JPS6335666B2 - - Google Patents

Info

Publication number
JPS6335666B2
JPS6335666B2 JP52105003A JP10500377A JPS6335666B2 JP S6335666 B2 JPS6335666 B2 JP S6335666B2 JP 52105003 A JP52105003 A JP 52105003A JP 10500377 A JP10500377 A JP 10500377A JP S6335666 B2 JPS6335666 B2 JP S6335666B2
Authority
JP
Japan
Prior art keywords
resin
smc
release paper
fibers
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52105003A
Other languages
Japanese (ja)
Other versions
JPS5439469A (en
Inventor
Hiroyuki Kosuda
Takayuki Tanaka
Yoshasu Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP10500377A priority Critical patent/JPS5439469A/en
Publication of JPS5439469A publication Critical patent/JPS5439469A/en
Publication of JPS6335666B2 publication Critical patent/JPS6335666B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、取扱い容易でかつ高性能の成形物を
得るためのシートモールデイングコンパウンド
(以下SMCと略記する)の製造方法に関するもの
である。 従来、短繊維に熱硬化性樹脂を含浸させたシー
ト状の成形前駆体、いわゆるSMCを用いての成
形法が発達してきた。このSMCは、未硬化の熱
硬化性樹脂を強化材繊維に含浸させたシート状物
を剥離紙あるいはフイルム(以下単に剥離紙と総
称する)に挾持し、使用時に剥離紙をはがして成
形する方法が一般的に採用されている。このよう
なSMCにおいては、強化材繊維が短繊維のため
剥離紙との剥離操作及びその工程以後での取扱性
に問題がある。つまり、短繊維の場合、繊維間の
連絡性がないため、樹脂を含浸して得られた
SMCを離型紙から剥離させようとすると、樹脂
の粘度が低くシートが切れてしまい、連続的に離
型紙から剥すことができなくなり、その後の取扱
性も悪い。 そこで、このような問題解決のために、樹脂素
材に増粘剤を混合する方法、予備硬化を行う方法
或は少量のバインダーで予め繊維相互を固定する
方法等が提案されている。 しかるに増粘剤を添加する方法は、増粘剤によ
つて複合材料の物性、特に強度を低下させる原因
となり好ましくない。又繊維を予めバインダーで
固定する方法は、取扱性はよくなるが、増粘剤の
場合と同様の問題がある。予備硬化させる方法は
そのための熱処理、熟成工程が必要となる。 本発明者等は、このようなSMCの従来法の欠
点を解決し、増粘剤、バインダーを使用せず、し
かも予備硬化工程の不用なSMCについて研究の
結果本発明に至つたものである。 すなわち本発明は、短繊維を強化材とし、熱硬
化性樹脂をマトリツクスとする複合材用SMCに
おいて、室温において半固体状であり且つ150℃
以下の温度で500ポイズ以下となる熱硬化性樹脂
組成物を、該組成物の粘度が10〜500ポイズの時
に剥離紙上に展延し、次いで該組成物層と短繊維
からなるシート状繊維層とを積層し、樹脂組成物
の軟化点以上の温度で圧着させ、該繊維層に樹脂
を含浸させることによるSMCの製造法である。 かゝる方法によつて得たSMCは、増粘剤、バ
インダー等を使用せずしかも予備硬化等の操作も
必要とせず、その取扱も容易である。 ここで半固体状とは、流動性を示さないが柔軟
性があり、わずかに接着性を有し、かつシート状
繊維層に含浸後室温で剥離紙からはがすことがで
きるような状態を意味する。 又、ここで樹脂の軟化点とは、該樹脂組成物の
フイルムとシート状繊維層を合わせローラー等で
圧着した場合、繊維が流動し、該繊維層に樹脂が
含浸する最低の温度を意味する。具体的には、該
樹脂組成物の粘度が1万ポイズになる温度が軟化
点の目安である。樹脂の粘度が150℃以下の温度
で500ポイズより高くなると、硬化剤との混合、
展延操作等を円滑に行うことが困難となる。樹脂
の温度を上げれば粘度は低下するが、高温では樹
脂の硬化が起るため操作温度には上限がある。 一般に経済的な成形条件は、200℃以下の温度
で一時間以内好ましくは数分以内に硬化できるこ
とが望ましく、このような条件で硬化する樹脂
を、硬化させることなく硬化剤と混合、展延、含
浸等を行うには、150℃以下で行うことが必要で
ある。このため、樹脂は、150℃以下の温度で500
ポイズ以下の粘度であることが必要である。又剥
離紙への展延時、粘度が10ポイズ以下だと均一な
展延が困難である。 樹脂が室温で固体となると、得られたSMCの
柔軟性がなくなり、立体的な成形物を得ることが
出来なくなり取扱性も悪い等SMCの利点が失わ
れる。このため樹脂は室温において半固体でなけ
ればならない。 本発明に用いられる樹脂は上記の如き粘度特性
を満足する樹脂であり不飽和ポリエステル樹脂、
ビニルエステル樹脂、フエノール樹脂、エポキシ
樹脂等のうちより選定され使用される。エポキシ
樹脂について説明すると、例えばフエノールノボ
ラツク型エポキシ樹脂(チバ社製EPN―1138)
等は単独で本発明の条件を満足する。又エピコー
ト152(シエル化学社製フエノールノボラツク型エ
ポキシ樹脂)40〜60部とエピコート1002(同ビス
フエノールAジグリシジルエーテル型エポキシ樹
脂)60〜40部の混合物、エピコート828(同ビスフ
エノールAジグリシジルエーテル型エポキシ樹
脂)30〜60とエピコート1002、70〜40部の混合物
も本発明の条件を満足する。 硬化剤の選定は、樹脂との混合、展延、含浸等
の操作温度では操作中に硬化しないものを選ぶこ
とが必要である。エポキシ樹脂の場合、BF3モノ
エチルアミン、ジアミノジフエニルスルフオン
(DDS)ジシアンジアミド等を用いることができ
る。又、これらの硬化剤と硬化促進剤を併用する
こともできる。当然のことであるが、前述の樹脂
の粘度特性は、硬化剤と混合後の粘度特性であ
る。BF3モノエチルアミン、ジシアンジアミドの
如く、少量(樹脂100部に対し、硬化剤2〜10部)
で硬化可能な硬化剤は、混合後も樹脂粘度を大巾
に変化させることはないが、ジアミノジフエニル
スルフオンの如く、多量(樹脂100部に対し、硬
化剤20〜50部)に添加する場合には、混合後の樹
脂粘度が、上記粘度になる如く、硬化剤の種類に
より、樹脂の配合を選択すべきである。 本発明における短繊維からなる繊維層に用いる
繊維の種類としては、ガラス繊維、炭素繊維の如
き無機繊維、ステンレス繊維の如き金属繊維、ケ
プラー(デユポン社)の如き高弾性有機繊維既存
