウムを含む材料の種類や大きさによって異なり
、被処理材を浸漬する前に一定時間溶融塩浴を処理温度
あるいは処理温度近辺の温度で保持する(7!!成)こ
とが必要になる。上記陽極溶解によりバナジウムを溶入
する場合には、バナジウムが迅速に溶入して作業能率を
向上させることができ、しかも未溶解のバナジウムを含
む材料が浴底に堆積することはないという点で有利であ
る。なお、この場合の陰極としては溶融塩浴の容器また
は他に挿入した導電性物質を使用する。陽極溶解すると
きの陽極電流密度は、これを大きくすれば溶入速度は大
きくなるが、電解しな(ても溶入することから考えても
、比較的低い電流密度で充分である。実用上は0.1〜
0.8 A / calが適当である。A method of adding the material to a molten bath in the form of a powder (preferably 200 mesh or less) or a thin plate, or a method of immersing the material in the form of a rod or plate as an anode in a molten bath and electrolyzing it to dissolve vanadium in the anode, etc. be. The rate at which vanadium dissolves into the molten salt from the vanadium-containing material varies depending on the type and size of the vanadium-containing material used. It is necessary to maintain the temperature at 7!! When vanadium is infused by the above-mentioned anodic melting, vanadium can be infused quickly and work efficiency can be improved, and furthermore, material containing undissolved vanadium will not be deposited on the bath bottom. It's advantageous. In this case, as the cathode, a conductive substance inserted into a molten salt bath container or elsewhere is used. Increasing the anode current density during anodic melting will increase the infiltration rate, but a relatively low current density is sufficient considering that even if no electrolysis occurs (even if infiltration occurs), a relatively low current density is sufficient. is 0.1~
0.8 A/cal is suitable.
浴中に溶入したバナジウムは処理剤から供給される窒素
及び炭素と共に被処理材表面に拡散してバナジウムの炭
窒化物から成る表面層を形成する。The vanadium dissolved in the bath diffuses onto the surface of the material to be treated together with nitrogen and carbon supplied from the treatment agent to form a surface layer made of vanadium carbonitride.
なお、溶融塩浴の容器としては黒鉛や鋼などが用いられ
るが、実用上は鋼で充分である。Note that graphite, steel, or the like is used as the container for the molten salt bath, but steel is sufficient for practical use.
また、前記溶融塩電解法とは、処理剤を溶融せしめた浴
にバナジウムを含む材料を浸漬しバナジウムを溶入せし
めた状態で、該溶融塩浴に被処理材を陰極として浸漬し
、電解処理を行うものである・なおこの場合、陽極とし
て浴の容器または別に挿入した導電性物質を用いる。In addition, the molten salt electrolysis method is a method in which a material containing vanadium is immersed in a bath in which a treatment agent is melted, and the material to be treated is immersed in the molten salt bath as a cathode in a state in which vanadium is infused, and electrolytic treatment is performed. In this case, the bath container or a separately inserted conductive material is used as the anode.
処理剤を溶融した浴にバナジウムを含む材料を浸漬して
バナジウムを溶入する手段は前記溶融塩浸漬法と同様な
方法でよい。また処理剤の溶融塩浴にバナジウムを含む
材料を陽極、被処理材を陰極として浸漬し電解処理を行
うこともできる。この場合、バナジウムの陽極溶解と表
面層の形成とを同時に行うことができるというメリット
がある。A method similar to the molten salt immersion method described above may be used to infuse vanadium by immersing a material containing vanadium in a bath in which a processing agent is molten. Further, electrolytic treatment can also be performed by immersing a vanadium-containing material in a molten salt bath of a treatment agent as an anode and a material to be treated as a cathode. In this case, there is an advantage that the anodic melting of vanadium and the formation of the surface layer can be performed simultaneously.
また、被処理材を浸漬して電解処理を行う陰極電流密度
は2 A / cal以下、実用的には0.05〜1゜
OA / crAが適当である。Further, the cathode current density at which the material to be treated is immersed for electrolytic treatment is preferably 2 A/cal or less, and practically 0.05 to 1° OA/crA.
なお、上記溶融塩浸漬法、溶融塩電解法とも大気雰囲気
あるいは保護ガス(Nz+Ar等)中いずれにても処理
が可能である。Incidentally, both the molten salt immersion method and the molten salt electrolysis method described above can be carried out either in the air atmosphere or in a protective gas (Nz+Ar, etc.).
ペースト法とは、前記処理剤とバナジウムを含む材料と
の混合粉末あるいは前記のように予めバナジウムを溶入
させた処理剤を冷却固化させた後に粉砕した粉末をペー
スト状にし、被処理材に被覆して加熱するものである。The paste method is a process in which a mixed powder of the treatment agent and a material containing vanadium, or a treatment agent in which vanadium has been infused as described above, is cooled and solidified, and then ground into a paste and coated on the material to be treated. It is then heated.
上記粉末をペースト化するためにはデキストリン水溶液
、グリセリン、水ガラス、エチレングリコール、アルコ
ール等の粘着剤を添加する。この粉末のペーストは、被
処理材の表面に通常1鶴以上の厚さで被覆される。ペー
ストを被覆された鉄合金材料は1通常容器に入れられて
加熱炉で加熱される。雰囲気は大気中でよいが非酸化性
雰囲気下ではペーストの被覆層を薄くすることができる
。In order to form the powder into a paste, an adhesive such as an aqueous dextrin solution, glycerin, water glass, ethylene glycol, or alcohol is added. This powder paste is usually coated on the surface of the material to be treated to a thickness of one layer or more. The paste-coated iron alloy material is usually placed in a container and heated in a heating furnace. The atmosphere may be air, but the paste coating layer can be made thinner in a non-oxidizing atmosphere.
また、このペースト法では、ペーストの被覆された表面
部のみに表面層が形成されるため被処理材の任意の一部
表面部のみに表面層を形成することができる。Further, in this paste method, since the surface layer is formed only on the surface portion covered with the paste, the surface layer can be formed only on an arbitrary part of the surface portion of the material to be treated.
