JPS6335603A - Production of cellulose derivative having aldehyde group and side chain - Google Patents

Production of cellulose derivative having aldehyde group and side chain

Info

Publication number
JPS6335603A
JPS6335603A JP17846786A JP17846786A JPS6335603A JP S6335603 A JPS6335603 A JP S6335603A JP 17846786 A JP17846786 A JP 17846786A JP 17846786 A JP17846786 A JP 17846786A JP S6335603 A JPS6335603 A JP S6335603A
Authority
JP
Japan
Prior art keywords
cellulose
cellulose derivative
aldehyde
side chains
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17846786A
Other languages
Japanese (ja)
Other versions
JPH0670081B2 (en
Inventor
Tetsuo Kondo
哲男 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP17846786A priority Critical patent/JPH0670081B2/en
Publication of JPS6335603A publication Critical patent/JPS6335603A/en
Publication of JPH0670081B2 publication Critical patent/JPH0670081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a cellulose derivative having aldehyde groups as side chains, excellent in physical properties, by treating a cellulose derivative having allyl groups as side chains with an oxidizing agent. CONSTITUTION:A cellulose derivative having aldehyde groups as side chains is produced by treating a cellulose derivative having allyl groups as side chains with an oxidizing agent. It is desirable to use, especially, ozone as said oxidizing agent. It is theoretically possible to produce even a tri-substituted derivative having three aldehyde groups as side chains according to said process. However, the quantitative determination of the aldehyde groups of an aldehydecellulose of a degree of substitution >1 is difficult because it is crosslinked and insolubilized in the stage of isolation from the ozonization reaction solution. However, it is possible even in this case to subject it to the subsequent synthetic reaction without removing the solvent therefrom. On the contrary, an aldehydecellulose of a degree of substitution <1 can be separated and purified so that it can be used for synthesizing a higher derivative.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はβ−1,4グルカン骨格を主鎖とし、側鎖にア
ルデヒド基を有するセルロース誘導体の製法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a cellulose derivative having a β-1,4 glucan skeleton as the main chain and an aldehyde group in the side chain.

〔従来の技術〕[Conventional technology]

官能基としてアルデヒド基を有する高分子は、電子供与
性物質と親和性がある。従って蛋白質、ペプチドをはじ
め多くの生理活性物質との付加化合物、酵素、菌体の固
定、尿素など生体老廃物の吸着などに使用できるほか、
イオン交換性高分子合成の中間体として利用できる可能
性がある。
A polymer having an aldehyde group as a functional group has an affinity for electron-donating substances. Therefore, it can be used to immobilize adducts with many physiologically active substances such as proteins and peptides, enzymes, and bacterial cells, and to adsorb biological wastes such as urea.
It may be used as an intermediate for ion-exchange polymer synthesis.

高分子がセルロース及びその誘導体である場合、低毒性
、生体親和性などの好ましい物性が期待される。セルロ
ースにアルデヒド基を導入する従来の方法として知られ
ているものは、セルロースを過沃素酸で酸化する方法で
ある。しかしながらこの方法では、無水グルコース環の
開裂を伴うので、得られたアルデヒド誘導体はもはやβ
−1,4グルカン骨格を維持しない。従って物理的性質
はもとのセルロースに比べて劣るものとなる。
When the polymer is cellulose or its derivatives, favorable physical properties such as low toxicity and biocompatibility are expected. A conventional method known for introducing aldehyde groups into cellulose is to oxidize cellulose with periodic acid. However, this method involves cleavage of the anhydroglucose ring, so the aldehyde derivative obtained no longer has β
-1,4 glucan skeleton is not maintained. Therefore, the physical properties are inferior to that of the original cellulose.

〔問題点を解決するための手段〕[Means for solving problems]

上記セルロースの過沃素酸による酸化は、機構的には多
価アルコール化合物の酸化によるアルデヒドの生成であ
るが、アルデヒドの生成反応として、より広く工業的に
用いられているものに不飽和C=C結合の酸化がある。
Mechanistically, the oxidation of cellulose with periodic acid generates aldehydes through the oxidation of polyhydric alcohol compounds. There is oxidation of bonds.