の天然繊維、合成繊維等がある。 本発明は、例えば第1図〜第3図に示される工
程で実施される。第1図に於て、ホツトロール
2、フイルムコーター3により、あらかじめ硬化
剤と混合してある樹脂4を剥離紙1にコートし、
ワインダー6で巻取る。必要により、冷却帯5を
設け、樹脂を冷却後巻取ることもできる。剥離紙
は表裏の剥離度に差のある両面剥離紙を用い、剥
離度の低い方の面に、樹脂をコートすることが好
ましい。剥離度に差のない場合は、次の工程で、
樹脂をコートした剥離紙を引出す時に、樹脂の部
分的な転写が起り、好ましくない。ここで転写と
は、剥離紙のA面にコートした樹脂が巻取後、巻
戻す時にB面の方に移動する現象を意味する。 第2、第3図は、樹脂をコートした剥離紙を用
いて、SMCを製造する工程の例示するものであ
る。 第2図に於て高弾性繊維のロービング7をカツ
ター8で切断し、コンベアベルト9の上に捕集
し、シート状高弾性繊維集合体(以下マツトと記
す)12を形成させる。この時、コンベアベルト
9をネツト状とし、その下に吸引部11を設け、
繊維の飛散を防ぐこともできる。 得られたマツト12はコンベアベルト10上を
移動している樹脂をコートした剥離紙13の樹脂
上に移動し、更に剥離紙13′で上部をおさえ、
樹脂が液状になるには充分であるが、硬化は起き
ない温度に加熱されている。加圧ローラー14に
よりプレスされ剥離紙上の樹脂を繊維層に含浸さ
せ、巻取機17で巻取る。 第3図は、樹脂をコートした剥離紙13の上
に、直接マツトを形成させる場合について示す。
第2図、第3図に於て、通常のSMC製造工程の
如く、剥離紙13,13′の供給部に樹脂コート
装置を設け、樹脂をコートしつつ、剥離紙13,
13′を供給すること、加圧ローラー14の前に
予熱体15を、加圧ローラー14の後に、冷却帯
16を設けることもできる。又、マツト12に樹
脂を含浸後、剥離紙13,13′のどちらか一方
を剥し取つた後で巻取ること、及びマツト12に
樹脂を含浸後、巻取ることなく、所定の形状に切
断することもできる。更に又、剥離紙13,1
3′は両方に樹脂をコートする必要はなく、片面
のみにコートし、片側から含浸させて、SMCを
得ることもできる。樹脂と繊維の割合は繊維の容
量分率で10〜70%が適当である。集束したチヨツ
プドストランドの形状でマツトを形成している場
合は20〜70%が適当であるが、単繊維1本1本に
まで分繊されている場合はかさ高となるので、10
〜50%が適当である。一般的にはSMCの状態で
の樹脂の割合は、最終成形品に予定される樹脂の
割合よりも多少多くしておき、成形時に余分な樹
脂を絞り出すのが脱泡がより完全になされ、高品
質の成形物が得られる。 本発明によつて得られるSMCは、前述の如く、
強度を低下させる無機粉末やバインダーを含まな
いので、高強度、高弾性を有する成形物が得ら
れ、又、成形性が良いので、通常のSMCの主な
用途であるバスタブ等の他に自動車のバンバー、
ボデイー、タイヤホイール等に使用され又、分繊
されたマツトからなる薄いSMCを用いた場合に
は、スピーカーコーン等に応用することもでき
る。 以下実施例にて本発明を説明する。 実施例 1 エピコート828とエピコート1002を種々の割合
で混合した樹脂100部に対し、ジシアンジアミド
(以下DICYと略)を10部(重量米、以下同)混
合した樹脂系について、硬化剤(DICY)との混
合性、展延時の操作性、短繊維からなる強化繊維
層への含浸性、得られたSMCの取扱性を検討し
た。結果を第1表、第2表に示す。
The present invention relates to a method for producing a sheet molding compound (hereinafter abbreviated as SMC) for obtaining molded products that are easy to handle and have high performance. Conventionally, a molding method has been developed that uses a sheet-shaped molding precursor, so-called SMC, in which short fibers are impregnated with a thermosetting resin. This SMC is a method in which a sheet-like material in which reinforcing fibers are impregnated with uncured thermosetting resin is sandwiched between release paper or film (hereinafter simply referred to as release paper), and the release paper is peeled off before use. is commonly adopted. In such SMC, since the reinforcing fibers are short fibers, there are problems in the peeling operation from the release paper and in handling after that step. In other words, in the case of short fibers, there is no communication between the fibers, so the short fibers obtained by impregnating with resin
When attempting to peel SMC from the release paper, the viscosity of the resin is low and the sheet breaks, making it impossible to peel it off continuously from the release paper, and subsequent handling is poor. In order to solve this problem, proposals have been made such as a method of mixing a thickener into the resin material, a method of performing preliminary curing, or a method of fixing the fibers to each other in advance with a small amount of binder. However, the method of adding a thickener is not preferable because the thickener causes a decrease in the physical properties of the composite material, particularly the strength. Furthermore, the method of fixing the fibers with