また、この粉末の粒度は、JISI’klOOのフルイ
通過程度でよい。これより粗くとも細かくとも特に大き
な影響はない。Further, the particle size of this powder may be such that it can pass through a JISI'klOO sieve. Whether it is coarser or finer than this, there is no particular effect.
以上のような加熱処理の加熱温度は650℃以下とする
。650℃以下の温度域で処理することにより被処理材
の母材が歪みを受けにくくなる。The heating temperature of the above heat treatment is 650° C. or lower. By processing in a temperature range of 650° C. or lower, the base material of the material to be processed is less susceptible to distortion.
また、その下限温度としては450℃とするのが望まし
い。450℃より低温で加熱処理を施した場合1表面層
の形成速度は非常に遅い。実用上はダイス鋼の高温焼戻
し温度、構造用鋼の焼戻し温度の500〜600℃が望
ましい。Further, it is desirable that the lower limit temperature is 450°C. When heat treatment is performed at a temperature lower than 450° C., the rate of formation of one surface layer is very slow. Practically speaking, the high temperature tempering temperature for die steel is preferably 500 to 600°C, which is the tempering temperature for structural steel.
加熱処理の処理時間が長くなれば表面層(バナジウムを
主成分とする炭窒化物層及びその直下の鉄の炭窒化物層
)の厚さは共に増加し、短時間処理ではバナジウムを主
成分とする炭窒化物層中のバナジウム含有量も増加する
。このため処理時間は所望とする上記表面層の厚さある
いはバナジウム含有量により定まるが、1〜50時間の
範囲で選ばれる。As the heat treatment time becomes longer, the thickness of the surface layer (the carbonitride layer mainly composed of vanadium and the iron carbonitride layer directly below it) increases; The vanadium content in the carbonitride layer increases as well. Therefore, the treatment time is determined by the desired thickness or vanadium content of the surface layer, and is selected within the range of 1 to 50 hours.
また、形成する表面層の厚さは3〜15μm程度また2
表面層中のバナジウムを主成分とする炭窒化物層の厚さ
は1〜10μm程度が実用的である。それを越える厚さ
に達すると被処理材の靭性が低下する恐れがある。In addition, the thickness of the surface layer to be formed is about 3 to 15 μm or 2
The practical thickness of the carbonitride layer containing vanadium as a main component in the surface layer is about 1 to 10 μm. If the thickness exceeds this, there is a risk that the toughness of the material to be treated will decrease.
本発明によるバナジウムの炭窒化物から成る表面層の形
成機構は明確ではないが2本発明者らがX線回折、マイ
クロアナライザ分析や処理時間と厚さの関係などから判
断すると、以下のようになっていると考えられる(以下
のm、n、o、pはそれぞれ数字を表す)。The formation mechanism of the surface layer made of vanadium carbonitride according to the present invention is not clear, but as judged by the present inventors from X-ray diffraction, microanalyzer analysis, and the relationship between processing time and thickness, it is as follows. (The following m, n, o, and p each represent a number).
まず、被処理材である鉄または鉄合金材料に外部から窒
素(N)と炭素(C)とが拡散し、被処理材の表面部の
鉄(Fe)と反応してFe、(C。First, nitrogen (N) and carbon (C) diffuse into the iron or iron alloy material to be treated from the outside and react with iron (Fe) on the surface of the treated material to form Fe and (C).
N)、、の形で窒化物層が形成される。なお、被処理材
中に炭素(C)あるいは窒素(N)が含まれているとこ
の炭素あるいは窒素(N)もFe、(C。A nitride layer is formed in the form of N), . Note that if the material to be treated contains carbon (C) or nitrogen (N), this carbon or nitrogen (N) also becomes Fe or (C).
N)7に含まれる。また、この窒化物層の直下には、窒
素の固溶体(Fe−Nの形)も形成される。N) Included in 7. A solid solution of nitrogen (in the form of Fe--N) is also formed directly below this nitride layer.
これらの反応は表面から次第に内部へと進行する。These reactions proceed from the surface to the interior.
その直後に、上記窒化物層に外部からのバナジウム(V
)が拡散する反応が始まり、上記2つの反応が平行に進
行する。。この拡散はF e m (C。Immediately thereafter, the nitride layer is exposed to external vanadium (V).
) begins to diffuse, and the above two reactions proceed in parallel. . This diffusion is F e m (C.
N)、′のFeと■とが置換する反応であり、窒化物理
は(V、Fe) 。(C,N)pに変化し、その反応は
表面から次第に内部に進行する。なお、(■。It is a reaction in which Fe of N) and ' is substituted with ■, and the nitriding physics is (V, Fe). (C,N)p, and the reaction progresses gradually from the surface to the inside. In addition, (■.
Fe)。(C,N) p層においては表面はどVが多く
、母材に近いほどFeが多い傾向にある。従って条件に
よっては表面部のFe量は著しく小さく。Fe). In the (C,N) p layer, the surface tends to have more V, and the closer it is to the base material, the more Fe there is. Therefore, depending on the conditions, the amount of Fe in the surface portion is extremely small.
■。(C,N)、と表示するのが妥当な場合もある。■. (C, N) may be appropriate.
従って、形成される表面層は表面側に(V、 Fe)
。(C,N)、層が形成され、更に母材側にFe、(C
,N)−Nが形成される。Therefore, the surface layer formed is (V, Fe) on the surface side.
. A layer of (C,N) is formed, and further Fe, (C
, N)-N is formed.
更に、上記の反応の他に被処理材表面に■とNあるいは
■とNおよびCが化合した形で直接析出する反応も同時
に起こっているであろう。Furthermore, in addition to the above-mentioned reaction, a reaction in which (1) and N or (2), N, and C are directly deposited on the surface of the treated material may also be occurring at the same time.
この(V、Fe) 。(C,N)p層とFe、(C。This (V, Fe). (C,N)p layer and Fe, (C.
