JPS6335449A - Manufacture of ceramic composition - Google Patents

Manufacture of ceramic composition

Info

Publication number
JPS6335449A
JPS6335449A JP61179639A JP17963986A JPS6335449A JP S6335449 A JPS6335449 A JP S6335449A JP 61179639 A JP61179639 A JP 61179639A JP 17963986 A JP17963986 A JP 17963986A JP S6335449 A JPS6335449 A JP S6335449A
Authority
JP
Japan
Prior art keywords
composition
alkoxide
plzt
lanthanum
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61179639A
Other languages
Japanese (ja)
Inventor
小野 英嗣
緒方 康行
山中 清二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP61179639A priority Critical patent/JPS6335449A/en
Priority to GB8705883A priority patent/GB2193204B/en
Priority to BE8700317A priority patent/BE1000125A4/en
Priority to DE19873710975 priority patent/DE3710975A1/en
Priority to NL8701520A priority patent/NL8701520A/en
Priority to FR8710686A priority patent/FR2602225B1/en
Publication of JPS6335449A publication Critical patent/JPS6335449A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁器組成物の製造方法に係り、特に話電体材料
、透光性セラミックス材料、電気光学的機能材料等に有
用な、下記−数式(I)Pb   La  (Zr  
Ti1−、) l−x/4031−x   x   y (式中、O<x<1.0<y<1) で示されるセラミックス原料粉末を製造する方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a porcelain composition, which is particularly useful for telephone materials, translucent ceramic materials, electro-optic functional materials, etc. Formula (I) Pb La (Zr
The present invention relates to a method for manufacturing a ceramic raw material powder represented by the following formula: Ti1-, ) l-x/4031-x x y (wherein O<x<1.0<y<1).

[従来の技術] 近年、セラミックスコンデンサ、セラミックス光学材料
等の機能性セラミックスについて、より一層の小型化、
高精度化が望まれており、その信頓性についても高い確
実性が要求されてきている。
[Conventional technology] In recent years, functional ceramics such as ceramic capacitors and ceramic optical materials have become smaller and smaller.
High precision is desired, and high reliability is also required.

また、これらのセラミックスを実用するに際し、その焼
結温度が高温であると、焼成コストが高く、特にこれを
積層コンデンサに利用する場合には、内部電極として、
Pd、Pt等の高価な高融点貴金属を用いなければなら
ず、コンデンサの製造コスト低減の大きな障害となる。
In addition, when these ceramics are put into practical use, the high sintering temperature results in high firing costs.Especially when using these ceramics in multilayer capacitors, it is difficult to use them as internal electrodes.
This requires the use of expensive high-melting point noble metals such as Pd and Pt, which is a major obstacle to reducing capacitor manufacturing costs.

このため、積層コンデンサの内部電極として、安価な銀
を主成分とする電極を使用して、積層コンデンサの製造
コストを低減するべく、これらの機能性セラミックスに
ついて、低温焼結性も強く望まれている。
Therefore, in order to reduce the manufacturing cost of multilayer capacitors by using inexpensive silver-based electrodes as the internal electrodes of multilayer capacitors, low-temperature sinterability is also strongly desired for these functional ceramics. There is.

このような機能性セラミックスとして、前記−数式(1
)で示される化合物(以下、rPLZTJと略称するこ
とがある。)は、誘電体特性、透光性、電気光学特性等
を備えた多機能材料として、従来より多くの注目をあび
ている。
As such functional ceramics, the above-mentioned formula (1
) (hereinafter sometimes abbreviated as rPLZTJ) has been attracting more attention than ever before as a multifunctional material with dielectric properties, translucency, electro-optical properties, etc.

従来、PLZT磁器組成物は、一般に、各々の金属成分
の酸化物や炭酸塩を出発原料とし、これらを乳鉢やボー
ルミル等で混合、粉砕した後焼成することにより製造さ
れている。
Conventionally, PLZT porcelain compositions have generally been produced by using oxides and carbonates of respective metal components as starting materials, mixing them in a mortar, ball mill, etc., pulverizing them, and then firing them.

[発明が解決しようとする問題点コ しかしながら、このような従来のPLZTの製造方法で
は、十分な混合を行なうことが難しい上に、混合時に不
純物が混入しやすく、しかも粉砕の程度に限界があるた
め、組成の均一性、高純度化、原料粉末の微細化が極め
て困難である。
[Problems to be solved by the invention] However, with such conventional PLZT manufacturing methods, it is difficult to perform sufficient mixing, impurities are easily mixed during mixing, and there is a limit to the degree of pulverization. Therefore, it is extremely difficult to achieve uniform composition, high purity, and refinement of the raw material powder.