a binder in advance improves the handling properties, but has the same problems as the case of thickeners. The precuring method requires heat treatment and aging steps. The present inventors solved the drawbacks of the conventional SMC method, and as a result of research into an SMC that does not use thickeners or binders and does not require a pre-curing process, the present invention was achieved. That is, the present invention provides an SMC for composite materials that uses short fibers as a reinforcing material and a thermosetting resin as a matrix, which is semisolid at room temperature and at 150°C.
A thermosetting resin composition that has a viscosity of 500 poise or less at the following temperature is spread on release paper when the viscosity of the composition is 10 to 500 poise, and then a sheet-like fiber layer consisting of the composition layer and short fibers. This is a method for manufacturing SMC by laminating the fiber layers and pressing them together at a temperature higher than the softening point of the resin composition, and impregnating the fiber layer with resin. SMC obtained by such a method does not use thickeners, binders, etc., does not require operations such as preliminary curing, and is easy to handle. Here, the term "semi-solid" refers to a state in which it does not exhibit fluidity, but is flexible, has slight adhesive properties, and can be peeled off from a release paper at room temperature after being impregnated into a sheet-like fiber layer. . In addition, the softening point of the resin here means the lowest temperature at which the fibers flow and the resin impregnates the fiber layer when a film of the resin composition and a sheet-like fiber layer are pressed together with a roller or the like. . Specifically, the temperature at which the viscosity of the resin composition becomes 10,000 poise is a rough guideline for the softening point. When the viscosity of the resin is higher than 500 poise at a temperature below 150℃, mixing with the curing agent,
This makes it difficult to perform spreading operations smoothly. Increasing the temperature of the resin lowers its viscosity, but since the resin hardens at high temperatures, there is an upper limit to the operating temperature. Generally speaking, economical molding conditions are such that the resin can be cured within one hour, preferably within a few minutes, at a temperature of 200°C or less, and the resin that hardens under these conditions can be mixed with a curing agent, spread, and cured without curing. In order to perform impregnation etc., it is necessary to perform it at 150°C or lower. For this reason, the resin has a temperature of 500℃ at temperatures below 150℃.
It is necessary that the viscosity is below poise. Furthermore, when spreading onto release paper, if the viscosity is less than 10 poise, it is difficult to spread uniformly. When the resin becomes solid at room temperature, the resulting SMC loses its flexibility, making it impossible to obtain three-dimensional molded products, and the advantages of SMC are lost, such as poor handling. For this reason, the resin must be semisolid at room temperature. The resin used in the present invention is a resin that satisfies the viscosity characteristics as described above, and is an unsaturated polyester resin,
