JPS6335763A - Treatment of spring for nuclear power plant - Google Patents

Treatment of spring for nuclear power plant

Info

Publication number
JPS6335763A
JPS6335763A JP61178929A JP17892986A JPS6335763A JP S6335763 A JPS6335763 A JP S6335763A JP 61178929 A JP61178929 A JP 61178929A JP 17892986 A JP17892986 A JP 17892986A JP S6335763 A JPS6335763 A JP S6335763A
Authority
JP
Japan
Prior art keywords
springs
nuclear power
spring
power plant
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61178929A
Other languages
Japanese (ja)
Inventor
Takao Baba
馬場 隆男
Mitsuo Kawai
光雄 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61178929A priority Critical patent/JPS6335763A/en
Publication of JPS6335763A publication Critical patent/JPS6335763A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Wire Processing (AREA)

Abstract

PURPOSE:To reduce the amount of Co<58> as a radioactive corrosive product in the water in a nuclear reactor by aging springs made of a precipitation strengthening Ni alloy and immersing them in water at high temp. and pressure for a long time before the springs are used in a nuclear power plant. CONSTITUTION:Springs for a nuclear power plant are made of a precipitation strengthening Ni alloy contg. a precipitation strengthening element such as Al, Ti or Nb. The springs are aged and immersed in water at high temp. and pressure for >=10hr. The temp. and pressure are set so that initially leachable Ni is leached from the surfaces of the springs. After the initially leachable Ni is leached by the immersion, the springs are used in a nuclear power plant. Since Ni is hardly leached from the springs in the water in a nuclear reactor, generation of Co<58> as a radioactive corrosive product from Ni<58> by irradiation with neutrons is drastically reduced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、沸騰水型原子力プラント等の原子力プラント
用スプリングの処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for treating springs for nuclear power plants such as boiling water nuclear power plants.

(従来の技術) 原子力発電プラントには、コイルスプリング、フィンガ
スプリング、チャンネルファスナ等の各種スプリングが
使用されている。これらのスプリングはバネ強さや耐食
性の観点から、ニッケル基析出強化型合金を使用し、こ
の合金をスプリングに形成したのら、時効処理の状態で
使用されている。
(Prior Art) Nuclear power plants use various springs such as coil springs, finger springs, and channel fasteners. These springs use a nickel-based precipitation-strengthened alloy from the viewpoint of spring strength and corrosion resistance, and after forming the alloy into a spring, it is used after being subjected to an aging treatment.

ところで、原子力発電プラントの稼動率の向上や安全性
の一層の向上を目的に、炉水中に含まれるtJIl射性
腐食性腐食生成物が進められており、例えばコバルト−
60(Co”)の低減にはプラント使用材料中のコバル
ト含有量を低減規制をしたり、コバルトを合金元素とし
て含まない材料を使用したりする等の他、種々の方法が
採られている。
By the way, with the aim of improving the operating rate and further improving the safety of nuclear power plants, efforts are being made to improve the radioactive corrosion products of tJIl contained in reactor water, such as cobalt-
Various methods have been adopted to reduce 60 (Co"), such as regulating the cobalt content in materials used in plants and using materials that do not contain cobalt as an alloying element.

(発明が解決しようとする問題点) しかしながら、より−A’Rの放射性1出食生成物の低
減を図るためには、Co60の低減はらちろんのこと、
中性子が照射される場所で使用されているニッケル基析
出強化型合金製スプリングが咳反、58       
    58 応(Nl  (np)co  )から発生するc OJ
 8の低減、言い換えると、CO58の炉水中への溶出
抑制が必要となる。
(Problems to be Solved by the Invention) However, in order to further reduce the radioactive 1 production of -A'R, it is of course necessary to reduce Co60.
Nickel-based precipitation-strengthened alloy springs used in locations exposed to neutron irradiation caused coughing, 58
58 c OJ generated from reaction (Nl (np) co )
In other words, it is necessary to suppress the elution of CO58 into the reactor water.

また、今後経済性の観点から燃料の高燃焼度化が進んだ
場合にはC058の炉水中への溶出抑制がさらに必要と
なる。
Further, from the viewpoint of economic efficiency, if the burnup of fuel progresses in the future, it will become necessary to further suppress the elution of C058 into the reactor water.