N)、、層、それに鉄・窒素の固溶体層の厚さ、および
厚さの比率および化学組成は、母材種類、処理温度2時
間、処理剤の種類2混合比などによって調節することが
可能である。N), The thickness of the layer and the solid solution layer of iron and nitrogen, as well as the ratio of the thickness and the chemical composition, can be adjusted by the type of base material, the treatment temperature for 2 hours, the mixing ratio of the two types of treatment agents, etc. It is.
なお2本発明者らは先に鉄合金材料からなる被処理材の
表面処理法として被処理材の表面に周期律表第Va族元
素の窒化物あるいは炭窒化物から成る表面層を形成せし
めることを特徴とする表面処理法に関する発明を行い、
出願したく特願昭60−17’8781号)。これは、
被処理材の表面に鉄・窒素または鉄・炭素・窒素の化合
物層を形成させる窒化処理を施した後、被処理材と、第
Va族元素を含む材料と、アルカリ金属またはアルカリ
土類金属の塩化物、弗化物、ホウ弗化物、酸化物、臭化
物、ヨウ化物、炭酸塩、硝酸塩、硼酸塩のうちの1種ま
たは2種以上あるいはハロゲン化アンモニウム塩または
金属ハロゲン化物の一方または双方から成る処理剤とを
共存せしめて、580℃以下において加熱処理し、第V
a族元素を上記窒化処理によって形成されている化合物
層に拡散せしめることにより、被処理材の表面に第Va
族元素の窒化物あるいは炭窒化物から成る表面層を形成
せしめることを特徴とする表面処理方法(以下、2回処
理法と称す)であった。2. The present inventors previously proposed a surface treatment method for a treated material made of an iron alloy material, in which a surface layer made of a nitride or carbonitride of a Group Va element of the periodic table was formed on the surface of the treated material. Invented a surface treatment method characterized by
I would like to apply for this patent application No. 1987-17'8781). this is,
After performing nitriding treatment to form an iron/nitrogen or iron/carbon/nitrogen compound layer on the surface of the treated material, the treated material, a material containing a Group Va element, and an alkali metal or alkaline earth metal Treatment consisting of one or more of chlorides, fluorides, borate fluorides, oxides, bromides, iodides, carbonates, nitrates, borates, or one or both of ammonium halides and metal halides. A heat treatment is performed at 580° C. or lower, and
By diffusing Group A elements into the compound layer formed by the above nitriding treatment, Va.
This is a surface treatment method (hereinafter referred to as a two-time treatment method) characterized by forming a surface layer consisting of a nitride or carbonitride of a group element.
本発明と先の2回処理法では、熱による歪の発生しにべ
い低温で、塩浴法やペースト法を用い。In the present invention and the previous two-step processing method, a salt bath method or a paste method is used at a low temperature to prevent distortion due to heat.
被処理材の表面にバナジウムの炭窒化物から成る表面層
を形成せしめる点で似ているが、以下の点で大きく異な
る。Although they are similar in that a surface layer made of vanadium carbonitride is formed on the surface of the material to be treated, they differ greatly in the following points.
(A)炭窒化物層形成の機構
2回処理法では、1回目の処理で鉄・窒素および鉄・炭
素・窒素の化合物層を形成し、2回目の処理で第Va族
元素と上記窒化物層中の鉄との置換反応によって第Va
族元素の窒化物層および炭窒化物層が形成される。した
がって該窒化処理した被処理材に形成させ得る表面層の
最大厚さは。(A) Mechanism of carbonitride layer formation In the two-step treatment method, iron-nitrogen and iron-carbon-nitrogen compound layers are formed in the first treatment, and group Va elements and the above nitrides are formed in the second treatment. By a substitution reaction with iron in the layer, Va.
A group element nitride layer and a carbonitride layer are formed. Therefore, what is the maximum thickness of the surface layer that can be formed on the nitrided material?
1回目の処理で形成された鉄・窒素および鉄・炭素・窒
素の化合物層の厚さと同じであり、従って表面層の厚さ
は1回目の窒化処理によって規定される。It is the same as the thickness of the iron-nitrogen and iron-carbon-nitrogen compound layers formed in the first treatment, and therefore the thickness of the surface layer is defined by the first nitriding treatment.
これに対して本発明では、後の実施例にも示すように1
表面側のバナジウムを主成分とする炭窒化物層、母材側
の鉄の炭窒化物層ともに、処理時間の2乗にほぼ比例し
て厚く形成される傾向である。On the other hand, in the present invention, as shown in the later examples, 1
Both the vanadium-based carbonitride layer on the surface side and the iron carbonitride layer on the base metal side tend to be thick in proportion to the square of the processing time.
(B)処理材の特性
形成された層の硬さ、耐摩耗性、耐焼付性は同じ程度で
あるが、被処理材の靭性の面で大きな差が見られる。(B) Characteristics of treated materials Although the hardness, abrasion resistance, and seizure resistance of the formed layers are about the same, there is a large difference in the toughness of the treated materials.
一般の窒化処理では、母材の靭性の低下を防ぐために1
表面に化合物層を形成させないように処理するのが普通
である。これに対し、先に出願した2回処理法では、化
合物層を厚く形成されることが必要であり、それに伴っ
て鉄・窒素の固溶体層も厚く形成される。実施例中に示
したX″!fA!fAマイクロアナライザー析の結果で
も、窒素が母材中に多く固溶されているのが明確で、こ
れらは母材の靭性に悪影響をおよぼす。In general nitriding treatment, 1.
Usually, the surface is treated to prevent the formation of a compound layer. On the other hand, in the two-step processing method previously applied for, it is necessary to form a thick compound layer, and accordingly, a thick iron/nitrogen solid solution layer is also formed. The results of the X″!fA!fA microanalyzer analysis shown in the examples also clearly show that a large amount of nitrogen is solidly dissolved in the base metal, and these have an adverse effect on the toughness of the base metal.