It is selected from vinyl ester resin, phenol resin, epoxy resin, etc. and used. When explaining epoxy resins, for example, phenol novolak type epoxy resin (EPN-1138 manufactured by Ciba)
etc. alone satisfy the conditions of the present invention. Also, a mixture of 40 to 60 parts of Epicoat 152 (phenol novolac type epoxy resin manufactured by Schiel Kagaku Co., Ltd.) and 60 to 40 parts of Epicoat 1002 (the same bisphenol A diglycidyl ether type epoxy resin), Epicoat 828 (the same bisphenol A diglycidyl ether type epoxy resin) A mixture of ether type epoxy resin) 30 to 60 and Epicoat 1002, 70 to 40 parts also satisfies the conditions of the present invention. When selecting a curing agent, it is necessary to select one that does not harden during operations such as mixing with the resin, spreading, and impregnation at operating temperatures. In the case of epoxy resins, BF 3 monoethylamine, diaminodiphenylsulfonate (DDS) dicyandiamide, etc. can be used. Moreover, these curing agents and curing accelerators can also be used together. Naturally, the viscosity characteristics of the resin described above are the viscosity characteristics after mixing with a curing agent. BF 3 Monoethylamine, dicyandiamide, etc., in small amounts (2-10 parts of hardener per 100 parts of resin)
Curing agents that can be cured with water do not significantly change the resin viscosity after mixing, but they can be added in large amounts (20 to 50 parts of curing agent to 100 parts of resin), such as diaminodiphenylsulfone. In such a case, the blending of the resin should be selected depending on the type of curing agent so that the resin viscosity after mixing becomes the above-mentioned viscosity. The types of fibers used in the fiber layer consisting of short fibers in the present invention include glass fibers, inorganic fibers such as carbon fibers, metal fibers such as stainless steel fibers, high elastic organic fibers such as Kepler (DuPont), existing natural fibers, There are synthetic fibers, etc. The present invention is carried out, for example, in the steps shown in FIGS. 1 to 3. In FIG. 1, a release paper 1 is coated with a resin 4 that has been mixed with a curing agent in advance using a hot roll 2 and a film coater 3.
Wind it up with winder 6. If necessary, a cooling zone 5 may be provided to wind up the resin after cooling. It is preferable to use a double-sided release paper with a difference in the degree of release on the front and back sides, and to coat the surface with a lower degree of release with a resin. If there is no difference in the degree of peeling, in the next step,
When the resin-coated release paper is pulled out, partial transfer of the resin occurs, which is undesirable. Here, transfer means a phenomenon in which the resin coated on the A side of the release paper moves toward the B side when the release paper is unwound after being wound up. FIGS. 2 and 3 illustrate the process of manufacturing SMC using release paper coated with resin. In FIG. 2, a roving 7 of high modulus fibers is cut with a cutter 8 and collected on a conveyor belt 9 to form a sheet-like high modulus fiber aggregate (hereinafter referred to as mat) 12. At this time, the conveyor belt 9 is made into a net shape, and a suction part 11 is provided under it,
