JPS6335642B2 - - Google Patents

Info

Publication number
JPS6335642B2
JPS6335642B2 JP54158576A JP15857679A JPS6335642B2 JP S6335642 B2 JPS6335642 B2 JP S6335642B2 JP 54158576 A JP54158576 A JP 54158576A JP 15857679 A JP15857679 A JP 15857679A JP S6335642 B2 JPS6335642 B2 JP S6335642B2
Authority
JP
Japan
Prior art keywords
catalyst
polymer
supported
carrier
conjugated diene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54158576A
Other languages
Japanese (ja)
Other versions
JPS5681306A (en
Inventor
Yoichiro Kubo
Kyomori Oora
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP15857679A priority Critical patent/JPS5681306A/en
Priority to US06/210,688 priority patent/US4337329A/en
Priority to CA000366233A priority patent/CA1163750A/en
Priority to DE3046008A priority patent/DE3046008C2/en
Publication of JPS5681306A publication Critical patent/JPS5681306A/en
Publication of JPS6335642B2 publication Critical patent/JPS6335642B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は触媒活性の改善されたPd系触媒を用
いた共役ジエン系重合体の水素化方法に関するも
のである。 従来から、共役ジエン系重合体の炭素―炭素二
重結合を水素化する触媒として、カーボン、シリ
カ、アルミナ等の多孔性担体に周期律表族の金
属を担持させた担体付触媒が一般的に使用されて
いる。 ところで、重合体中の不飽和結合を水素化する
際に、スチレン―ブタジエン(ランダムあるいは
ブロツク)共重合体の場合にはスチレンのベンゼ
ン核まで水素化されると重合体はゴム様の性質を
失うし、またアクリロニトリル―ブタジエン(ラ
ンダムあるいは交互)共重合体の場合には、ニト
リル基が還元されると耐油性が著しく低下してし
まうことになり、重合体の本来持つている特性が
水素化によつて低下してしまうならば、重合体を
改質する意味がなくなつてしまう。 従つて、選択的に重合体中の共役ジエン部分の
二重結合のみが水素化されなければならない。 この様な選択性を有する触媒金属としてはPt,
Pdの様な貴金属がよく使用されている。 しかしながら、これらの貴金属は高価であるか
ら、可能な限り少量の使用で選択的に高水素化し
得ることが望ましい。また高分子量重合体を水素
化する際、反応系の粘度が高いために水素化反応
が進みにくく、触媒の使用量も多くならざるを得
ず、高活性、高選択性の触媒が要求されている。 本発明者等は鋭意検討を重ねた結果、触媒金属
としてPdと他の金属および/または非金属とを
同時に担体に担持させた触媒を用い共役ジエン系
重合体を水素化した場合、触媒金属がPdのみの
場合と比較して非常に高活性でかつ高選択性を有
することを見い出し本発明を完成するに至つた。 従つて、本発明の目的は共役ジエン系重合体の
水素化において高活性を有すると同時に重合体鎖
中あるいは側鎖中の炭素―炭素二重結合を選択的
に水素化し得るPd系触媒を提供することにある。 本発明のこの目的は、共役ジエン系重合体の水
素化に際し、触媒としてカーボン、シリカ、アル
ミナ等の多孔性粉末状および/または粒状の担体
にPdと同時にAu,B,Al,Ga,Si,Ge,Sb,
Mo,Te,WおよびReから選択される少なくと
も1種とを担持させた触媒を使用することによつ
て達成される。 本発明に使用される触媒は、通常使用される多
孔性粒状および/または粉末状の担体、例えばシ
リカ、シリカアルミナ、アルミナ、珪藻土、活性
炭あるいはゴム用あるいはカラー用等として用い
られるカーボンブラツク等にPdと同時にAu,
B,Al,Ge,Si,Ge,Sb,Mo,Te,Wおよび
Reから選択される少なくとも1種とを担持させ
たものである。 前記の金属および/または非金属の担体の担持
方法は通常の担持方法を用いることができ、何ら
制限はされないが、例えば前記元素そのまゝの状
態であるいはこれらの元素のハロゲン化物、酸化
物、水酸化物、酸塩化物、硫酸化物、炭酸化物等
の塩の水溶液等に担体を浸漬することによつて担
持させることができる。担体へのPdの担持量は
担体当り0.001〜30重量%であり、好ましくは
0.01〜10重量%である。担持されるPdが余りにも
少なすぎると反応時使用する担体担持触媒量が多
すぎて系内の粘度が上昇したり、撹拌が困難にな
り、触媒が有効に使われなくなる。一方担持量が
多すぎると担体上の金属および/または非金属の
分散が悪くなり、また金属および/または非金属
粒子径も大きくなり、触媒活性が低下する。 Pdと共に同時に担持される金属あるいは非金
属元素のPdに対する原子比は0.001〜50の範囲に
あり、好ましくは0.005〜10である。担体担持触
媒の使用量はPd量で重合体当り5〜2000ppmの
範囲にあり、好ましくは10〜1000ppmである。
2000ppm以上使用することはできるが経済的でな
い。 本発明で使用される共役ジエン系重合体は共役
ジエンモノマーが、1,3―ブタジエン、2,3
―ジメチルブタジエン、イソプレン、1,3―ペ
ンタジエン等から選ばれた1種またはそれ以上の
モノマーで、全モノマー中10〜100重量%、およ
び/またはエチレン性不飽和モノマーが、不飽和
ニトリル、たとえばアクリロニトリル、メタクリ
ロニトリルなど、モノビニリデン芳香族炭化水素
たとえば、スチレン、アルキルスチレン(o―,
m―,p―メチルスチレン、エチルスチレンな
ど)など、不飽和カルボン酸またはそのエステ
ル、たとえばアクリル酸、メタアクリル酸、クロ
トン酸、イタコン酸、マレイン酸またはアクリル
酸メチル、アクリル酸エチル、アクリル酸ブチ
ル、アクリル酸2―エチルヘキシル、メタアクリ
ル酸メチルなど、ビニルピリジンおよびビニルエ
ステルたとえば酢酸ビニルなどから選ばれた1種
またはそれ以上のモノマーで全モノマー中0〜90
重量%で構成された共役ジエン重合体および/ま
たは共役ジエン共重合体である。 これらの(共)重合体は乳化重合、溶液重合、
塊状重合などいずれの重合方式で製造されたもの
であつても良く、具体的にはポリイソプレン、ポ