本発明は上記点に鑑み、種々の実験、検討の結果得られ
たもので、ニッケル基析出強化型合金製スプリングが中
性子の照射を受け、スプリングの素材に含まれるNi5
8がCOJ 8となっても炉水中への腐食速度が小さく
、炉水中の放射性腐食生成物の増加が抑制される原子力
発電プラント用として好適なスプリングの処理方法を捉
供することを目的とする。
In view of the above points, the present invention was obtained as a result of various experiments and studies, and the present invention is based on a spring made of a nickel-based precipitation-strengthened alloy that is irradiated with neutrons to remove Ni5 contained in the spring material.
The present invention aims to provide a method for treating springs suitable for use in nuclear power plants, in which the rate of corrosion into reactor water is low even when COJ 8 becomes COJ 8, and an increase in radioactive corrosion products in reactor water is suppressed.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段と作用)本発明は、ニッ
ケル基析出強化型合金を所定形状のスプリングに形成し
たのち時効処理し、次いで高温高圧水中に浸漬保持する
ことを特徴とする原子力プラント用スプリングの処理方
法である。
(Means and effects for solving the problems) The present invention provides a nuclear power plant characterized in that a nickel-based precipitation-strengthened alloy is formed into a spring of a predetermined shape, subjected to an aging treatment, and then kept immersed in high-temperature, high-pressure water. This is a method of processing springs for use in

ニッケル基析出強化型合金は合金組成としてベースがN
iであり、析出強化元素としてAj!、■t。
Nickel-based precipitation strengthened alloys have a base of N as an alloy composition.
i, and Aj! as a precipitation strengthening element! ,■t.

Nb等を含み、x + 3 A i (AオTi)、N
i3Nb等を微細に析出させ強度を向上させたものであ
る。なお、その他の元素として耐食性を付与するために
Cr、Moを、強度向上にCr、M。
Including Nb etc., x + 3 A i (AoTi), N
The strength is improved by finely precipitating i3Nb or the like. In addition, as other elements, Cr and Mo are used to impart corrosion resistance, and Cr and M are used to improve strength.

(C1in) 、IQ酸剤としてS i 、 Mn、 
Mg、 Zr等を加えている。
(C1in), S i , Mn as IQ acid agent,
Mg, Zr, etc. are added.

ここで、本発明に係る原子力プラント用スプリングの限
定理由について説明すると、スプリングを成形、時効処
理後、そのままの状態で原子力プラントの炉水中で使用
した場合にはスプリングからのニッケルの溶出が多いが
、スプリングを成形、時効処理した後、高温水中で浸漬
保持の処理を施した場合には原子力プラントの炉水中へ
のニッケルの溶出が少なくなり、ひいては炉水中の放射
性腐食生成物であるCo58が低減し、定期点検や補修
時の作業が容易となり、原子力発電プラントの稼動率の
向上が可能となる。
Here, to explain the reason for the limitations of the spring for nuclear power plants according to the present invention, if the springs are used as they are in the reactor water of a nuclear power plant after being molded and aged, there will be a large amount of nickel leached from the springs. If the spring is formed and aged and then immersed and held in high-temperature water, the elution of nickel into the reactor water of a nuclear power plant will be reduced, and the amount of Co58, a radioactive corrosion product, in the reactor water will be reduced. This makes it easier to carry out periodic inspections and repairs, making it possible to improve the operating rate of nuclear power plants.

なお、浸漬時間は望ましくは10時間以上、さらに望ま
しくは30時間以上が良い。
The immersion time is preferably 10 hours or more, more preferably 30 hours or more.