It can also prevent fibers from scattering. The obtained mat 12 is moved onto the resin of the resin-coated release paper 13 that is moving on the conveyor belt 10, and the upper part is further held down with the release paper 13'.
The resin is heated to a temperature sufficient to make it liquid, but not harden. The fiber layer is pressed by a pressure roller 14 to impregnate the resin on the release paper, and then wound up by a winder 17. FIG. 3 shows the case where a mat is directly formed on the release paper 13 coated with resin.
In FIGS. 2 and 3, as in the normal SMC manufacturing process, a resin coating device is installed in the supply section of the release paper 13, 13', and while coating the release paper 13, 13' with resin, the release paper 13,
13', a preheating body 15 can be provided before the pressure roller 14, and a cooling zone 16 can be provided after the pressure roller 14. Also, after impregnating the mat 12 with resin, peeling off one of the release papers 13, 13' and then winding it up, and after impregnating the mat 12 with resin, cutting it into a predetermined shape without winding it up. You can also do that. Furthermore, release paper 13,1
3' does not need to be coated with resin on both sides, and SMC can also be obtained by coating only one side and impregnating it from one side. The appropriate ratio of resin to fiber is 10 to 70% in terms of fiber volume fraction. If the pine is formed in the form of chopped strands, 20 to 70% is appropriate, but if the fibers are divided into single fibers, it will be bulky, so 10% to 70% is appropriate.
~50% is appropriate. In general, the proportion of resin in the SMC state is slightly higher than the proportion of resin planned for the final molded product, and squeezing out the excess resin during molding allows for more complete defoaming and higher quality. Quality molded products can be obtained. As mentioned above, the SMC obtained by the present invention is
Since it does not contain inorganic powders or binders that reduce strength, molded products with high strength and high elasticity can be obtained. Also, because it has good moldability, it can be used not only in bathtubs, which are the main uses of normal SMC, but also in automobiles. Bamber,
It is used for bodies, tires, wheels, etc., and if thin SMC made of split mat is used, it can also be applied to speaker cones, etc. The present invention will be explained below with reference to Examples. Example 1 For a resin system in which 100 parts of a resin mixed with Epicoat 828 and Epicoat 1002 in various ratios was mixed with 10 parts (by weight, hereinafter referred to as DICY) of dicyandiamide (hereinafter abbreviated as DICY), a curing agent (DICY) and The mixability of the SMC, the operability during spreading, the impregnation of the reinforcing fiber layer made of short fibers, and the handling of the obtained SMC were investigated. The results are shown in Tables 1 and 2.