このため、得られるPLZTは、その特性や低温焼結性
の面で十分に満足し得るものとはいえず、従来において
は、機能性セラミックスの高精度化や低廉価を図り、ま
た、高い信頼性を確保すことができなかった。
For this reason, the obtained PLZT cannot be said to be fully satisfactory in terms of its properties and low-temperature sinterability, and in the past, efforts have been made to improve the precision and low cost of functional ceramics, and to achieve high reliability. I was unable to secure sex.

[問題点を解決するための手段] 本発明は上記従来法の欠点を解消し、前記−数式(I)
で示されるPLZTセラミックス原料粉末を ■ 高純度で ■ 組成の均一性よく ■ 極めて微粉体状に 得ることができる方法を提供するものであって、これに
よりセラミックスの機能、特性の向上並びに低温焼結性
の改良を図るものである。
[Means for Solving the Problems] The present invention solves the drawbacks of the above-mentioned conventional method, and solves the above-mentioned formula (I).
The purpose is to provide a method that can obtain the PLZT ceramic raw material powder shown in the form of extremely fine powder with high purity and good compositional uniformity. The aim is to improve sexual performance.

本発明は 化学組成が下記−数式 %式% (式中、O<X<i、O<y<1) で示される磁器組成物を製造する方法において、硝酸ラ
ンタン及び/又は酢酸ランタンを含む水溶?夜と、鉛ア
ルコキシド、ジルコニウムアルコキシド合液とを混合し
て、アルコキシドの加水分解とランタン成分の共沈とを
行なわしめ、得られた沈澱物を加熱して上記組成の磁器
組成物を得ることを特徴とする磁器組成物の製造方法、 を要旨とするものである。
The present invention provides a method for producing a porcelain composition having a chemical composition represented by the following formula: % (where O<X<i, O<y<1). ? At night, a mixture of lead alkoxide and zirconium alkoxide is mixed to cause hydrolysis of the alkoxide and coprecipitation of the lanthanum component, and the resulting precipitate is heated to obtain a porcelain composition having the above composition. A method for manufacturing a porcelain composition characterized by the following.

以下、本発明につき詳細に説明する。Hereinafter, the present invention will be explained in detail.

本発明においては、まず、硝酸ランタン及び/又は酢酸
ランタンを含む水溶液と、鉛アルコキシド、ジルコニウ
ムアルコキシド及びチタンアルコキシドの混合液とを混
合し、硝酸ランタン及び/又は酢酸ランタンを含む水溶
液中の水を利用して、鉛アルコキシド、ジルコニウムア
ルコキシド及びチタンアルコキシドを加水分解させ、同
時にランタン成分の共沈を行なわしめる。
In the present invention, first, an aqueous solution containing lanthanum nitrate and/or lanthanum acetate is mixed with a mixed solution of lead alkoxide, zirconium alkoxide, and titanium alkoxide, and the water in the aqueous solution containing lanthanum nitrate and/or lanthanum acetate is used. Then, lead alkoxide, zirconium alkoxide and titanium alkoxide are hydrolyzed, and at the same time, the lanthanum component is co-precipitated.

即ち、本発明においては、PLZTのランタン成分の原
料としては硝酸ランタン及び/又は酢酸ランタンを使用
する。これらの原料は、市販品を再結晶させることによ
り容易に高純度化することが可能である。
That is, in the present invention, lanthanum nitrate and/or lanthanum acetate are used as raw materials for the lanthanum component of PLZT. These raw materials can be easily purified to a high degree by recrystallizing commercially available products.

硝酸ランタン及び/又は酢酸ランタンを含む水溶液を調
整するには、これらの原料を、所望のPLZT組成比が
得られるように所定量水に溶解させれば良い。この際、
水の量は、取扱いの便宜上できる限り少ない方が望まし
い。
To prepare an aqueous solution containing lanthanum nitrate and/or lanthanum acetate, these raw materials may be dissolved in a predetermined amount of water to obtain a desired PLZT composition ratio. On this occasion,
It is desirable that the amount of water be as small as possible for convenience of handling.