即ちアリル基をセルロースの側鎖として導入し、得られ
るセルロースのアリル誘導体を適当な条件で酸化すると
、側鎖にアルデヒド基を有するセルロース誘導体が得ら
れる可能性がある。
That is, by introducing an allyl group as a side chain of cellulose and oxidizing the obtained allyl derivative of cellulose under appropriate conditions, a cellulose derivative having an aldehyde group in the side chain may be obtained.

本発明のアルデヒド基を側鎖に有するセルロース誘導体
の製法において、目的物の前駆物質であるアリル化セル
ロース誘導体は種々の方法で合成することができる。
In the method for producing a cellulose derivative having an aldehyde group in its side chain according to the present invention, the allylated cellulose derivative, which is a precursor of the target product, can be synthesized by various methods.

本発明は、側鎖にアリル基を有するセJL/ロース誘導
体を酸化剤で処理することを特徴とする側鎖にアルデヒ
ド基を有するセルロース誘導体の製法に関し、特に酸化
剤としてオゾンを用いる、側鎖にアルデヒドを有するセ
ルロース誘導体の製法に関するものである。
The present invention relates to a method for producing a cellulose derivative having an aldehyde group in the side chain, which is characterized by treating a cellulose derivative having an allyl group in the side chain with an oxidizing agent, and in particular, using ozone as the oxidizing agent. The present invention relates to a method for producing a cellulose derivative having an aldehyde.

本発明の製法の目的物である側鎖にアルデヒド基を有す
るセルロース誘導体の前駆体である、側鎖としてアリル
基を有するセルロース誘導体は種々の方法で合成するこ
とができる。
A cellulose derivative having an allyl group as a side chain, which is a precursor of a cellulose derivative having an aldehyde group in a side chain, which is the object of the production method of the present invention, can be synthesized by various methods.

セルロースを直接アリル化する方法は、例えば橿田(A
ngew、 CheIll、 42.549(1929
))、吉相(繊維学会誌21.317(1965)) 
、方法ら(Inter−national Sympo
sium on Wood and PulpingC
hen+1stry、1.70(1983))などによ
り開示されている。しかしながら、セルロースよりも溶
媒溶解性の高いセルロースエーテル又はセルロースエス
テルを原料とした方がアリル基の置換度の高いものが得
られることが最近の研究で見出されており、例えば近勝
らによって報告されている(昭和60年度繊維学会年次
大会要旨集p、 102)。
A method for directly allylating cellulose is, for example, described by Kashita (A.
ngew, Chell, 42.549 (1929
)), Kisso (Journal of the Textile Society 21.317 (1965))
, Method et al. (Inter-national Sympo
sium on Wood and PulpingC
hen+1stry, 1.70 (1983)). However, recent studies have found that products with a higher degree of allyl group substitution can be obtained by using cellulose ethers or cellulose esters, which have higher solvent solubility than cellulose, as reported by Chikakatsu et al. (Collection of Abstracts of the 1985 Fiber and Textile Society Annual Conference, p. 102).

後者の方法は遊離の水酸基を有するセルロースエーテル
又はセルロースエステルを適当な溶媒、例えばジメチル
スルホキシドに溶解し、アルカリの存在及び水の不存在
下にアリルハライドを作用させることによりアリル化す
る方法である。この場合セルロースエーテル又はセルロ
ースエステルの遊離の水酸基に対するアルカリの量を多
くするほどアリル基の置換度の高いものを得ている。ま
たセルロースエステルを原料とした場合、反応中エステ
ル基の脱離が起こり、完全アリル化したセルロース誘導
体までが得られる。セルロース誘導体の側鎖として存在
するアリル基の酸化はセルロース誘導体を適当な溶媒、
例えば塩化メチレン/メタノール混合溶媒に溶解し、該
溶液中にオゾンを含有する空気をバブリングさせること
によって達成される。本反応は低温で円滑に進行し、副
反応を伴わない。
The latter method is a method in which a cellulose ether or cellulose ester having a free hydroxyl group is dissolved in a suitable solvent, such as dimethyl sulfoxide, and allylated by reacting with allyl halide in the presence of an alkali and the absence of water. In this case, the higher the amount of alkali relative to the free hydroxyl groups of cellulose ether or cellulose ester, the higher the degree of allyl group substitution is obtained. Furthermore, when cellulose ester is used as a raw material, the ester group is eliminated during the reaction, and a completely allylated cellulose derivative can be obtained. Oxidation of allyl groups present as side chains of cellulose derivatives can be carried out by oxidizing the cellulose derivatives in a suitable solvent,
For example, this can be achieved by dissolving ozone in a mixed solvent of methylene chloride/methanol and bubbling air containing ozone into the solution. This reaction proceeds smoothly at low temperatures and does not involve side reactions.