リブタジエン、スチレン―ブタジエン(ランダム
あるいはブロツク)共重合体、アクリロニトリル
―ブタジエン(ランダムあるいは交互)共重合体
等が挙げられる。 水素化反応は重合体のまゝでも行えるが、重合
体を溶媒に溶解して溶液状態で行うと良好な結果
が得られる。重合体溶液の濃度は1〜70重量%、
好ましくは1〜40重量%である。溶媒としては触
媒に悪影響を与えず、水素化される重合体を溶解
するものであれば特に制限はされないが、ベンゼ
ン、トルエン、キシレン、ヘキサン、シクロヘキ
サン、テトラヒドロフラン、アセトン、メチルエ
チルケトン、シクロヘキサノン、酢酸エチル等が
一般に使用される。溶液重合で製造された重合体
は重合体セメントのまゝで水素化することができ
る。 水素化反応はオートクレーブ中で実施され、反
応温度は0〜300℃であり、好ましくは20〜150℃
である。選択的水素化反応が進行し、望ましくな
い副反応を抑えるためには150℃以下の温度が好
ましい。 水素圧は特に限定されるものではないが、通常
大気圧〜300Kg/cm2の範囲で行なわれ、好ましく
は5〜200Kg/cm2である。300Kg/cm2以上は設備
上、操作上から実用的でない。 水素化された重合体は耐候性、耐オゾン性、耐
熱性、耐寒性等に優れ、広い分野での使用が可能
である。 以下実施例により本発明を具体的に説明する。
重合体の水素化率はヨウ素価法により求めた。以
下の実施例では触媒量とは担体と触媒の合計量を
意味している。 実施例 1 活性炭を担体として、これにPd単独およびPd
と同時にAu,B,Al,Ga,Si,Ge,Sb,Mo,
Te,WおよびReのそれぞれを担持させた触媒を
用いアクリロニトリル―ブタジエン共重合体の水
素化を行つた。併用系の場合は各元素とPdとの
原子比を1:1で行つた。またいずれの場合にも
担体当りのPdは1重量%である。 (触媒の調製) Au源としてHAuCl4を用いる以外は各元素源
としてそれぞれの塩化物を用い、これらの水溶液
に活性炭を浸漬し、活性炭中に十分含浸させ、ホ
ルマリン―カ性ソーダで還元して担体担持触媒と
して使用した。 (水素化方法) 容量100mlのオートクレーブにアセトン17gに
3gのアクリロニトリル―ブタジエンランダム共
重合体(結合アクリロニトリル量41.1重量%、
ML1+4,100℃=53,NBRと略記する)を溶解した
溶液と上記担持触媒0.075g(重合体100重量部当
り2.5重量部に相当する)を仕込み、系内を窒素
置換後水素にて50Kg/cm2に加圧し、50℃で4時間
水素化反応を行つた。結果を第1表に示す。いず
れの場合にもニトリル基の還元は認められなかつ
た。
The present invention relates to a method for hydrogenating a conjugated diene polymer using a Pd catalyst with improved catalytic activity. Conventionally, as a catalyst for hydrogenating carbon-carbon double bonds in conjugated diene polymers, supported catalysts in which metals from the periodic table group are supported on porous supports such as carbon, silica, and alumina have been commonly used. It is used. By the way, when hydrogenating unsaturated bonds in a polymer, in the case of styrene-butadiene (random or block) copolymers, if the benzene nucleus of the styrene is also hydrogenated, the polymer loses its rubber-like properties. In addition, in the case of acrylonitrile-butadiene (random or alternating) copolymers, reduction of the nitrile group significantly reduces oil resistance, and the inherent properties of the polymer are affected by hydrogenation. If this were to occur, there would be no point in modifying the polymer. Therefore, selectively only the double bonds of the conjugated diene moieties in the polymer must be hydrogenated. Catalytic metals with such selectivity include Pt,
Precious metals such as Pd are often used. However, since these noble metals are expensive, it is desirable to be able to selectively hydrogenate them using as little amount as possible. Furthermore, when hydrogenating high molecular weight polymers, the hydrogenation reaction is difficult to proceed due to the high viscosity of the reaction system, and a large amount of catalyst must be used, which requires a catalyst with high activity and high selectivity. There is. As a result of extensive research, the present inventors found that when a conjugated diene polymer is hydrogenated using a catalyst in which Pd and other metals and/or non-metals are simultaneously supported on a carrier, the catalytic metal is The present invention was completed by discovering that Pd has extremely high activity and selectivity compared to Pd alone. Therefore, an