一方、鉛、チタン、ジルコニウム成分の原料としては、
各々、下記化学式(a)、(b)、(C)で示される鉛
アルコキシド、チタンアルコキシド、ジルコニウムアル
コキシドを使用する。
On the other hand, as raw materials for lead, titanium, and zirconium components,
Lead alkoxide, titanium alkoxide, and zirconium alkoxide each represented by the following chemical formulas (a), (b), and (C) are used.

Pb(OR)2 −  (a) Ti(OR)4  ・・・ (b) Zr(OR)+  ・=  (c) (式(a)、(b)、(c)において、Rはアルキル基
を示す。) これらのアルコキシド中のアルキル基Rの種類は木質的
に重要ではないが、取り抜性等の面から一般にはメチル
基、エチル基、イソプロピル基、ブチル基等の低級アル
キル基のアルコキシドを用いるのが好ましい。
Pb(OR)2 − (a) Ti(OR)4 ... (b) Zr(OR)+ ・= (c) (In formulas (a), (b), and (c), R represents an alkyl group The type of alkyl group R in these alkoxides is not important in terms of wood quality, but from the viewpoint of removability etc., alkoxides of lower alkyl groups such as methyl, ethyl, isopropyl and butyl groups are generally used. It is preferable to use

チタンアルコキシド、ジルコニウムアルコキシドは常法
例えば、金属TiやZrをアルコールと反応させる方法
、により得ることができるが、市販品でも十分に高純度
のものを入手することが可能である。
Titanium alkoxide and zirconium alkoxide can be obtained by conventional methods, for example, by reacting metal Ti or Zr with alcohol, but commercially available products with sufficiently high purity are also available.

鉛アルコキシドは、本出願人により先に特許出願した特
願昭60−52332に開示された方法により容易に高
純度のものを得ることが可能である。
Lead alkoxide can be easily obtained in high purity by the method disclosed in Japanese Patent Application No. 52332/1988, which was previously filed by the applicant.

これらの金属アルコキシドの混合液は、必要な金属アル
コキシドを所望のPLZT組成比が得られるように有機
溶媒中に溶解させ、機械的な攪拌等により十分混合する
ことにより調整するのが、組成の均一性を保つ点から好
適である。
A mixture of these metal alkoxides can be prepared by dissolving the necessary metal alkoxides in an organic solvent to obtain the desired PLZT composition ratio, and then thoroughly mixing the mixture by mechanical stirring, etc., to obtain a uniform composition. This is preferable from the viewpoint of preserving the properties.

この場合、有機溶媒としては、金属アルコキシドを溶解
するものであればよいが、溶解度の点から、ベンゼン、
トルエン、キシレン等の芳香族炭化水素、もしくは、エ
タノール、プロパツール等のアルコール、又は、これら
の混合液が適当である。
In this case, the organic solvent may be one that dissolves the metal alkoxide, but from the viewpoint of solubility, benzene,
Aromatic hydrocarbons such as toluene and xylene, alcohols such as ethanol and propatool, or mixtures thereof are suitable.

このようにして調整された金属アルコキシド混合液とラ
ンタンイオンを含む水溶液との混合は、金属アルコキシ
ド混合液にランタンイオンを含む水溶液を攪拌下で滴下
してもよいし、又、逆にランタンイオンを含む水溶液に
金属アルコキシド混合液を攪拌下で滴下してもよい。
The metal alkoxide mixture prepared in this manner and the aqueous solution containing lanthanum ions may be mixed by dropping the aqueous solution containing lanthanum ions into the metal alkoxide mixture under stirring, or conversely, by adding lanthanum ions to the metal alkoxide mixture. The metal alkoxide mixture may be added dropwise to the aqueous solution with stirring.

両液の混合によりアルコキシドの加水分解とランタン成
分の共沈を行なわしめる。なお、この場合、反応温度は
取り扱いの便宜上G〜100℃の範囲とするのが望まし
い。
Mixing of both solutions causes hydrolysis of the alkoxide and coprecipitation of the lanthanum component. In this case, the reaction temperature is preferably within the range of G to 100°C for convenience of handling.

このようにして得られた沈殿物を濾過等により濾液を分
離除去し、乾燥した後、加熱することによりPLZTの
結晶を得ることができる。この場合、加熱温度は、20
0℃以上でPLZTの分解温度以下とするのが好ましい
The filtrate of the thus obtained precipitate is separated and removed by filtration or the like, dried, and then heated to obtain PLZT crystals. In this case, the heating temperature is 20
Preferably, the temperature is 0° C. or higher and lower than the decomposition temperature of PLZT.