本発明による処理では、2回処理法の場合に比べて、後
の実施例にも見られるように母材中の窒素固溶量が極め
て少なく、鉄・窒素の固溶体層も薄い。したがって、2
回処理法による被処理材に比べて本発明による被処理材
の方が靭性が高いと考えられる。In the treatment according to the present invention, the amount of solid solution of nitrogen in the base material is extremely small, and the solid solution layer of iron and nitrogen is also thin, as seen in the later examples, compared to the case of the two-time treatment method. Therefore, 2
It is considered that the material to be treated according to the present invention has higher toughness than the material to be treated by the reprocessing method.
(C)処理能率
2回処理法では、2回の異なった処理が必要であるのに
対し9本発明の処理法では、1回の処理で層の形成が可
能である。従って処理能率が高い他、設備も少なくてす
む利点がある。(C) Processing Efficiency In contrast to the two-step processing method, which requires two different treatments, the processing method of the present invention allows the formation of a layer in one processing. Therefore, in addition to high processing efficiency, it has the advantage of requiring less equipment.
本発明によれば、前記特定の処理剤を用い、650℃以
下という低温においてバナジウムの拡散処理を行うので
、低温において、鉄または鉄合金材料にバナジウムの炭
窒化物から成る優れた表面層を形成することができる。According to the present invention, since the vanadium diffusion treatment is performed at a low temperature of 650° C. or lower using the above-mentioned specific treatment agent, an excellent surface layer consisting of vanadium carbonitride is formed on the iron or iron alloy material at low temperature. can do.
また、低温で鉄または鉄合金材料を加熱するため、材料
の母材に歪みが発生しにくい。更に低温処理による操作
性が良好であり、多大のエネルギーを必要としない。Additionally, since the iron or iron alloy material is heated at low temperatures, distortion is less likely to occur in the base material. Furthermore, it has good operability due to low temperature treatment and does not require a large amount of energy.
また9本発明による層は拡散によって形成されるため、
低温で処理するにもかかわらず、拡散反応のないPVD
による炭化物層、窒化物層の場合と異なり母材との密着
性に優れ、緻密な表面層を形成することができる。また
、形成された層の厚さは実用上十分なものである。9 Also, since the layer according to the present invention is formed by diffusion,
PVD with no diffusion reaction despite processing at low temperatures
Unlike the case of carbide and nitride layers, it has excellent adhesion to the base material and can form a dense surface layer. Moreover, the thickness of the formed layer is practically sufficient.
以下2本発明の詳細な説明する。 Two aspects of the present invention will be described in detail below.
実施例l
NaCN053wt%とKCl12wt%とCaclz
35wt%との混合物の入った耐熱容器を大気中の電気
炉にて加熱して570℃の溶融塩浴を形成し、更に一1
00メツシュのフェロバナジウム(Fe−V、JISI
号)粉末を上記溶融塩浴に対して15wt%添加した。Example 1 NaCN053wt%, KCl12wt% and Caclz
A heat-resistant container containing the mixture with 35 wt% was heated in an electric furnace in the atmosphere to form a 570°C molten salt bath, and
00 mesh ferrovanadium (Fe-V, JISI
15 wt % of the powder was added to the molten salt bath.
この溶融塩浴に直径61).長さ20鶴のJIS−SK
H51丸棒試験片を1〜50時間浸漬後、取り出して空
冷した。付着溶剤を洗浄除去後断面を研摩して、断面組
織の観察を行った。−例として、8時間浸漬処理して形
成された表面層の断面m織の顕微鏡写真(倍率1ooo
倍)を第1図に示す。該表面層は表面の滑らかな層であ
り、内層と外層の2層から成っている。この試料の断面
について、X線マイクロアナライザーによる分析を行っ
た結果は。This molten salt bath has a diameter of 61). JIS-SK with length of 20 cranes
After immersing the H51 round bar test piece for 1 to 50 hours, it was taken out and air cooled. After washing and removing the adhering solvent, the cross section was polished and the cross-sectional structure was observed. - As an example, a micrograph of a cross-sectional m weave of the surface layer formed by immersion treatment for 8 hours (magnification: 100
times) are shown in Figure 1. The surface layer has a smooth surface and consists of two layers: an inner layer and an outer layer. The cross section of this sample was analyzed using an X-ray microanalyzer.
第2図に示すように表面層中にはV、FeとともにN、
、!:Cが認められ、外層にはVとNが、内層にはFe
−とCが多く検出された。また1層直下の母材中へのN
の固溶量は極めて少ない。表面からの分析結果によれば
、約50%のViが存在し、さらにX線回折ではV C
,V N、 F e 3Cに相当する回折線が認められ
た。このことより形成された表面層は、内層がFe、(
C,N)、から成る鉄の炭窒化物層、外層が(V、
F e ) 。(C,N) pから成るバナジウム−鉄
の炭窒化物層であることが確かめられた。浸漬時間を、
1〜50時間の間で4種類に変えて処理した試験片の断
面組織の観察により5表面に形成された層の厚さを測定
した結果を第3図の曲線A、Bに示す。ここで2曲線A
は内層(F e、(C,N) 、、層〕と外層((V、
Fe)。(C,N)、層〕の合計厚さ1曲線Bは、外層
の厚さを示す、内層と外層の合計厚さ、外層の厚さとも
に、処理時間の2乗にほぼ比例して増加する傾向であっ
た。As shown in Figure 2, the surface layer contains N, along with V and Fe.
,! :C is observed, V and N are found in the outer layer, and Fe is found in the inner layer.
- and C were detected in large numbers. In addition, N into the base material directly below the first layer
The amount of solid solution is extremely small. According to the analysis results from the surface, approximately 50% Vi exists, and furthermore, X-ray diffraction shows that V C
, V N , and diffraction lines corresponding to Fe 3C were observed. The surface layer formed from this has an inner layer of Fe, (
An iron carbonitride layer consisting of (C, N), the outer layer is (V,
Fe). It was confirmed that it was a vanadium-iron carbonitride layer consisting of (C,N)p. Soaking time
Curves A and B in FIG. 3 show the results of measuring the thickness of the layer formed on the 5 surfaces by observing the cross-sectional structures of test specimens treated in four different ways for 1 to 50 hours. Here, 2 curves A
is the inner layer (F e, (C,N),, layer) and the outer layer ((V,
Fe). (C,N), layer] curve B indicates the thickness of the outer layer, and the total thickness of the inner layer and outer layer, as well as the thickness of the outer layer, increase approximately in proportion to the square of the processing time. It was a trend.