本発明の方法により、理論的には側鎖アルデヒド基とし
て3置換体のものまで得られる。しかしながら置換度が
1以上のアルデヒドセルロースは、オゾン化反応溶液か
ら単離する段階で架橋反応が起こり不溶化するためアル
デヒド基の定量は困難である。しかしこの場合でも溶媒
を除去することなく次の誘導体の合成反応を行わしめる
ことは可能である。これに対し、置換度1以下のアルデ
ヒドセルロースは、分離精製が可能であり、高次の誘導
体合成反応に使用することができる。
By the method of the present invention, it is theoretically possible to obtain up to trisubstituted side chain aldehyde groups. However, aldehyde cellulose with a degree of substitution of 1 or more undergoes a crosslinking reaction and becomes insolubilized during isolation from the ozonation reaction solution, making it difficult to quantify the aldehyde groups. However, even in this case, it is possible to carry out the next synthetic reaction of the derivative without removing the solvent. On the other hand, aldehyde cellulose with a degree of substitution of 1 or less can be separated and purified, and can be used in higher-order derivative synthesis reactions.

実施例1 十分乾燥したメチルセルロース(DS = 1.6、和
光純薬) 1.0gを出発原料とし、ジメチルスルホキ
シド60m1に加え、40℃で一夜攪拌して溶解させた
後、室温に冷却した。溶液を窒素ガス雰囲気下に置き、
水酸化ナトリウム粉末5.6gを加え、約1時間半を要
し水酸化ナトリウムの固まりが認められなくなるまで撹
拌した。次に塩化アリル6、Omlを加え、窒素ガス雰
囲気下、70°C14時間攪拌して反応させた。
Example 1 1.0 g of sufficiently dried methylcellulose (DS = 1.6, Wako Pure Chemical Industries, Ltd.) was used as a starting material, added to 60 ml of dimethyl sulfoxide, stirred overnight at 40°C to dissolve, and then cooled to room temperature. Place the solution under nitrogen gas atmosphere,
5.6 g of sodium hydroxide powder was added, and the mixture was stirred for about 1.5 hours until no lumps of sodium hydroxide were observed. Next, Oml of allyl chloride 6 was added, and the mixture was stirred at 70° C. for 14 hours to react under a nitrogen gas atmosphere.

反応終了後、反応液を200m lの水/クロロホルム
= 1/1 (容量比)に加えて分配させた。クロロホ
ルム層を取り出し3回水洗した後、減圧濃縮し、メタノ
ールを注いで沈澱を生成させた。
After the reaction was completed, the reaction solution was added to 200 ml of water/chloroform=1/1 (volume ratio) for distribution. The chloroform layer was taken out, washed three times with water, concentrated under reduced pressure, and poured with methanol to form a precipitate.

生成沈澱をクロロホルムに再溶解し、メタノールで析出
させアリル(メチル)セルロース1.0gを得た。
The resulting precipitate was redissolved in chloroform and precipitated with methanol to obtain 1.0 g of allyl (methyl) cellulose.

得られたアリル(メチル)セルロースの赤外吸収スペク
トル(第1図)に3450cm−’付近の吸収極大を認
めないことから、上記アリル(メチル)セルロースは完
全アリル化物と考えられる。
Since no absorption maximum near 3450 cm-' is observed in the infrared absorption spectrum (Fig. 1) of the obtained allyl (methyl) cellulose, the above allyl (methyl) cellulose is considered to be a completely allylated product.