なお、沈澱物を分離して得られる濾液の分析によっても
明らかな如く、本発明においては、濾液中への鉛、ラン
タン、チタン、ジルコニウム成分の流出、残留は殆どな
く、はぼ完全に所望の組成に共沈させることが可能であ
る。
As is clear from the analysis of the filtrate obtained by separating the precipitate, in the present invention, almost no lead, lanthanum, titanium, or zirconium components leak or remain in the filtrate, and the desired content is almost completely eliminated. It is possible to co-precipitate the composition.

このような本発明の方法で得られるPLZT粉末の粒径
は、電子原微鏡観察によると、沈澱物を400℃で2時
間焼成したもので0.008〜0.01μmであり、極
めて微細で均一な粒径の粉末である。
According to electron microscope observation, the particle size of the PLZT powder obtained by the method of the present invention is 0.008 to 0.01 μm when the precipitate is calcined at 400°C for 2 hours, which is extremely fine. It is a powder with uniform particle size.

[作用] 本発明の方法は基本的に液相反応であるため、従来の方
法に比し、高純度で均一な組成のPLZTを得ることが
できる。しかも加熱により得られたPLZTは極めて均
一な微粉末となる。
[Function] Since the method of the present invention is basically a liquid phase reaction, it is possible to obtain PLZT with a higher purity and a more uniform composition than with conventional methods. Moreover, the PLZT obtained by heating becomes an extremely uniform fine powder.

このため本発明で製造されるPLZTは、各種機能特性
に優れ、また低温焼結性にも極めて優れる。
Therefore, PLZT produced according to the present invention has excellent various functional properties and is also extremely excellent in low-temperature sinterability.

[実施例] 以下に実施例及び比較例を挙げて、本発明により製造さ
れるPLZT粉末の低温焼結性並びにPLZTの機能の
一つとして誘電特性を例にとり、その特性を説明する。
[Example] Examples and comparative examples will be given below to explain the low-temperature sinterability of the PLZT powder produced according to the present invention and the dielectric properties as one of the functions of PLZT.

なお、本発明はその要旨を超えない限り、以下の実施例
に限定されるものではない。
It should be noted that the present invention is not limited to the following examples unless it exceeds the gist thereof.

以下の実施例及び比較例において、PLZT粉末の誘電
特性は、700℃で5時間焼成した粉末を3000 k
 g f / c rn”の圧力で、直径16mm、厚
ざ1mmの円盤状に加圧成型した後、空気中で1050
℃、1100℃、1150℃、1200℃の各温度で1
時間焼成し、得られた焼結体の円盤両面に銀電極を焼付
け、25℃で誘電率、誘電損失、電気抵抗を測定するこ
とにより調べた。また、25℃の静電容量を基準として
、−55℃、125℃の静電容量の変化率(TC)を測
定した。なお、誘電率及び誘電損失は、1kHzでデジ
タルLCRメータを用いて測定した。また、電気抵抗は
100■、5秒間電圧印加後、絶縁抵抗計で測定した。
In the following Examples and Comparative Examples, the dielectric properties of PLZT powder are determined by 3000 k
After pressure molding into a disk shape with a diameter of 16 mm and a thickness of 1 mm at a pressure of 1050 g f/c rn'' in air.
1 at each temperature of ℃, 1100℃, 1150℃, 1200℃
After firing for a period of time, silver electrodes were baked on both sides of the disc of the obtained sintered body, and the dielectric constant, dielectric loss, and electrical resistance were measured at 25°C. Furthermore, the rate of change (TC) in capacitance at -55°C and 125°C was measured based on the capacitance at 25°C. Note that the dielectric constant and dielectric loss were measured using a digital LCR meter at 1 kHz. Further, the electrical resistance was measured using an insulation resistance meter after applying a voltage of 100 cm for 5 seconds.

Pb    La     (Zr    Ti   
 )     00.88   0.12     0
.70   0.30  0.97  3の合成 実施例1 硝酸ランタン水溶液(0,694mol/λ)173m
iLを、鉛ブトキシドのベンゼン溶液(0,672mo
 1/u) 131 QrrILとチタンイソプロポキ
シド82.7g及びジルコニウムブトキシド261gと
を混合した液に攪拌しながらゆっくり滴下して加えた。
Pb La (Zr Ti
) 00.88 0.12 0
.. 70 0.30 0.97 Synthesis Example 1 of 3 Lanthanum nitrate aqueous solution (0,694 mol/λ) 173 m
iL in a benzene solution of lead butoxide (0,672 mo
1/u) 131 QrrIL, 82.7 g of titanium isopropoxide, and 261 g of zirconium butoxide were slowly added dropwise to a mixed solution with stirring.