object of the present invention is to provide a Pd-based catalyst that has high activity in the hydrogenation of conjugated diene-based polymers and can selectively hydrogenate carbon-carbon double bonds in polymer chains or side chains. It's about doing. The purpose of the present invention is to use Au, B, Al, Ga, Si, Pd, etc. as a catalyst in the hydrogenation of conjugated diene polymers using a porous powdery and/or granular carrier such as carbon, silica, and alumina. Ge, Sb,
This is achieved by using a catalyst supported with at least one selected from Mo, Te, W and Re. The catalyst used in the present invention is a porous granular and/or powder carrier that is commonly used, such as silica, silica alumina, alumina, diatomaceous earth, activated carbon, or carbon black used for rubber or color. At the same time, Au,
B, Al, Ge, Si, Ge, Sb, Mo, Te, W and
At least one species selected from Re is supported. The above-mentioned metal and/or non-metal support can be supported by a conventional support method and is not limited in any way. The support can be carried out by immersing the carrier in an aqueous solution of salts such as hydroxides, acid chlorides, sulfates, carbonates, etc. The amount of Pd supported on the carrier is 0.001 to 30% by weight per carrier, preferably
It is 0.01-10% by weight. If the amount of supported Pd is too small, the amount of catalyst supported on the carrier used during the reaction will be too large, increasing the viscosity of the system, making stirring difficult, and making the catalyst ineffective. On the other hand, if the supported amount is too large, the dispersion of the metal and/or nonmetal on the carrier will be poor, and the particle size of the metal and/or nonmetal will also increase, resulting in a decrease in catalytic activity. The atomic ratio of the metal or nonmetal element supported together with Pd to Pd is in the range of 0.001 to 50, preferably 0.005 to 10. The amount of the carrier-supported catalyst used is in the range of 5 to 2000 ppm, preferably 10 to 1000 ppm, based on the amount of Pd per polymer.
Although it is possible to use more than 2000ppm, it is not economical. In the conjugated diene polymer used in the present invention, the conjugated diene monomer is 1,3-butadiene, 2,3
- One or more monomers selected from dimethyl butadiene, isoprene, 1,3-pentadiene, etc., 10 to 100% by weight of the total monomers, and/or ethylenically unsaturated monomers such as unsaturated nitriles, such as acrylonitrile , methacrylonitrile, monovinylidene aromatic hydrocarbons such as styrene, alkylstyrene (o-,
unsaturated carboxylic acids or their esters, such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid or methyl acrylate, ethyl acrylate, butyl acrylate; , 2-ethylhexyl acrylate, methyl methacrylate, etc., one or more monomers selected from vinyl pyridine and vinyl esters such as vinyl acetate, etc., with 0 to 90% of the total monomers.
% by weight of a conjugated diene polymer and/or a conjugated diene copolymer. These (co)polymers can be processed by emulsion polymerization, solution polymerization,