【表】【table】

【表】 第1表、第2表に示す結果に見られる通り粘度
500ポイズ以上では硬化剤との混合や展延の操作
が困難となり、かつ短繊維からなる強化繊維層と
の含浸性も悪い。又、50ポイズ以下では展延時に
樹脂が島状に分離してしまい、剥離紙上に均一な
フイルムを形成できない。 No.1,2の場合120℃前後で展延、繊維への含
浸は可能であるが、得られたSMCは室温では非
常に硬く、曲げようとすると折れた。又、No.6,
7の場合、40℃前後で行なえば展延、含浸等の操
作は可能であるが、室温で剥離紙から剥そうとす
ると、SMCが切れてしまい連続的に剥すことが
できなかつた。 実施例 2 エピコート152(日本シエル化学(株))45部、エピ
コート1002、55部、DICY10部とをロールミルを
用い、80℃で混合した。この混合樹脂の粘度は80
℃で約90ポイズ、軟化点は約40℃で、密度は約
1.20g/cm3であつた。この場合樹脂を用いて、表
裏の剥離度に差のある両面剥離紙の剥離度の低い
方の面に、フイルムコーターを用いて、巾50cm、
目付260g/m2となる如く80℃でコートし巻取つ
た。 次いでこの樹脂コートした剥離紙を密度約1.75
g/cm3、直径7μの炭素繊維6000本からなり、エ
ポキシ樹脂約1.5%により集束されている炭素繊
維(東邦ベスロン(株)製ベスフアイト7―6000)を
50mm長に切断しつつ目付が500g/m2となる如く、
剥離紙の樹脂上に均一なシート状炭素繊維集合体
を形成させ、この上を、同じく先に樹脂コートし
た剥離紙でおさえ、80℃の予熱帯を通過させた後
100℃の加圧ローラーでプレスし、樹脂を含浸さ
せることにより、目付1020g/m2、繊維の容量分
率40%のSMCが得られた。得られたSMCは炭素
繊維が約6000本集束した状態でシートを形成して
いた。得られたSMCは取扱性、成形性が良好で
あり、190℃、60分圧力20Kg/cm2で圧縮成形して
得られた平板の物性は下記の通りであつた。 曲げ強度 :40Kg/mm2 曲げ弾性率:2.8ton/mm2 密 度:1.37g/cm3 繊維含有率:41vol% 実施例 3 強化繊維としてシランカツプリング剤で集束さ
れているガラス繊維を用い、剥離紙にコートした
樹脂の目付が180g/m2の他は、実施例2と同様
にし、目付860g/m2、巾50cmのSMCを得た。得
られたSMCは取扱性、成形性共に良好であり、
実施例2と同様に成形して得られた平板の物性は
次の通りであり、通常のSMCから得られる成形
物の曲げ強度が10〜15Kg/cm2であるのと比較し
て、高い強度を有していた。 曲げ強度 :24Kg/mm2 曲げ弾性率:0.9ton/mm2 密 度:1.51g/cm3 繊維含有率:41vol% 実施例 4 ポリエステル樹脂、ポリマール6228(武田薬品
(株))を用いて、SMCを製造した。ポリマール
6228には、約40wt%の溶剤(アセトンとトルエ
ンの混合物)が含まれているので、減圧下で蒸発
させて、固体の樹脂を得た。得られた樹脂75部、
ジアリルフタレート(DAP)25部、ターシヤル
ブチルパーベンゾエート(TBPB)5部を70℃
で混合した。得られた樹脂を巾350mm、目付46.5
g/m2となる如く70℃で実施例2で用いたと同じ
剥離紙にコートし巻取つた。 次に集束剤が付着していない点を除いては実施
例2で用いたと同じ炭素繊維を供給し、3000rpm
で回転している針布付ローターで平均繊維長23mm
に切断し、第2図に示す如くネツトの下で吸引し
つつ、ネツトコンベアの上で目付50g/m2の均一
なマツトを形成させた。このマツトは単繊維の状
態に分繊された炭素繊維により形成されていた。
次いで、得られたマツトを連続的に先に樹脂をコ
ートした剥離紙で挾み、70℃の予熱帯を通過後80
℃の加圧ローラーで樹脂を含浸させ、SMCを得
た。得られたSMCは取扱性、成形性共に良好で
あつた。 このSMCを積層し、140℃、圧力40Kg/cm2で圧
縮成形したところ、5分間で硬化し、下記の物性
が得られた。尚成形時の圧力により、樹脂の一部
が金型からあふれ出した為、成形物の繊維含有量
は26vol%(SMCの繊維含有量は20vol%)とな
つた。 曲げ強度 :24Kg/mm2 曲げ弾性率:1.8ton/mm2 密 度:1.31g/cm3 このSMC1枚を金型に入れ成形することによ
り、厚さ0.1〜0.15mmの均一な厚さの比弾性率の
高いスピーカー振動板を得た。又数十〜数百枚を
積層して成形して得られた厚さ数〜数十ミリの成
形品は、ギヤー等に加工して、良好な耐摩耗性を
示した。
[Table] As seen in the results shown in Tables 1 and 2, viscosity
If the poise is more than 500 poise, it becomes difficult to mix with the curing agent and spread, and the impregnating property with the reinforcing fiber layer made of short fibers is also poor. Furthermore, if the pressure is less than 50 poise, the resin will separate into islands during spreading, making it impossible to form a uniform film on the release paper. In the case of Nos. 1 and 2, it was possible to spread and impregnate fibers at around 120°C, but the obtained SMC was very hard at room temperature and broke when trying to bend it. Also, No. 6,
In the case of No. 7, operations such as spreading and impregnation are possible if carried out at around 40°C, but when trying to peel it from the release paper at room temperature, the SMC broke and it was not possible to peel it off continuously. Example 2 45 parts of Epicote 152 (Nippon Shell Chemical Co., Ltd.), 55 parts of Epicote 1002, and 10 parts of DICY were mixed at 80°C using a roll mill. The viscosity of this mixed resin is 80
°C, about 90 poise, softening point is about 40 °C, density is about
It was 1.20g/ cm3 . In this case, use a film coater to coat the lower side of the double-sided release paper, which has a difference in the degree of peelability between the front and back sides, with a resin,
It was coated at 80°C to give a basis weight of 260 g/m 2 and rolled up. This resin-coated release paper is then coated with a density of approximately 1.75.
g/cm 3 , carbon fibers (Beshuite 7-6000 manufactured by Toho Beslon Co., Ltd.) consisting of 6,000 carbon fibers with a diameter of 7 μ and bundled with approximately 1.5% epoxy resin.
Cut it into 50mm length and have a basis weight of 500g/ m2 .