なお、反応時の温度は30℃に保った。Note that the temperature during the reaction was maintained at 30°C.

このようにして得られた沈澱物を濾別した後、80℃で
10時間乾燥し、次いで700℃で5時間加熱し、目的
組成のPLZT粉末を得た。
After the precipitate thus obtained was filtered, it was dried at 80°C for 10 hours, and then heated at 700°C for 5 hours to obtain PLZT powder with the desired composition.

得られた磁器組成物の誘電体特性の測定結果を第1表に
示す。
Table 1 shows the measurement results of the dielectric properties of the obtained ceramic composition.

実施例2 実施例1において、硝酸ランタン水溶液を同濃度の酢酸
ランタン水溶液に変えたこと以外は、実施例1と同様に
して、目的組成のPLZT粉末を得た。
Example 2 A PLZT powder having the desired composition was obtained in the same manner as in Example 1, except that the lanthanum nitrate aqueous solution was replaced with a lanthanum acetate aqueous solution having the same concentration.

得られた磁器組成物の誘電特性の測定結果は測定誤差内
で実施例1と同等であった。
The measurement results of the dielectric properties of the obtained ceramic composition were equivalent to those of Example 1 within the measurement error.

実施例3 実施例1において、チタンイソプロポキシドをチタンブ
トキシドに変えたこと以外は、実施例1と同様にして、
目的組成のPLZT粉末を得た。
Example 3 In the same manner as in Example 1, except that titanium isopropoxide was changed to titanium butoxide,
A PLZT powder having the desired composition was obtained.

得られた磁器組成物の誘電特性の測定結果は測定誤差内
で実施例1と同等であった。
The measurement results of the dielectric properties of the obtained ceramic composition were equivalent to those of Example 1 within the measurement error.

実施例4 実施例1において、ジルコニウムブトキシドをジルコニ
ウムイソプロポキシドに変えたこと以外は、実施例1と
同様にして、目的組成のPLZT粉末を得た。
Example 4 A PLZT powder having the desired composition was obtained in the same manner as in Example 1, except that zirconium butoxide was replaced with zirconium isopropoxide.

得られた磁器組成物の誘電特性の測定結果は測定誤差内
で実施例1と同等であった。
The measurement results of the dielectric properties of the obtained ceramic composition were equivalent to those of Example 1 within the measurement error.

実施例5 実施例1において、鉛ブトキシドを鉛イソプロポキシド
に変えたこと以外は、実施例1と同様にして目的組成の
PLZTを得た。
Example 5 PLZT having the desired composition was obtained in the same manner as in Example 1 except that lead butoxide was replaced with lead isopropoxide.

得られた磁器組成物の誘電特性の測定結果は測定誤差内
で実施例1と同等であった。
The measurement results of the dielectric properties of the obtained ceramic composition were equivalent to those of Example 1 within the measurement error.

実施例6 実施例1において、反応時の温度を30℃から85℃に
変えたこと以外は、実施例1と同様にして目的組成のP
LZT粉末を得た。
Example 6 P of the desired composition was prepared in the same manner as in Example 1, except that the temperature during the reaction was changed from 30°C to 85°C.
LZT powder was obtained.

得られた磁器組成物の誘電特性の測定結果は測定誤差内
で実施例1と同等であった。
The measurement results of the dielectric properties of the obtained ceramic composition were equivalent to those of Example 1 within the measurement error.

実施例7 実施例1において、鉛ブトキシドのベンゼン溶液を鉛イ
ンプロポキシドのn−キシレン溶液に変えたこと以外は
、実施例1と同様にして目的組成のPLZT粉末を得た
Example 7 PLZT powder having the desired composition was obtained in the same manner as in Example 1, except that the benzene solution of lead butoxide was replaced with an n-xylene solution of lead impropoxide.

得られた磁器組成物の誘電特性の測定結果は測定誤差内
で実施例1と同等であった。
The measurement results of the dielectric properties of the obtained ceramic composition were equivalent to those of Example 1 within the measurement error.