(実施例) BWRプラント等の原子力発電プラントのコイルスプリ
ング、フィンガスプリング、チャンネルファスナ等の各
種スプリングとして使用されている通称インコネルX7
50と呼ばれているニッケル基析出強化型合金の溶体化
処理した板材を用意した。次いで、この板材から厚さ0
.5m、幅10m+、長さ151mの試験片を採取し、
表面をパフ研摩した後アセトンで脱脂した。なお、板材
の化学組成はクロム15.17%、鉄6.21%、チタ
ン2.55%、コバルト0.003%、マンガン0.7
8%、ニオ71.01%、アルミニウム0.75%、炭
素0.05%、珪素0,26%、銅0.01%、硫黄0
..003%、残部ニッケルであった。
(Example) Commonly known as Inconel X7, which is used as various springs such as coil springs, finger springs, and channel fasteners in nuclear power plants such as BWR plants.
A solution-treated plate material of a nickel-based precipitation-strengthened alloy called No. 50 was prepared. Next, from this plate material, thickness 0
.. A test piece of 5 m, width 10 m+, and length 151 m was taken.
After the surface was puff-polished, it was degreased with acetone. The chemical composition of the plate material is 15.17% chromium, 6.21% iron, 2.55% titanium, 0.003% cobalt, and 0.7% manganese.
8%, Ni 71.01%, Aluminum 0.75%, Carbon 0.05%, Silicon 0.26%, Copper 0.01%, Sulfur 0
.. .. 003%, the balance being nickel.

引続いて、この試験片をBWRプラント用スプリングで
行なわれる熱処理、すなわち、真空中で705℃、20
時間の時効硬化処理を施した。なお、時効処理後の試験
片表面は薄い灰色、角度を変えて見ると、金色にも見え
るようなテンパーカラーが見られた。
Subsequently, this specimen was subjected to a heat treatment carried out in a BWR plant spring, i.e., 705° C., 20° C. in vacuum.
It was subjected to age hardening treatment. The surface of the test piece after aging treatment was pale gray, and when viewed from a different angle, a tempered color that appeared to be gold was observed.

その後、このようにして準備された試験片を内径30#
I、外径40M1長さ220朧の四フッ化エチレン樹脂
製試験管に純水100戒とともに装入し、これをオート
クレーブに入れ脱気し、溶存酸素量を炉水と同様0.2
ppm以下とした後、288℃に加熱し5時間後取り出
し、前記試験管中の水のニッケル含有量を分析した。ま
た、この操作を数回繰返した。なお、試験後の試験管中
の水の吊は63.5〜64.5−であった。
Thereafter, the test piece prepared in this way was
I, charged into a polytetrafluoroethylene resin test tube with an outer diameter of 40 M and a length of 220 mm, along with 100 precepts of pure water, put it in an autoclave and degassed it, and the amount of dissolved oxygen was reduced to 0.2, the same as reactor water.
After reducing the concentration to ppm or less, the test tube was heated to 288° C. and taken out after 5 hours, and the nickel content of the water in the test tube was analyzed. Moreover, this operation was repeated several times. In addition, the suspension of water in the test tube after the test was 63.5 to 64.5.

下表に試験結果を示す。なお、表中のニッケル溶出量は
試験後の試験管中の吊が若干異なるため、水の吊を64
.5−とした場合の値に相当するよう81粋により合せ
た値である。
The test results are shown in the table below. Note that the amount of nickel eluted in the table differs slightly from the amount of nickel in the test tube after the test, so the amount of nickel eluted is determined by
.. This is a value adjusted by 81 points to correspond to the value in the case of 5-.

〔以下余白〕[Margin below]

上記表から明らかなようにスプリング素材であるニッケ
ル基析出強化型合金からのニッケルの溶出は5時間の浸
漬の場合、最も多(7G、 5ppbであるが、10時
間以後の浸漬では軒下の低下はあるが初期溶出量の差に
比べ小さい。このことから、原子力プラントに使用づ′
る以前に高温水中に浸漬保持し、初IIのニッケルの溶
出を取り除いた後に使用すれば、中性子照射できるC0
58の炉水中への溶出が少なくなることが認められる。
As is clear from the above table, the elution of nickel from the nickel-based precipitation-strengthened alloy, which is the spring material, is the highest (7G, 5ppb) when immersed for 5 hours, but when immersed for 10 hours or more, the elution of nickel under the eaves decreases. However, it is small compared to the difference in initial elution amount.For this reason, it is not suitable for use in nuclear power plants.
If used after immersing and holding in high temperature water to remove the first II nickel elution, CO2 can be irradiated with neutrons.
It is recognized that the elution of 58 into the reactor water is reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原子力プラントの炉水中に含まれる放
射性腐食生成物であるCO58を低減させることができ
、定期点検や補修時の作業が容易となること、またこの
ことから原子力プラントの稼動率の向上が図れる等工業
上顕著な効果がある。
According to the present invention, it is possible to reduce CO58, which is a radioactive corrosion product contained in the reactor water of a nuclear power plant, making it easier to perform periodic inspections and repair work, and because of this, the operation rate of a nuclear power plant can be increased. It has significant industrial effects, such as improved performance.