なお2本実施例で形成された層の密着性を調べるため、
ロックウヱル硬度計を用い、H*C測定条件で圧子を落
下させ、圧痕周辺に現れる変化を観察した。その結果9
本処理で形成された層では。In addition, in order to examine the adhesion of the layers formed in the two examples,
Using a Rockwell hardness meter, an indenter was dropped under H*C measurement conditions, and changes appearing around the indentation were observed. Result 9
In the layer formed by this process.
圧痕周辺母材の盛上がりにより1層に引張応力が作用し
て、約10本のクランクが放射線状に発生したが3層の
剥離は認められなく、良好な密着性を示した。一方比較
のために、同様のテストをイオンブレーティングによる
TiN層に行った結果では1周辺の層は円環状に完全に
剥離した。また1000℃の溶融塩浴中で形成された7
0層では本実施例層と同様のクランクが見られた。Tensile stress was applied to one layer due to the swelling of the base material around the indentation, and about 10 cranks were generated in a radial pattern, but no peeling of the three layers was observed, indicating good adhesion. On the other hand, for comparison, a similar test was conducted on a TiN layer formed by ion blating, and the results showed that the layer around one layer was completely peeled off in an annular shape. Also, 7 formed in a molten salt bath at 1000°C
In layer 0, cranks similar to those in the layer of this example were observed.
実施例2
NaCNO57wt%とNaCN13wt%とNaC1
9wt%とCaCIz21wt%との混合物の入った耐
熱鋼容器を大気中の電気炉にて加熱して550℃の溶融
塩浴を形成し、更にこの浴中にVCt、粉末(−320
メツシユ)を上記溶融塩浴に対して15wt%添加した
この溶融塩浴に直径8■婁、長さ20鶴のJIS−34
5C丸棒試験片を8時間漫清後、取り出して空冷した。Example 2 NaCNO57wt%, NaCN13wt% and NaCl
A heat-resistant steel container containing a mixture of 9 wt% CaCIz and 21 wt% CaCIz was heated in an electric furnace in the atmosphere to form a molten salt bath at 550°C, and VCt, powder (-320
To this molten salt bath to which 15wt% of methane) was added to the molten salt bath, a JIS-34
After the 5C round bar test piece was purified for 8 hours, it was taken out and cooled in the air.
試験片の断面組織の顕微鏡写真(倍率400倍)を第4
図に示す。表面に形成された層は実施例1の場合°と同
様2層から成り、X線回折や第5図に示すX線マイクロ
アナライザー分析の結果より。A micrograph (400x magnification) of the cross-sectional structure of the test piece is shown in the fourth photo.
As shown in the figure. The layer formed on the surface consists of two layers as in Example 1, based on the results of X-ray diffraction and X-ray microanalyzer analysis shown in FIG.
実施例1の場合と同様、内層がF e、(C,N)。As in the case of Example 1, the inner layer is Fe, (C, N).
から成る鉄の炭窒化物層、外層が(V、Fe)。Iron carbonitride layer consisting of (V,Fe).
(C,N)、から成るバナジウム−鉄の炭窒化物層であ
ることが確かめられた。It was confirmed that it was a vanadium-iron carbonitride layer consisting of (C,N).
また、ロックウェル硬度計による密着性評価でも実施例
1と同様のクラック発生形態であり、良好な密着性を持
った層であると判定される。In addition, the adhesion evaluation using a Rockwell hardness test showed the same cracking pattern as in Example 1, and it was determined that the layer had good adhesion.
実施例3
実施例1に用いたのと同じNaCN053wt%とKC
l12wt%とCaCIz 35wt%との混合物の入
った黒鉛容器を大気中の電気炉にて加熱して570℃に
保持し、更にこの浴の中央に60X30X4mの板状の
Fe−V(JISI号)を挿入し、これを陽極、黒鉛容
器を陰極として、0.6A/cnlの陽極電流密度で約
16時間通電した。Fe−V板の重量減少から計算する
と、この陽極溶解処理により、塩浴量全体に対して約6
%のバナジウムが浴中に俗人された。この溶融塩浴中に
直径6鶴、長さ15關のS K H51丸棒試験片を2
4時間浸漬した後、取り出し空冷した。Example 3 The same NaCN053wt% and KC used in Example 1
A graphite container containing a mixture of l12wt% and CaCIz 35wt% was heated in an electric furnace in the atmosphere and maintained at 570°C, and a 60x30x4m plate-shaped Fe-V (JISI No.) was placed in the center of the bath. With this as an anode and the graphite container as a cathode, electricity was applied at an anode current density of 0.6 A/cnl for about 16 hours. Calculating from the weight reduction of the Fe-V plate, this anodic dissolution treatment reduces the total amount of salt bath by about 6
% of vanadium was taken into the bath. In this molten salt bath, two S K H51 round bar test pieces with a diameter of 6 mm and a length of 15 mm were placed.
After being immersed for 4 hours, it was taken out and cooled in the air.
処理された試片を切断して、光学顕微鏡およびX、lマ
イクロアナライザー分析で調べたとこ口層は2層に形成
され、第6図に示すように表面層中には、V、Feとと
もにN(!:cが認められ、外層にはVとNが、内層に
はFeとCが多く検出された。また、X線回折結果では
、VC,VN、FeffCに相当する回折線が認められ
た。When the treated specimen was cut and examined using an optical microscope and an X, l microanalyzer analysis, the surface layer was formed into two layers, and as shown in Figure 6, the surface layer contained N along with V and Fe. (!:c was observed, V and N were detected in the outer layer, and Fe and C were detected in large amounts in the inner layer. Also, in the X-ray diffraction results, diffraction lines corresponding to VC, VN, and FeffC were observed. .
密着性も、実施例1.2と同様良好な結果が得られた。As for adhesion, good results were obtained as in Example 1.2.