It may be produced by any polymerization method such as bulk polymerization, and specifically, polyisoprene, polybutadiene, styrene-butadiene (random or block) copolymer, acrylonitrile-butadiene (random or alternating) copolymer. etc. Although the hydrogenation reaction can be carried out with the polymer as it is, good results are obtained when the polymer is dissolved in a solvent and carried out in a solution state. The concentration of the polymer solution is 1 to 70% by weight,
Preferably it is 1 to 40% by weight. The solvent is not particularly limited as long as it does not adversely affect the catalyst and dissolves the polymer to be hydrogenated, but examples include benzene, toluene, xylene, hexane, cyclohexane, tetrahydrofuran, acetone, methyl ethyl ketone, cyclohexanone, ethyl acetate, etc. is commonly used. Polymers produced by solution polymerization can be hydrogenated as polymer cements. The hydrogenation reaction is carried out in an autoclave, and the reaction temperature is 0-300°C, preferably 20-150°C.
It is. A temperature of 150° C. or lower is preferred in order to allow the selective hydrogenation reaction to proceed and to suppress undesirable side reactions. Although the hydrogen pressure is not particularly limited, it is usually carried out in the range of atmospheric pressure to 300 Kg/cm 2 , preferably 5 to 200 Kg/cm 2 . 300Kg/cm2 or more is not practical from the standpoint of equipment and operation. Hydrogenated polymers have excellent weather resistance, ozone resistance, heat resistance, cold resistance, etc., and can be used in a wide range of fields. The present invention will be specifically explained below using Examples.
The hydrogenation rate of the polymer was determined by the iodine value method. In the following examples, the amount of catalyst means the total amount of carrier and catalyst. Example 1 Pd alone and Pd were added to activated carbon as a carrier.
At the same time, Au, B, Al, Ga, Si, Ge, Sb, Mo,
Acrylonitrile-butadiene copolymer was hydrogenated using a catalyst supporting Te, W, and Re. In the case of a combination system, the atomic ratio of each element to Pd was 1:1. In both cases, the amount of Pd per carrier was 1% by weight. (Preparation of catalyst) Except for using HAuCl 4 as the Au source, each chloride was used as the source of each element. Activated carbon was immersed in these aqueous solutions, thoroughly impregnated into the activated carbon, and reduced with formalin-caustic soda. It was used as a catalyst supported on a carrier. (Hydrogenation method) In an autoclave with a capacity of 100 ml, add 3 g of acrylonitrile-butadiene random copolymer to 17 g of acetone (bonded acrylonitrile amount: 41.1% by weight,
A solution containing ML (1+4,100 °C = 53, abbreviated as NBR) and 0.075 g of the above supported catalyst (equivalent to 2.5 parts by weight per 100 parts by weight of polymer) were charged, and after purging the system with nitrogen, 50 kg of hydrogen was added. The hydrogenation reaction was carried out at 50° C. for 4 hours under pressure of /cm 2 . The results are shown in Table 1. No reduction of the nitrile group was observed in any case.