Claims (1)

【特許請求の範囲】 1、ニッケル基析出強化型合金を所定形状のスプリング
に形成したのち時効処理し、次いで高温高圧水中に浸漬
保持することを特徴とする原子力プラント用スプリング
の処理方法。 2、前記高温高圧水は前記スプリングの表面から初期溶
出ニッケル成分を溶出し得る温度および圧力を有する特
許請求の範囲第1項に記載の原子力プラント用スプリン
グの処理方法。
[Claims] 1. A method for treating a spring for a nuclear power plant, which comprises forming a nickel-based precipitation-strengthened alloy into a spring of a predetermined shape, subjecting it to aging treatment, and then holding the spring immersed in high-temperature, high-pressure water. 2. The method for treating a spring for a nuclear power plant according to claim 1, wherein the high-temperature, high-pressure water has a temperature and pressure capable of eluting initially eluted nickel components from the surface of the spring.
JP61178929A 1986-07-31 1986-07-31 Treatment of spring for nuclear power plant Pending JPS6335763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61178929A JPS6335763A (en) 1986-07-31 1986-07-31 Treatment of spring for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61178929A JPS6335763A (en) 1986-07-31 1986-07-31 Treatment of spring for nuclear power plant

Publications (1)

Publication Number Publication Date
JPS6335763A true JPS6335763A (en) 1988-02-16

Family

ID=16057108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61178929A Pending JPS6335763A (en) 1986-07-31 1986-07-31 Treatment of spring for nuclear power plant

Country Status (1)

Country Link
JP (1) JPS6335763A (en)

Similar Documents

Publication Publication Date Title
JPS6358213B2 (en)
GB2200925A (en) Radiation resistant austenitic stainless steel alloys
JPS63303038A (en) Core of light water furnace increased in resistance against stress corrosion cracking
JPH0829571A (en) Production of member for nuclear plant
JPH0435550B2 (en)
JP5459633B1 (en) Austenitic alloy tube
US5976275A (en) High-nickel austenitic stainless steel resistant to degradation by neutron irradiation
JPS6335763A (en) Treatment of spring for nuclear power plant
JP2708555B2 (en) Method of manufacturing fuel spring for nuclear power plant
US3623920A (en) Method for producing a stainless steel resistive to high temperature and neutron irradiation
JP2521665B2 (en) Nuclear plant spring
McIlree et al. Effects of Variations of Carbon, Sulfur and Phosphorus on the Corrosion Behavior of Alloy 600
JP2535114B2 (en) Manufacturing method for nuclear power plant members
Hawthorne Further Observations on A533-B Steel Plate Tailored for Improved Radiation Embrittlement Resistance
JPH02221360A (en) Treatment for spring for nuclear power plant
US20230295786A1 (en) Non-magnetic stainless steel with high strength and superior corrosion resistance and preparation method thereof
JPS6277448A (en) Manufacture of high strength nickel alloy member having superior scc resistance
JP2523514B2 (en) Fuel assembly
JPS5985850A (en) Heat treatment of ni alloy
JPS58157937A (en) Manufacture of high temperature gas cooling reactor temper material and alloy therefor
Maziasz et al. Some Implications of Radiation-Induced Property Changes in Austenitic Stainless Steels on ITER First-Wall Design and Performance
Sham Alloy 709 Advanced Austenitic Stainless Steel
JPS5817823B2 (en) Heat treatment method for Ni-based alloy containing Cr
JPS6318032A (en) Spring for boiling water-type nuclear reactor
JPS62150193A (en) Apparatus for core of nuclear reactor