実施例4
NaCNO51wt%とNaCl21wt%とNazC
O*28w t%との混合物の入った黒鉛容器を大気中
の電気炉にて570℃に加熱して溶融塩浴を調整し、更
にこの浴に一100メソシュのFe−V(JISI号)
粉末を溶融塩に対して20%添加した。この570℃の
浴に直径8關、長さ20鰭の545C試片を浸漬して、
これを陰極。Example 4 NaCNO51wt%, NaCl21wt% and NazC
A graphite container containing a mixture of O*28 wt% was heated to 570°C in an electric furnace in the atmosphere to prepare a molten salt bath, and 1100 Mesosh Fe-V (JISI No.) was added to this bath.
The powder was added at 20% relative to the molten salt. A 545C specimen with a diameter of 8 inches and a length of 20 fins was immersed in this 570°C bath.
This is the cathode.
黒鉛容器を陽極として陰極電流密度0.05A/cff
lで8時間J電して電解処理を行った。Cathode current density 0.05A/cff with graphite container as anode
Electrolytic treatment was carried out by applying a J electric current for 8 hours.
試片を浴から取り出して空冷し、切断して光学顕微鏡に
より断面の組織観察を行った。表面層の断面組織の顕微
鏡写真を第7図に示す。他の実施例の場合と同様に表面
層は外層と内層の2Nから成り、第8図にX線マイクロ
アナライザーによる分析結果を示すように、外層には■
とNが内層にはFeとCが多く認められた。これも他の
実施例と同様の結果であった。The specimen was taken out of the bath, cooled in air, cut, and the structure of the cross section was observed using an optical microscope. A microscopic photograph of the cross-sectional structure of the surface layer is shown in FIG. As in the case of other examples, the surface layer consists of an outer layer and an inner layer of 2N, and as shown in FIG.
In the inner layer, much Fe and C were observed. This result was also similar to other examples.
実施例5
NaCNO45wt%とKCll0wt%とCaC1z
25wt%とFe−V(JISI号)粉末2Qwt%を
650℃に加熱し、この溶融浴を十分撹拌して均一とし
た後、この浴の4重量部に対して、黒鉛とアルミナ粉末
をそれぞれ1重量部を添加し、さらに十分に混合しスラ
リー塗布用処理剤を作成した。Example 5 NaCNO45wt%, KCll0wt% and CaC1z
25 wt% and 2 Qwt% of Fe-V (JISI No.) powder were heated to 650°C, and the molten bath was thoroughly stirred to make it uniform. 1 part of graphite and alumina powder were each added to 4 parts by weight of this bath. Parts by weight were added and thoroughly mixed to prepare a processing agent for slurry coating.
その後、上記処理剤を冷却し、粉末状としたのち、エチ
ルアルコールを添加してスラリー状とし。Thereafter, the processing agent was cooled and made into a powder, and then ethyl alcohol was added to form a slurry.
これを345Cに約5 mmの厚さに塗布し乾燥させた
。上記試料を窒素雰囲気中で570℃で8時間加熱後冷
却した。This was applied to 345C to a thickness of about 5 mm and dried. The above sample was heated at 570° C. for 8 hours in a nitrogen atmosphere and then cooled.
試料に付着した処理剤を除去後、X線回折、X線マイク
ロアナライザーで調べた結果、実施例1と同様、2層か
らなる表面層が形成され、内層がp e、(C,N)n
から成る鉄の炭窒化物層、外層が(V、Fe)。(C,
N) pから成るバナジウム−鉄の炭窒化物層であるこ
とが確かめられた。After removing the treatment agent adhering to the sample, examination using X-ray diffraction and an X-ray microanalyzer revealed that, as in Example 1, a two-layer surface layer was formed, and the inner layer was pe, (C,N)n.
Iron carbonitride layer consisting of (V,Fe). (C,
N) It was confirmed that it was a vanadium-iron carbonitride layer consisting of p.
実施例6
実施例1に用いたのと同じ<、NaCN053wt%と
KCl12wt%とCa Cl z 35 w t%
との混合物の入った耐熱容器を大気中の電気炉にて加熱
して570″Cの溶融塩浴を形成し2更に100メソシ
ユのフェロバナジウム(F e −V。Example 6 Same as used in Example 1, NaCN053wt%, KCl12wt%, CaClz35wt%
A heat-resistant container containing a mixture of ferrovanadium (F e -V) was heated in an electric furnace in the atmosphere to form a molten salt bath of 570"C, and 100 mesohydrium of ferrovanadium (F e -V) was formed.
JISI号)粉末を上記溶融塩浴に対して15wt%添
加した。この溶融塩浴に予め標準条件で焼入焼もどしさ
れた直径6.5+n、長さ4Q++aのSK■(5層試
片を8時間浸漬後、取り出して空冷した。JISI No.) powder was added at 15 wt % to the molten salt bath. An SK■ (5-layer specimen) having a diameter of 6.5+n and a length of 4Q++a, which had been quenched and tempered under standard conditions in advance in this molten salt bath, was immersed for 8 hours, then taken out and cooled in the air.
付着浴剤を洗浄除去後、形成された表面層をX線回折で
調べたところ、VC,VN、F e3Cに相当する回折
線が認められた。After washing and removing the adhering bath agent, the formed surface layer was examined by X-ray diffraction, and diffraction lines corresponding to VC, VN, and Fe3C were observed.
次に上記バナジウム炭窒化物被覆試片(試料隘1)につ
いて、ガス浸炭焼入されたJIS−3CM415を相手
材としてファビリー試験機により乾式、荷重200kg
、回転数30Orpm摩擦速度0.1m/sec、試験
時間4 minの条件で摩擦試験を実施した。また、比
較のためJIS−3KH51焼入焼もどし試片(試料1
)hsl)と窒化処理のみ施した5KH51試片(試料
1lhs 2)についても同様の摩擦試験を実施した。Next, the above-mentioned vanadium carbonitride coated specimen (sample size 1) was dry-tested using a Fabry tester using gas carburized and quenched JIS-3CM415 as a mating material under a load of 200 kg.