A uniform sheet-like carbon fiber aggregate is formed on the resin of the release paper, and this is covered with a release paper that has also been coated with resin before passing through a preheating zone at 80℃.
By pressing with a pressure roller at 100° C. and impregnating with resin, SMC with a basis weight of 1020 g/m 2 and a fiber volume fraction of 40% was obtained. The obtained SMC had approximately 6,000 carbon fibers bundled together to form a sheet. The obtained SMC had good handleability and moldability, and the physical properties of the flat plate obtained by compression molding at 190° C. for 60 minutes at a pressure of 20 kg/cm 2 were as follows. Bending strength: 40 Kg/mm 2 Flexural modulus: 2.8 ton/mm 2 Density: 1.37 g/cm 3 Fiber content: 41 vol% Example 3 Using glass fibers bundled with a silane coupling agent as reinforcing fibers, An SMC having a basis weight of 860 g/m 2 and a width of 50 cm was obtained in the same manner as in Example 2, except that the basis weight of the resin coated on the release paper was 180 g/m 2 . The obtained SMC has good handling and moldability,
The physical properties of the flat plate obtained by molding in the same manner as in Example 2 are as follows.Compared to the bending strength of the molded product obtained from ordinary SMC, which is 10 to 15 Kg/ cm2 , it has high strength. It had Bending strength: 24 Kg/mm 2 Flexural modulus: 0.9 ton/mm 2 Density: 1.51 g/cm 3 Fiber content: 41 vol% Example 4 Polyester resin, Polymer 6228 (Takeda Pharmaceutical
Co., Ltd.) to produce SMC. Polymer
Since 6228 contains about 40 wt% solvent (a mixture of acetone and toluene), it was evaporated under reduced pressure to obtain a solid resin. 75 parts of the resulting resin,
25 parts of diallyl phthalate (DAP) and 5 parts of tertiary butyl perbenzoate (TBPB) were heated at 70°C.
mixed with. The resulting resin has a width of 350 mm and a fabric weight of 46.5.
It was coated on the same release paper as used in Example 2 at 70° C. and rolled up to give a yield of 1.5 g/m 2 . Next, the same carbon fiber as used in Example 2 except that no sizing agent was attached was supplied, and the carbon fiber was heated at 3000 rpm.
The average fiber length is 23 mm with a rotor with cloth rotating at
Then, as shown in FIG. 2, a uniform mat with a basis weight of 50 g/m 2 was formed on a net conveyor while being suctioned under the net. This mat was made of carbon fiber separated into single fibers.
Next, the resulting pine was continuously sandwiched between release paper coated with resin, and after passing through a preheating zone at 70℃,
SMC was obtained by impregnating the resin with a pressure roller at °C. The obtained SMC had good handleability and moldability. When this SMC was laminated and compression molded at 140°C and a pressure of 40 kg/cm 2 , it cured in 5 minutes and the following physical properties were obtained. Due to the pressure during molding, some of the resin overflowed from the mold, so the fiber content of the molded product was 26 vol% (the fiber content of SMC was 20 vol%). Bending strength: 24Kg/mm 2Bending modulus: 1.8ton/mm 2Density : 1.31g/cm 3By placing this SMC sheet in a mold and molding it, a uniform thickness ratio of 0.1 to 0.15mm is achieved. A speaker diaphragm with high elastic modulus was obtained. In addition, a molded product with a thickness of several to several tens of millimeters obtained by laminating and molding several tens to several hundred sheets showed good wear resistance when processed into gears and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の実施に際し使用され
る工程を例示したものである。第1図は剥離紙上
への樹脂の展延工程を示す第2図及び第3図は樹
脂上への繊維層の形成及び繊維層への樹脂の含浸
工程を示す。
FIGS. 1-3 illustrate steps used in carrying out the present invention. FIG. 1 shows the process of spreading the resin onto the release paper, and FIGS. 2 and 3 show the process of forming a fibrous layer on the resin and impregnating the fibrous layer with the resin.