実施例8 実施例1において、鉛ブトキシドのベンゼン溶液を鉛イ
ンプロポキシドのトルエン溶液に変えたこと以外は、実
施例1と同様にして目的組成のPLZT粉末を得た。
Example 8 A PLZT powder having the desired composition was obtained in the same manner as in Example 1, except that the benzene solution of lead butoxide was replaced with a toluene solution of lead impropoxide.

得られた磁器組成物の誘電特性の測定結果はtltll
定誤差内で実施例1と同等であった。
The measurement results of the dielectric properties of the obtained porcelain composition are as follows.
It was equivalent to Example 1 within a certain error.

比較例1 pbo、TiO2、La203 、ZrO2の各金属酸
化物を、実施例1と同一組成比となるようにボールミル
により混合、粉砕した後、700℃で5時間仮焼し、更
にボールミルで再び粉砕して、実施例1と同組成のPL
ZT粉末を調整した。
Comparative Example 1 Metal oxides of pbo, TiO2, La203, and ZrO2 were mixed and ground in a ball mill to have the same composition ratio as in Example 1, then calcined at 700°C for 5 hours, and then ground again in a ball mill. PL with the same composition as Example 1
ZT powder was prepared.

得られた磁器組成物の誘電体特性の測定結果を第1表に
示す。
Table 1 shows the measurement results of the dielectric properties of the obtained ceramic composition.

恋皇基 実施例9 実施例1において、各原料の配合比を変えたこと以外は
実施例1と同様にして、目的組成のPLZT粉末を得た
Koiōki Example 9 PLZT powder having the desired composition was obtained in the same manner as in Example 1 except that the blending ratio of each raw material was changed.

得られた磁器組成物の誘電体特性の測定結果を第2表に
示す。
Table 2 shows the measurement results of the dielectric properties of the obtained ceramic composition.

比較例2 原料の配合比を変えたこと以外は比較例1と同様にして
、実施例9と同組成のPLZT粉末を調整した。
Comparative Example 2 A PLZT powder having the same composition as in Example 9 was prepared in the same manner as Comparative Example 1 except that the blending ratio of the raw materials was changed.

得られた磁器組成物の誘電体特性の・測定結果を第2表
に示す。
Table 2 shows the measurement results of the dielectric properties of the obtained ceramic composition.

第1表及び第2表より本発明によるPLZT粉末によれ
ば、焼結温度が極めて低く、優れた電気特性を有するP
LZT磁器組成物を得ることができることが明らかであ
る。
Tables 1 and 2 show that the PLZT powder according to the present invention has an extremely low sintering temperature and excellent electrical properties.
It is clear that LZT porcelain compositions can be obtained.

[発明の効果コ 以上詳述した通り本発明の磁器組成物の製造方法によれ
ば、高純度で極めて均一な組成を有し、しかも均一微細
な粉体のPLZT粉末を所望の組成で容易かつ確実に製
造することが可能である。
[Effects of the Invention] As detailed above, according to the method for producing a porcelain composition of the present invention, it is possible to easily and easily produce PLZT powder having a high purity, extremely uniform composition, and a uniform fine powder with a desired composition. It is possible to manufacture it reliably.

このため、得られる磁器組成物は、極めて特性に優れ、
誘電率、絶縁抵抗及び容量抵抗積が大きく、かつ誘電損
失が小さい。このため、本発明で得られる磁器組成物を
用いることにより、信頼性の高い小型大容量コンデンサ
を得ることができる。
Therefore, the resulting porcelain composition has extremely excellent properties,
The dielectric constant, insulation resistance, and capacitance-resistance product are large, and the dielectric loss is small. Therefore, by using the ceramic composition obtained by the present invention, a highly reliable small-sized, large-capacity capacitor can be obtained.

しかも、本発明で得られる磁器組成物は、低温焼結性に
優れ、焼成温度が低いため、焼成コストが1価で、積層
コンデンサに用いた場合、比較的安価な銀系などの内部
電極を用いることができる。このため、積層コンデンサ
の製造コストを低下させ、その価格を大幅に低減するこ
とができる。
In addition, the ceramic composition obtained by the present invention has excellent low-temperature sintering properties and has a low firing temperature, so the firing cost is monovalent, and when used in a multilayer capacitor, it can be used for internal electrodes made of relatively inexpensive silver-based materials. Can be used. Therefore, the manufacturing cost of the multilayer capacitor can be reduced, and its price can be significantly reduced.

代理人   弁理士   重 野  剛手続補正書 昭和61年9月lO日Agent: Patent Attorney: Shigeno Tsuyoshi Procedural Amendment September 10th, 1986

Claims (3)

【特許請求の範囲】[Claims] (1)化学組成が下記一般式 Pb_1_−_xLa_x(Zr_yTi_1_−_y
)_1_−_x_/_4O_3(式中、0<x<1、0
<y<1) で示される磁器組成物を製造する方法において、硝酸ラ
ンタン及び/又は酢酸ランタンを含む水溶液と、鉛アル
コキシド、ジルコニウムアルコキシド及びチタンアルコ
キシドを混合して得られた混合液とを混合して、アルコ
キシドの加水分解とランタン成分の共沈とを行なわしめ
、得られた沈澱物を加熱して上記組成の磁器組成物を得
ることを特徴とする磁器組成物の製造方法。
(1) The chemical composition has the following general formula Pb_1_-_xLa_x(Zr_yTi_1_-_y
)_1_-_x_/_4O_3 (in the formula, 0<x<1, 0
<y<1) In the method of manufacturing a ceramic composition represented by <y<1), an aqueous solution containing lanthanum nitrate and/or lanthanum acetate is mixed with a mixed solution obtained by mixing lead alkoxide, zirconium alkoxide, and titanium alkoxide. A method for producing a porcelain composition, which comprises: hydrolyzing the alkoxide and co-precipitating the lanthanum component, and heating the resulting precipitate to obtain a porcelain composition having the above composition.
(2)鉛アルコキシド、ジルコニウムアルコキシド及び
チタンアルコキシドの混合は、有機溶媒に溶解した状態
で行なうことを特徴とする特許請求の範囲第1項に記載
の磁器組成物の製造方法。
(2) The method for producing a ceramic composition according to claim 1, wherein the lead alkoxide, zirconium alkoxide, and titanium alkoxide are mixed in a state dissolved in an organic solvent.
(3)沈澱物の加熱は200℃以上で磁器組成物の分解
温度よりも低い温度領域で行なうことを特徴とする特許
請求の範囲第1項又は第2項に記載の磁器組成物の製造
方法。
(3) The method for producing a porcelain composition according to claim 1 or 2, characterized in that the precipitate is heated in a temperature range of 200° C. or higher and lower than the decomposition temperature of the porcelain composition. .
JP61179639A 1986-07-30 1986-07-30 Manufacture of ceramic composition Pending JPS6335449A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61179639A JPS6335449A (en) 1986-07-30 1986-07-30 Manufacture of ceramic composition
GB8705883A GB2193204B (en) 1986-07-30 1987-03-12 Method of producing ceramic composition
BE8700317A BE1000125A4 (en) 1986-07-30 1987-03-27 PROCESS FOR PRODUCING A CERAMIC COMPOSITION AND COMPOSITION THUS OBTAINED.
DE19873710975 DE3710975A1 (en) 1986-07-30 1987-04-01 METHOD FOR PRODUCING A CERAMIC COMPOSITION
NL8701520A NL8701520A (en) 1986-07-30 1987-06-29 METHOD FOR MANUFACTURING A CERAMIC COMPOSITION
FR8710686A FR2602225B1 (en) 1986-07-30 1987-07-28 PROCESS FOR THE PREPARATION OF A CERAMIC COMPOSITION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61179639A JPS6335449A (en) 1986-07-30 1986-07-30 Manufacture of ceramic composition

Publications (1)

Publication Number Publication Date
JPS6335449A true JPS6335449A (en) 1988-02-16

Family

ID=16069283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61179639A Pending JPS6335449A (en) 1986-07-30 1986-07-30 Manufacture of ceramic composition

Country Status (6)

Country Link
JP (1) JPS6335449A (en)
BE (1) BE1000125A4 (en)
DE (1) DE3710975A1 (en)
FR (1) FR2602225B1 (en)
GB (1) GB2193204B (en)
NL (1) NL8701520A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246838A (en) * 1989-03-17 1990-10-02 Toyota Motor Corp Safety control device
JPH04296040A (en) * 1991-03-25 1992-10-20 Ngk Insulators Ltd Electrostatic chuck
JP2007099268A (en) * 2002-06-10 2007-04-19 Nissan Motor Co Ltd Driving operation assisting device for vehicle, and vehicle equipped with the device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10323816A1 (en) 2003-05-23 2004-12-09 Basf Ag Process for the production of mixed oxides with average diameters less than 10 nanometers
CN111499384B (en) * 2020-04-09 2021-06-15 中国科学院上海硅酸盐研究所 PLZT antiferroelectric ceramic material with high energy storage density and temperature stability and preparation method thereof
CN113716606B (en) * 2021-08-25 2022-09-06 中国科学院上海硅酸盐研究所 PLZT micron seed crystal, preparation method thereof and application thereof in inducing ceramic growth

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199719A (en) * 1982-05-17 1983-11-21 Mitsubishi Mining & Cement Co Ltd Manufacture of solid solution of metallic oxide

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718723A (en) * 1970-10-23 1973-02-27 Bell Telephone Labor Inc Use of water soluble lanthanum compounds in lead zirconate-lead titanate ceramics
US3702724A (en) * 1971-10-13 1972-11-14 Atomic Energy Commission Ferroelectric ceramic plate electrooptical light scattering device and method
US3917780A (en) * 1973-08-09 1975-11-04 Us Air Force Preparation of lead lanthanum zirconate titanate bodies
US3923675A (en) * 1973-08-09 1975-12-02 Us Air Force Method for preparing lead lanthanum zirconate-titanate powders
JPS60103031A (en) * 1983-11-10 1985-06-07 Agency Of Ind Science & Technol Manufacture of plzt or pzt
JPS60141675A (en) * 1983-12-28 1985-07-26 日本曹達株式会社 Manufacture of light permeable high dielectric ceramic
JPH0652332A (en) * 1992-08-03 1994-02-25 Nec Corp Single chip microcomputer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199719A (en) * 1982-05-17 1983-11-21 Mitsubishi Mining & Cement Co Ltd Manufacture of solid solution of metallic oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246838A (en) * 1989-03-17 1990-10-02 Toyota Motor Corp Safety control device
JPH04296040A (en) * 1991-03-25 1992-10-20 Ngk Insulators Ltd Electrostatic chuck
JP2007099268A (en) * 2002-06-10 2007-04-19 Nissan Motor Co Ltd Driving operation assisting device for vehicle, and vehicle equipped with the device
JP4661758B2 (en) * 2002-06-10 2011-03-30 日産自動車株式会社 VEHICLE DRIVE OPERATION ASSISTANCE DEVICE AND VEHICLE HAVING THE DEVICE

Also Published As

Publication number Publication date
FR2602225A1 (en) 1988-02-05
GB8705883D0 (en) 1987-04-15
NL8701520A (en) 1988-02-16
BE1000125A4 (en) 1988-04-12
GB2193204A (en) 1988-02-03
DE3710975C2 (en) 1993-09-09
GB2193204B (en) 1990-04-04
DE3710975A1 (en) 1988-02-11
FR2602225B1 (en) 1990-08-03

Similar Documents

Publication Publication Date Title
JPS62216965A (en) Manufacture of ceramic composition
JPS6335449A (en) Manufacture of ceramic composition
JP2003002748A (en) Method for producing powdery ceramic raw material, powdery ceramic raw material, dielectric ceramic and multilayer ceramic electronic parts
JP2000272962A (en) Piezoelectric ceramic composition
JPS62123018A (en) Production of ferroelectric powder
GB2210871A (en) Dielectric ceramic composition
JPS6042277A (en) Ceramic composition
JPS63117961A (en) Manufacture of ceramic composition
JPS61237304A (en) Dielectric ceramic composition
US6451244B1 (en) Ceramics with excellent piezoelectric property and their manufacturing method
JP2607519B2 (en) Manufacturing method of optical ceramics
JP3203905B2 (en) Method for producing bismuth titanate
JPS60141675A (en) Manufacture of light permeable high dielectric ceramic
JPH06507755A (en) dielectric with high K
JPS6199210A (en) Ceramic dielectric composition
SU1719357A1 (en) Dielectric ceramic material for temperature compensation
JPS61174162A (en) Dielectric ceramic composition
JPH0238540B2 (en)
JPH0784349B2 (en) Method for producing dielectric ceramics containing neodymium
JPS62119804A (en) Dielectric porcelain compound
JPS62119802A (en) Dielectric porcelain compound
JPS5849662A (en) High dielectric constant ceramic composition
JPS63166106A (en) Dielectric ceramic composition
JPH0745122A (en) Dielectric porcelain composition
JPH0764634B2 (en) Method for producing porcelain composition for laminated capacitor