A friction test was conducted under the following conditions: rotation speed 30 rpm, friction speed 0.1 m/sec, and test time 4 min. In addition, for comparison, JIS-3KH51 quenched and tempered specimens (sample 1
) hsl) and a 5KH51 specimen (sample 1lhs 2) which had been subjected to only nitriding treatment were also subjected to similar friction tests.
試料Nll5Iの試片は、約17B/calの摩耗量を
示し、試験開始から30秒後に測定された摩擦係数は0
.280であった。また試料Nl52の試片は約15m
g/c4の摩耗量を示し、試験開始から30秒後の摩擦
係数は0.265であった。The specimen of sample Nll5I showed a wear amount of about 17 B/cal, and the friction coefficient measured 30 seconds after the start of the test was 0.
.. It was 280. In addition, the specimen of sample Nl52 is approximately 15 m long.
The wear amount was g/c4, and the friction coefficient 30 seconds after the start of the test was 0.265.
これに対して本実施例による試料磁1の試片では、摩耗
量は約3tag101と小さく、試験開始から30秒後
の摩擦係数もO,l 50と小さかった。On the other hand, in the sample magnet 1 according to the present example, the amount of wear was as small as about 3 tags 101, and the friction coefficient 30 seconds after the start of the test was as small as O,l 50.
また1020℃の高温の溶融塩浴中に1.5時間浸潤し
て約3μm厚さの炭化バナジウム層(VC)を被覆した
JIS−5KH51試片、あるいは850℃、4時間の
条件で化学気相蒸着法(CV D)により8μm厚さの
Ti (C,N)からなるチタンの炭窒化物層を被覆
したJIS−3KH51試片についても同様の摩擦試験
を行ったところ1本実施例により処理した試料魚1の試
片とほとんど同じような摩耗量および摩擦係数であった
。このことより2本実施例により形成した表面層は、高
温での溶融塩浸漬法やCVDにより形成した表面層に比
べて、耐摩耗性や耐焼付性の点において劣っていないこ
とがわかる。In addition, JIS-5KH51 specimens were coated with a vanadium carbide layer (VC) approximately 3 μm thick by soaking them in a high-temperature molten salt bath at 1020°C for 1.5 hours, or by chemical vapor deposition at 850°C for 4 hours. A similar friction test was conducted on a JIS-3KH51 specimen coated with a titanium carbonitride layer made of Ti (C, N) with a thickness of 8 μm using the vapor deposition method (CVD). The amount of wear and coefficient of friction were almost the same as those of sample fish 1. From this, it can be seen that the surface layer formed by the two examples is not inferior in terms of wear resistance and seizure resistance compared to the surface layer formed by molten salt immersion method or CVD at high temperature.
第1図、第4図、第7図はそれぞれ実施例1゜2.4に
おいて本発明の処理により形成された表面層の断面組織
を示す顕微鏡写真(第1図:1000倍、第4図、第7
図=400倍)、第2図。
第5図、第6図、第8図はそれぞれ実施例1,2゜3.
4.において本発明により処理された鉄合金材料の表面
部のX線マイクロアナライザー分析結果を示す線図、第
3図は実施例1において形成された表面層の層厚さの浸
漬時間に対する変化を示す線図である。Figures 1, 4, and 7 are micrographs (Figure 1: 1000x, Figure 4, 7th
Figure = 400x), Figure 2. FIGS. 5, 6, and 8 show examples 1, 2, and 3, respectively.
4. FIG. 3 is a diagram showing the results of X-ray microanalyzer analysis of the surface portion of the iron alloy material treated according to the present invention; FIG. It is a diagram.
Claims (6)
、アルカリ金属またはアルカリ土類金属のシアン化塩、
シアン酸塩のうちの1種または2種以上から成る処理剤
とを共存せしめて、650℃以下において加熱処理し、
バナジウム、窒素及び炭素を上記鉄または鉄合金材料表
面に拡散せしめることにより、鉄または鉄合金材料表面
にバナジウムの炭窒化物から成る表面層を形成せしめる
ことを特徴とする鉄または鉄合金材料の表面処理方法。(1) Iron or iron alloy material, material containing vanadium, and cyanide salt of alkali metal or alkaline earth metal,
heat-treated at 650° C. or lower in the presence of a treatment agent consisting of one or more cyanates;
A surface of an iron or iron alloy material, characterized in that a surface layer consisting of vanadium carbonitride is formed on the surface of the iron or iron alloy material by diffusing vanadium, nitrogen, and carbon onto the surface of the iron or iron alloy material. Processing method.
、アルカリ金属またはアルカリ土類金属のシアン化塩、
シアン酸塩のうちの1種または2種以上及びアルカリ金
属またはアルカリ土類金属の塩化物、弗化物、ホウ弗化
物、酸化物、臭化物、ヨウ化物、炭酸塩、硝酸塩、硼酸
塩のうちの1種または2種以上から成る処理剤とを共存
せしめて、650℃以下において加熱処理し、バナジウ
ム、窒素及び炭素を上記鉄または鉄合金材料表面に拡散
せしめることにより、鉄または鉄合金材料表面にバナジ
ウムの炭窒化物から成る表面層を形成せしめることを特
徴とする鉄または鉄合金材料の表面処理方法。(2) iron or iron alloy material, material containing vanadium, and cyanide salt of alkali metal or alkaline earth metal;
One or more cyanates and one of chlorides, fluorides, borate fluorides, oxides, bromides, iodides, carbonates, nitrates, borates of alkali metals or alkaline earth metals Vanadium is added to the surface of the iron or iron alloy material by heat treatment at 650° C. or below to diffuse vanadium, nitrogen and carbon onto the surface of the iron or iron alloy material. A method for surface treatment of iron or iron alloy material, characterized by forming a surface layer consisting of carbonitride.
ウム合金、バナジウム化合物の1種または2種以上から
成る特許請求の範囲第(1)項及び第(2)項記載の鉄
または鉄合金材料の表面処理方法。(3) Surface treatment of iron or iron alloy material according to claims (1) and (2), wherein the vanadium material is made of one or more of metal vanadium, vanadium alloy, and vanadium compound. Method.