Claims (1)

【特許請求の範囲】[Claims] 1 室温において半固体状であり且つ150℃以下
の温度で500ポイズ以下となる熱硬化性樹脂組成
物を、該組成物の粘度が10〜500ポイズの時に剥
離紙上に展延し、次いで該組成物層と短繊維から
なるシート状繊維層とを積層し、樹脂組成物の軟
化点以上の温度で圧着させ、該繊維層に樹脂を含
浸させることを特徴とするシートモールデイング
コンパウンドの製造法。
1. A thermosetting resin composition that is semi-solid at room temperature and has a viscosity of 500 poise or less at a temperature of 150°C or less is spread on a release paper when the viscosity of the composition is 10 to 500 poise, and then the composition is 1. A method for producing a sheet molding compound, which comprises laminating a fiber layer and a sheet-like fiber layer made of short fibers, pressing them together at a temperature equal to or higher than the softening point of the resin composition, and impregnating the fiber layer with a resin.
JP10500377A 1977-09-02 1977-09-02 Preparation of sheet molding compound Granted JPS5439469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10500377A JPS5439469A (en) 1977-09-02 1977-09-02 Preparation of sheet molding compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10500377A JPS5439469A (en) 1977-09-02 1977-09-02 Preparation of sheet molding compound

Publications (2)

Publication Number Publication Date
JPS5439469A JPS5439469A (en) 1979-03-26
JPS6335666B2 true JPS6335666B2 (en) 1988-07-15

Family

ID=14395895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10500377A Granted JPS5439469A (en) 1977-09-02 1977-09-02 Preparation of sheet molding compound

Country Status (1)

Country Link
JP (1) JPS5439469A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307698A (en) * 2005-04-27 2006-11-09 Honda Motor Co Ltd Straightening member unit and its manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185216A (en) * 1982-04-23 1983-10-28 Asahi Chem Ind Co Ltd Method and apparatus for preparing prepreg
JPS60179207A (en) * 1984-02-28 1985-09-13 Toray Ind Inc Manufacture of resin holding sheet
AT397916B (en) * 1992-01-14 1994-08-25 Isosport Verbundbauteile Method for the production of a ski component and ski component and use thereof
FR2945549B1 (en) * 2009-05-12 2012-07-27 Arkema France FIBROUS SUBSTRATE, METHOD FOR MANUFACTURING AND USE OF SUCH A FIBROUS SUBSTRATE
WO2021106585A1 (en) * 2019-11-25 2021-06-03 Dic株式会社 Method for producing sheet molding compound and molded product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381572A (en) * 1976-12-20 1978-07-19 Mitsubishi Rayon Co Intermediate body for fiber reinforced composite material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5381572A (en) * 1976-12-20 1978-07-19 Mitsubishi Rayon Co Intermediate body for fiber reinforced composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307698A (en) * 2005-04-27 2006-11-09 Honda Motor Co Ltd Straightening member unit and its manufacturing method

Also Published As

Publication number Publication date
JPS5439469A (en) 1979-03-26

Similar Documents

Publication Publication Date Title
US4861649A (en) Impact resistent composites
JP2004510842A (en) Sheet (SMC) molding compound with vented structure for trapped gas
US3915783A (en) Making a thermosetting resin impregnating laminate
US4028477A (en) Method of producing an article of thermosetting resin
CA1184106A (en) Process for producing cured, curved moulded articles
US5972810A (en) Self-adhesive prepreg, process for producing same, and use thereof
JPWO2014021366A1 (en) Heat-resistant paper and method for producing the same, fiber-reinforced heat-resistant resin molding and precursor thereof, and methods for producing the same
WO2018174217A1 (en) Self-adhesive prepreg and method for producing same
JPS6335666B2 (en)
CN113943471A (en) Low-density prepreg, preparation method and application
US3062697A (en) Method of making reinforced plastics
CN111037781B (en) Wave-absorbing prepreg and preparation method thereof
JP3289294B2 (en) Sheet molding compound and method of manufacturing the same
JPH03207610A (en) Manufacture of prepreg
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
CN114181416A (en) Production method for preparing interlayer toughened carbon fiber prepreg by one-step method
JPH082606B2 (en) Fiber-reinforced phenolic resin foam and method for producing the same
JPH06170847A (en) Production of prepreg
JP3155834B2 (en) Manufacturing method of water tank panel
JPH0513566Y2 (en)
EP1145824A2 (en) Method for reinforcing manufactured articles made of plastic, stone-like or metallic material
JP4367994B2 (en) Method for producing composite material of pulp fiber panel and fiber reinforced plastic
JP2001348440A (en) Carbon fiber-reinforced, sheet-formed molding material, molded body by using it, and process for preparation thereof
JP3623345B2 (en) Wood finish
JPS6258285B2 (en)