【表】【table】

【表】 実施例 2 Pdと共に活性炭に担持させる金属あるいは非
金属としてAl,Re,Siを使用し、Pdとの原子比
が1:1になるように実施例1と同様にして触媒
を調製した。それぞれの元素の塩化物を元素源と
して使用した。 これらの触媒の活性を調べるために、容量100
mlのオートクレーブにシクロヘキサン27gに3g
のポリブタジエン(シス―1.4含量98%、
ML1+4,100℃=40)を溶解した溶液を仕込み、窒
素置換後水素にて50Kg/cm2に加圧し、90℃で4時
間水素化を行つた。触媒量は3重量部/重合体
100重量部である。結果を第2表に示す。
[Table] Example 2 A catalyst was prepared in the same manner as in Example 1, using Al, Re, and Si as metals or non-metals supported on activated carbon together with Pd so that the atomic ratio with Pd was 1:1. . Chlorides of each element were used as element sources. To examine the activity of these catalysts, a volume of 100
3g in 27g of cyclohexane in a ml autoclave
of polybutadiene (cis-1.4 content 98%,
A solution containing ML (1+4,100 °C=40) was charged, and after purging with nitrogen, the pressure was increased to 50 kg/cm 2 with hydrogen, and hydrogenation was performed at 90°C for 4 hours. Catalyst amount is 3 parts by weight/polymer
It is 100 parts by weight. The results are shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 共役ジエン系重合体の炭素―炭素二重結合を
水素化する方法において、多孔性粉末状および/
または粒状担体にPdと同時にAu,B,Al,Ga,
Si,Ge,Sb,Mo,Te,WおよびReから選択さ
れる少なくとも一種とを担持させた触媒を使用す
ることを特徴とする共役ジエン系重合体の水素化
方法。
1 In a method of hydrogenating carbon-carbon double bonds of a conjugated diene polymer, porous powder and/or
Or Au, B, Al, Ga,
1. A method for hydrogenating a conjugated diene polymer, comprising using a catalyst supported on at least one selected from Si, Ge, Sb, Mo, Te, W and Re.
JP15857679A 1979-12-06 1979-12-06 Hydrogenation of conjugated diene type polymer Granted JPS5681306A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15857679A JPS5681306A (en) 1979-12-06 1979-12-06 Hydrogenation of conjugated diene type polymer
US06/210,688 US4337329A (en) 1979-12-06 1980-11-26 Process for hydrogenation of conjugated diene polymers
CA000366233A CA1163750A (en) 1979-12-06 1980-12-05 Process for hydrogenation of conjugated diene polymers
DE3046008A DE3046008C2 (en) 1979-12-06 1980-12-05 Process for the catalytic hydrogenation of conjugated diene polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15857679A JPS5681306A (en) 1979-12-06 1979-12-06 Hydrogenation of conjugated diene type polymer

Publications (2)

Publication Number Publication Date
JPS5681306A JPS5681306A (en) 1981-07-03
JPS6335642B2 true JPS6335642B2 (en) 1988-07-15

Family

ID=15674698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15857679A Granted JPS5681306A (en) 1979-12-06 1979-12-06 Hydrogenation of conjugated diene type polymer

Country Status (1)

Country Link
JP (1) JPS5681306A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2689517B1 (en) * 1992-04-02 1995-07-28 Inst Francais Du Petrole PROCESS FOR SELECTIVE HYDROGENATION OF HYDROCARBONS.
AU1785901A (en) * 1999-12-08 2001-06-18 Dow Global Technologies Inc, The A process for hydrogenating unsaturated polymers
JP5659860B2 (en) * 2011-02-28 2015-01-28 エヌ・イーケムキャット株式会社 Palladium-containing catalyst for hydrogenating nitrile compound and method for hydrogenating nitrile compound using the catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969222A (en) * 1974-02-15 1976-07-13 Universal Oil Products Company Hydrogenation and hydrodesulfurization of hydrocarbon distillate with a catalytic composite
DE2506157A1 (en) * 1975-02-12 1976-08-26 Budapesti Mueszaki Egyetem METHOD FOR MANUFACTURING ALDEHYDE
JPS5289619A (en) * 1976-01-19 1977-07-27 Nippon Kayaku Co Ltd Preparation of saturated nitriles
DE2605107A1 (en) * 1976-02-10 1977-08-11 Veba Chemie Ag PROCESS FOR THE PRODUCTION OF ALCOHOLS BY ACID-DIRECT HYDRATION
DE2746930A1 (en) * 1976-10-22 1978-04-27 Toray Industries PROCESS FOR THE PREPARATION OF 1,11-UNDECANEDIAMINE
JPS5477689A (en) * 1977-10-20 1979-06-21 Johnson Matthey Co Ltd Method of hydrogenating polymer and copolymer* method of hydrogenating selectively block copolymer
JPS54158575A (en) * 1978-05-24 1979-12-14 Bosch Gmbh Robert Friction coupling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3969222A (en) * 1974-02-15 1976-07-13 Universal Oil Products Company Hydrogenation and hydrodesulfurization of hydrocarbon distillate with a catalytic composite
DE2506157A1 (en) * 1975-02-12 1976-08-26 Budapesti Mueszaki Egyetem METHOD FOR MANUFACTURING ALDEHYDE
JPS5289619A (en) * 1976-01-19 1977-07-27 Nippon Kayaku Co Ltd Preparation of saturated nitriles
DE2605107A1 (en) * 1976-02-10 1977-08-11 Veba Chemie Ag PROCESS FOR THE PRODUCTION OF ALCOHOLS BY ACID-DIRECT HYDRATION
DE2746930A1 (en) * 1976-10-22 1978-04-27 Toray Industries PROCESS FOR THE PREPARATION OF 1,11-UNDECANEDIAMINE
JPS5477689A (en) * 1977-10-20 1979-06-21 Johnson Matthey Co Ltd Method of hydrogenating polymer and copolymer* method of hydrogenating selectively block copolymer
JPS54158575A (en) * 1978-05-24 1979-12-14 Bosch Gmbh Robert Friction coupling

Also Published As

Publication number Publication date
JPS5681306A (en) 1981-07-03

Similar Documents

Publication Publication Date Title
US4337329A (en) Process for hydrogenation of conjugated diene polymers
US4452951A (en) Process for hydrogenating conjugated diene polymers
US4452950A (en) Process for hydrogenation of carbon-carbon double bonds in an unsaturated polymer in latex form
US7923514B2 (en) Method of hydrogenating conjugated diene polymer, hydrogenation catalyst system, and composition of basic, conjugated diene polymer
JPS6261045B2 (en)
US4954576A (en) Process for hydrogenating conjugated diene polymers
US10100132B2 (en) Process for the preparation of polymers containing amino groups employing a heterogeneous iron catalyst
JPS6335642B2 (en)
JP4255150B2 (en) Polymer hydrogenation process
JPS6335641B2 (en)
US5128297A (en) Method for hydrogenating conjugated diene polymer
EP0751151B1 (en) Hydrogenation of diene copolymers
JPH0578562B2 (en)
JPS61247706A (en) Hydrogenation of nitrile group-containing unsaturated polymer
CN108778502B (en) Metal-supported catalyst and method for producing hydrogenated conjugated diene polymer
US11266978B2 (en) Method for preparing dispersion of metal-containing particles and method for producing hydrogenated conjugated diene polymer
JP2806069B2 (en) Hydrogenation catalyst for conjugated diene polymer and method for producing the same
JPH11292925A (en) Hydrogenation of conjugated diene polymer
EP2072536A1 (en) Hydrogenation of diene-based polymers
JPH0142283B2 (en)
JPH0381302A (en) Production of hydrogenated conjugated diene polymer
JP2004026998A (en) Method for catalyst recovery
JPS6058242B2 (en) Method for producing hydrogenated conjugated diene polymer
JP2004027024A (en) Method for producing hydrogenated polymer