上記で生成したアリル(メチル)セルロース0、 tg
を塩化メチレン/メタノール=571の混合溶媒30m
 lに溶解し、100vのオゾン発生器から生成するオ
ゾン気流を0,51/分の流量で温度−70℃において
バブリングさせた。オゾン気流を通じることにより、無
色の溶液が紺紫色に呈色するのが認められた。
Allyl (methyl) cellulose produced above 0, tg
30ml of mixed solvent of methylene chloride/methanol = 571
1 and bubbled with an ozone stream generated from a 100 V ozone generator at a flow rate of 0.51/min at a temperature of -70°C. When passed through the ozone stream, the colorless solution was observed to turn dark blue.

オゾンバブリングを15分間行った後、オゾンを止め窒
素をバブリングさせると紺紫色は次第に消滅して再び無
色の溶液となった。反応溶液をメタノール中に注ぎ析出
物を回収した。′このものはアルデヒド(メチル)セル
ロースである。
After bubbling ozone for 15 minutes, the ozone was stopped and nitrogen was bubbled, and the dark blue color gradually disappeared and the solution became colorless again. The reaction solution was poured into methanol and the precipitate was collected. 'This stuff is aldehyde (methyl) cellulose.

上記アルデヒド(メチル)セルロースの赤外吸収スペク
トル(第1図)は1730cm−’にカルボニルに由来
する吸収極大があり、遊離アルデヒド基の存在を示して
いる。
The infrared absorption spectrum (Figure 1) of the aldehyde (methyl) cellulose has an absorption maximum derived from carbonyl at 1730 cm-', indicating the presence of free aldehyde groups.

上記アルデヒド(メチル)セルロースはヒドラジンと反
応させて生成させたヒドラゾンのN含量を定量し、もと
のアルデヒド基置換度を計算したところ、DS=0.8
の値が得られた。
The above aldehyde (methyl) cellulose was produced by reacting with hydrazine, and the N content of the hydrazone was quantified, and the original degree of aldehyde group substitution was calculated, and it was found that DS = 0.8
The value of was obtained.

上記の定量のための反応は次の通りである。The reaction for the above quantification is as follows.

即ち、アルデヒド(メチル)セルロース0.1gを2.
4−ジニトロフェニルヒドラジン2N塩酸溶液50m 
lで60℃、24時間処理した。生成物の赤外吸収スペ
クトルを測定したところ(第2図■)、1730cm−
’の〉C=0に基づく吸収が消失し、−N=C−(16
50cm−’付近)、芳香族環(1590cm−’付近
)、−NH−(1500cm−’付近)の吸収が現しテ
イルコトから、アルデヒド基は完全にフェニルヒドラゾ
ンに変換していることが認められる。尚、第2図■、■
はそれぞれアルデヒド(メチル)セルロース、2.4−
ジニトロフェニルヒドラジンとの反応生成物の赤外吸収
スペクトルである。
That is, 0.1 g of aldehyde (methyl) cellulose was mixed with 2.0 g of aldehyde (methyl) cellulose.
4-dinitrophenylhydrazine 2N hydrochloric acid solution 50ml
1 at 60° C. for 24 hours. When the infrared absorption spectrum of the product was measured (Fig. 2 ■), it was found to be 1730 cm-
'The absorption based on >C=0 disappears, and -N=C-(16
Absorption of aromatic ring (near 1590 cm-'), -NH- (near 1500 cm-') appears, and it is recognized from the tailcoat that the aldehyde group is completely converted to phenylhydrazone. In addition, Figure 2■,■
are aldehyde (methyl) cellulose, 2.4-
This is an infrared absorption spectrum of a reaction product with dinitrophenylhydrazine.

上記アルデヒド(メチル)セルロースは弱アルカリ性(
pH=9)の水に溶解する。しかし、同じアルデヒド(
メチル)セルロースのキャスティングフィルムを加熱(
例えば80℃、−昼夜)すると、上記弱アルカリ性の水
に不溶となった。
The above aldehyde (methyl) cellulose is weakly alkaline (
Dissolve in water at pH=9). However, the same aldehyde (
Heating (methyl) cellulose casting film
For example, at 80°C (day and night), it became insoluble in the weakly alkaline water.

不溶化したフィルムの動的粘弾性をバイプロンを用いて
測定したところ、セルロース骨格の運動が制限されてお
り、アルデヒド側鎖同士による架橋が生成していること
が認められた。この架橋はアルデヒド側鎖によるヘミア
セクール型架橋と考えられる。
When the dynamic viscoelasticity of the insolubilized film was measured using a Vipron, it was found that the movement of the cellulose skeleton was restricted and that crosslinks between aldehyde side chains were formed. This crosslinking is considered to be a hemiacecool type crosslinking due to aldehyde side chains.

実施例2 実施例1のメチルセルロースに代え、出発原料として低
酢化度酢酸セルロース(DS = 1.75、ダイセル
化学製)を十分乾燥したものを使用し、水酸化ナトリウ
ム量を4.5gとしたほかは実施例1と同様にしてセル
ロース誘導体のアリル化反応を行った。この場合の出発
原料の無水グルコース残基に対するアルカリ量は30モ
ル倍量である。
Example 2 In place of methylcellulose in Example 1, sufficiently dried low-acetyl cellulose acetate (DS = 1.75, manufactured by Daicel Chemical Industries, Ltd.) was used as a starting material, and the amount of sodium hydroxide was 4.5 g. The allylation reaction of the cellulose derivative was carried out in the same manner as in Example 1 except for the above. In this case, the amount of alkali relative to the anhydroglucose residue of the starting material is 30 moles.

得られたアリルセルロースは、クロロホルム、。The obtained allylcellulose is chloroform.

塩化メチレン、ベンゼン、テトラヒドロフランなどの溶
媒に可溶である。赤外吸収スペクトル及びNMRスペク
トルから上記アリルセルロースはアセチル基、遊離水酸
基を含有せず、トリアリルセルロースであることが確認
された。
Soluble in solvents such as methylene chloride, benzene, and tetrahydrofuran. It was confirmed from the infrared absorption spectrum and NMR spectrum that the allyl cellulose contained no acetyl group or free hydroxyl group and was triallyl cellulose.

上記トリアリルセルロースを用い、実施例1と同様にし
てオゾンを作用させ、アルデヒドセルロースを得た。
Using the above triallyl cellulose, ozone was applied in the same manner as in Example 1 to obtain aldehyde cellulose.

得られたアルデヒドセルロースの塩化メチレン/メタノ
ール混合溶媒溶液から溶媒を除去し、フィルムを得た。
The solvent was removed from the obtained aldehyde cellulose solution in a methylene chloride/methanol mixed solvent to obtain a film.

このものは酸性〜アルカリ性の水に不溶であった。This product was insoluble in acidic to alkaline water.

また、フィルムの動的粘弾性を測定したところ、実施例
1で得たアルデヒド(メチル)セルロースの架橋フィル
ムよりも架橋度の高いものであることが認められた。
Furthermore, when the dynamic viscoelasticity of the film was measured, it was found that the degree of crosslinking was higher than that of the crosslinked aldehyde (methyl) cellulose film obtained in Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例で得られたアリル(メチル)セルロー
ス及ヒアルデヒド(メチル)セルロースの赤外吸収スペ
クトルであり、第2図■はアルデヒド(メチル)セルロ
ース、■は2.4−ジニトロフェニルヒドラジンとの反
応生成物、■は反応生成物を熱処理したものの赤外吸収
スペクトルを示す。 出願人代理人 古  谷     馨 第2図 4000   3200    2400   180
0     j400    1000   600波
  11 (3−’ )
Figure 1 shows the infrared absorption spectra of allyl (methyl) cellulose and hyaldehyde (methyl) cellulose obtained in this example. The reaction product with hydrazine, (■) shows the infrared absorption spectrum of the reaction product obtained by heat treatment. Applicant's agent Kaoru Furuya Figure 2 4000 3200 2400 180
0 j400 1000 600 waves 11 (3-')

Claims (1)

【特許請求の範囲】 1 側鎖にアリル基を有するセルロース誘導体を酸化剤
で処理することを特徴とする側鎖にアルデヒド基を有す
るセルロース誘導体の製法。 2 酸化剤がオゾンである特許請求の範囲第1項記載の
側鎖にアルデヒド基を有するセルロース誘導体の製法。
[Scope of Claims] 1. A method for producing a cellulose derivative having an aldehyde group in its side chain, which comprises treating a cellulose derivative having an allyl group in its side chain with an oxidizing agent. 2. The method for producing a cellulose derivative having an aldehyde group in a side chain according to claim 1, wherein the oxidizing agent is ozone.
JP17846786A 1986-07-29 1986-07-29 Process for producing cellulose derivative having aldehyde group in side chain Expired - Lifetime JPH0670081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17846786A JPH0670081B2 (en) 1986-07-29 1986-07-29 Process for producing cellulose derivative having aldehyde group in side chain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17846786A JPH0670081B2 (en) 1986-07-29 1986-07-29 Process for producing cellulose derivative having aldehyde group in side chain

Publications (2)

Publication Number Publication Date
JPS6335603A true JPS6335603A (en) 1988-02-16
JPH0670081B2 JPH0670081B2 (en) 1994-09-07

Family

ID=16049022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17846786A Expired - Lifetime JPH0670081B2 (en) 1986-07-29 1986-07-29 Process for producing cellulose derivative having aldehyde group in side chain

Country Status (1)

Country Link
JP (1) JPH0670081B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036054A3 (en) * 1996-03-28 1997-11-06 Procter & Gamble Temporary wet strength additives
US6319361B1 (en) 1996-03-28 2001-11-20 The Procter & Gamble Company Paper products having wet strength from aldehyde-functionalized cellulosic fibers and polymers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036054A3 (en) * 1996-03-28 1997-11-06 Procter & Gamble Temporary wet strength additives
US5760212A (en) * 1996-03-28 1998-06-02 Smith; David Jay Temporary wet strength additives
US6319361B1 (en) 1996-03-28 2001-11-20 The Procter & Gamble Company Paper products having wet strength from aldehyde-functionalized cellulosic fibers and polymers

Also Published As

Publication number Publication date
JPH0670081B2 (en) 1994-09-07

Similar Documents

Publication Publication Date Title
JP2002537448A (en) Method for selective oxidation of cellulose
JP2000513042A (en) Reactive cellulose and method for producing the same
JPH07300501A (en) Partially acylated beta-cyclodextrin,its production and solubilizer, preparation aid, stabilizer, degreasing agent, substitute solvent, coating material, fixation aid, phase transfer catalyst and taste and odor masking agent containing same
JPH0748302A (en) Method for synthesizing fullerol
JPS6335603A (en) Production of cellulose derivative having aldehyde group and side chain
JPH0481403A (en) New cyclodextrin derivative and production thereof
WO2019193608A1 (en) Improved process for the preparation of iron (iii) carboxymaltose
JPS5817101A (en) Production of novel cellulose carboxylate ester
US4090016A (en) Carboxylated pullulan and method for producing same
JPS60212401A (en) Preparation of cellulose ether having high degree of substitution
FR2550539A1 (en) NEW PROCESS FOR THE PRODUCTION OF CALCIUM GLYCOLATE CELLULOSE
CN110330570B (en) Preparation method of 6-amino-6-deoxy cellulose
JP2000511588A (en) Method for producing cellulose acetate
US2758111A (en) New oxycelluloses and preparation thereof
JP2003292502A (en) Method for producing chitosan oxide
JPH085922B2 (en) Sulfinylethyl pullulan and method for producing the same
JPS609522B2 (en) Method for producing ethylcarboxymethylcellulose
JPS59152901A (en) Carboxyalkyl acetyl cellulose, its salt and its preparation
US3001979A (en) Preparation of a urea-dialdehyde starch derivative
JPH04314702A (en) Preparation of acid-form carboxymethylcellulose
JPS5949211B2 (en) Method for producing dicarboxylic acids
JPH09249687A (en) 6-0-mannopyranosyl-1,5 gluconolactone, its production and intermediate therefor
RU2169736C1 (en) Water-soluble carboxymethylazomethyne derivatives of cellulose and method of preparation thereof
JPH0667963B2 (en) Alkylsulfinylethyl cellulose and process for producing the same
JPH0224255B2 (en)