塩浴中にバナジウムを含む材料と鉄または鉄合金材料と
を浸漬することにより行う特許請求の範囲第(1)項及
び第(2)項記載の鉄または鉄合金材料の表面処理方法
。(4) The heat treatment is carried out by immersing the vanadium-containing material and the iron or iron alloy material in a molten salt bath in which the treatment agent is melted. ) Surface treatment method for iron or iron alloy materials.
に、バナジウムを含む材料を浸漬した溶融塩浴中で鉄ま
たは鉄合金材料を陰極とし、電解処理により行う特許請
求の範囲第(1)項及び第(2)項記載の鉄または鉄合
金材料の表面処理方法。(5) The heat treatment is performed by electrolytic treatment in which the treatment agent is melted and an iron or iron alloy material is used as a cathode in a molten salt bath in which a material containing vanadium is immersed. and a method for surface treatment of iron or iron alloy material according to item (2).
材料との混合粉末のペーストを鉄または鉄合金材料に塗
布した状態において行う特許請求の範囲第(1)項及び
第(2)項記載の鉄または鉄合金材料の表面処理方法。(6) The heat treatment is performed in a state where a paste of mixed powder of the treatment agent and a material containing vanadium is applied to the iron or iron alloy material, as described in claims (1) and (2). surface treatment method for iron or iron alloy materials.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17923986A JPS6335764A (en) | 1986-07-30 | 1986-07-30 | Surface treatment of iron or iron alloy material |
US07/080,828 US4818351A (en) | 1986-07-30 | 1987-07-24 | Method for the surface treatment of an iron or iron alloy article |
CA000543121A CA1305399C (en) | 1986-07-30 | 1987-07-28 | Method for the surface treatment of an iron or iron alloy article |
DE3725321A DE3725321C2 (en) | 1986-07-30 | 1987-07-30 | Process for the surface treatment of an object made of iron or an iron alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17923986A JPS6335764A (en) | 1986-07-30 | 1986-07-30 | Surface treatment of iron or iron alloy material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6335764A true JPS6335764A (en) | 1988-02-16 |
JPH0356307B2 JPH0356307B2 (en) | 1991-08-27 |
Family
ID=16062374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17923986A Granted JPS6335764A (en) | 1986-07-30 | 1986-07-30 | Surface treatment of iron or iron alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6335764A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015081683A (en) * | 2014-08-26 | 2015-04-27 | 大同工業株式会社 | Pin for chain |
EP2868947A3 (en) * | 2013-10-21 | 2015-05-13 | Daido Kogyo Co., Ltd. | Chain bearing, chain pin, and chain |
WO2019150697A1 (en) * | 2018-02-01 | 2019-08-08 | 株式会社日立製作所 | Slurry for surface hardening treatments and structural material produced using same |
JP2021513611A (en) * | 2018-02-14 | 2021-05-27 | イーヴィス モートアズュステーメ ゲー・エム・ベー・ハー ウント コー. カー・ゲーiwis motorsysteme GmbH & Co. KG | Layer of hard material on metal substrate |
-
1986
- 1986-07-30 JP JP17923986A patent/JPS6335764A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2868947A3 (en) * | 2013-10-21 | 2015-05-13 | Daido Kogyo Co., Ltd. | Chain bearing, chain pin, and chain |
US9353829B2 (en) | 2013-10-21 | 2016-05-31 | Daido Kogyo Co., Ltd. | Chain bearing, chain pin, and chain |
JP2015081683A (en) * | 2014-08-26 | 2015-04-27 | 大同工業株式会社 | Pin for chain |
WO2019150697A1 (en) * | 2018-02-01 | 2019-08-08 | 株式会社日立製作所 | Slurry for surface hardening treatments and structural material produced using same |
JP2021513611A (en) * | 2018-02-14 | 2021-05-27 | イーヴィス モートアズュステーメ ゲー・エム・ベー・ハー ウント コー. カー・ゲーiwis motorsysteme GmbH & Co. KG | Layer of hard material on metal substrate |
Also Published As
Publication number | Publication date |
---|---|
JPH0356307B2 (en) | 1991-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4765847A (en) | Method of treating the surface of iron alloy materials | |
JP2013147748A (en) | Method for boriding of coating using high speed electrolytic process | |
US4818351A (en) | Method for the surface treatment of an iron or iron alloy article | |
CN106995910B (en) | Metal-based material coated with carbide coating and preparation method thereof | |
JPS6335764A (en) | Surface treatment of iron or iron alloy material | |
JPH0365435B2 (en) | ||
CA1036976A (en) | Anodically dissolving group v-a element into molten borate bath | |
JPH05140725A (en) | Treatment for surface of titanium material | |
US4804445A (en) | Method for the surface treatment of an iron or iron alloy article | |
EP0122529B1 (en) | A method for surface hardening a ferrous-alloy article and the resulting product | |
JPH0424423B2 (en) | ||
US3959092A (en) | Method for a surface treatment of cemented carbide article | |
JPS6240362A (en) | Surface treatment of iron alloy material | |
US3885064A (en) | Method for forming a chromium carbide layer on the surface of an iron, ferrous alloy or cemented carbide article | |
Yuan et al. | Preparation and property of chromium carbide thermal diffusion coating on cold working die materials | |
JPH0356308B2 (en) | ||
JP2518710B2 (en) | Surface treatment method and treatment agent for iron alloy material | |
JPS62156264A (en) | Surface treatment of iron alloy material | |
CA1052317A (en) | Electrolytic formation of group va carbide on an iron, ferrous alloy or cemented carbide article | |
JPH0447028B2 (en) | ||
JPS6141984B2 (en) | ||
JPH0447029B2 (en) | ||
JP2616814B2 (en) | Surface treatment method and treatment agent for iron alloy material | |
KR101204509B1 (en) | Titanium or zirconium displacement Nitriding Heat Treatment | |
CN115992338A (en) | Method for preparing carbide coating by salt bath carbonization of transition metal surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |