JPS6335132B2 - - Google Patents

Info

Publication number
JPS6335132B2
JPS6335132B2 JP56128202A JP12820281A JPS6335132B2 JP S6335132 B2 JPS6335132 B2 JP S6335132B2 JP 56128202 A JP56128202 A JP 56128202A JP 12820281 A JP12820281 A JP 12820281A JP S6335132 B2 JPS6335132 B2 JP S6335132B2
Authority
JP
Japan
Prior art keywords
reflector
antenna
station
radiating element
master station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56128202A
Other languages
Japanese (ja)
Other versions
JPS5887927A (en
Inventor
Morio Onoe
Nozomi Hasebe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12820281A priority Critical patent/JPS5887927A/en
Publication of JPS5887927A publication Critical patent/JPS5887927A/en
Publication of JPS6335132B2 publication Critical patent/JPS6335132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Transceivers (AREA)
  • Transmitters (AREA)
  • Radio Transmission System (AREA)

Description

【発明の詳細な説明】 この発明は、アンテナ兼用反射率可変レフレク
タ装置およびそれを子局に用いて単一の送信局と
単数または複数の受信局との間で双方向性の通信
を行なうための通信方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a variable reflectance reflector device that also serves as an antenna, and a device for performing bidirectional communication between a single transmitting station and one or more receiving stations by using it in a slave station. Regarding communication methods.

従来より通常の無線通信に用いられている情報
伝送方式では、送信局から受信局に対して一方向
性の通信が行なわれ、双方向性の通信を行う場合
は両局にそれぞれ送信機および受信機を設備し
て、それぞれ送・受信の組合せにより情報の交換
を行う。他方、レーダ装置は送受信機能を有して
いて、目標物へ向けて送信した電波の反射波を検
出することによりその位置や大きさを知る一次レ
ーダ方式が周知である。この場合、レーダから目
標物へ向けて情報を伝送する方式もあり、さらに
目標地点に受信機および送信機を設置して情報解
読を行うと共にレーダ局に返信波を送信する二次
レーダ方式もあり、この方式は送・受信機を二対
用いている点で前述一方向性通信方式の分類に含
まれるものと判断できる。
In the information transmission method conventionally used for normal wireless communication, unidirectional communication is performed from the transmitting station to the receiving station, and when bidirectional communication is performed, both stations have a transmitter and a receiver, respectively. equipment is installed to exchange information through a combination of sending and receiving. On the other hand, radar devices have a transmitting and receiving function, and a primary radar system is well known in which the position and size of a target object are determined by detecting reflected waves of radio waves transmitted toward the target object. In this case, there is a method in which information is transmitted from the radar to the target, and there is also a secondary radar method in which a receiver and transmitter are installed at the target point to decode the information and send a return wave to the radar station. Since this system uses two pairs of transmitters and receivers, it can be judged that it falls under the category of unidirectional communication systems mentioned above.

この発明の目的は、割当が制限されている現在
の周波数利用の観点から、1周波で双方向性通信
を可能とすることにある。
An object of the present invention is to enable bidirectional communication using one frequency from the viewpoint of current frequency usage where allocation is limited.

またこの発明のもうひとつの目的は、1周波で
単一送信局と多局との双方向性通信を可能とし多
局からの情報収集を果すことにある。
Another object of the present invention is to enable bidirectional communication between a single transmitting station and multiple stations using one frequency, and to collect information from multiple stations.

以上の目的を達成するために、この発明ではア
ンテナ兼用反射率可変レフレクタ装置とそれを用
いた単送信双方向性通信方式を提供するものであ
る。
In order to achieve the above object, the present invention provides a variable reflectance reflector device that also serves as an antenna and a single-transmission bidirectional communication system using the same.

すなわち、本願第1発明のアンテナ兼用反射率
可変レフレクタ装置は、アンテナ放射素子と、そ
の背後に間隔を開けて配置された反射器と、これ
らアンテナ放射素子と反射器との間に接続された
スイツチング手段と、前記アンテナ放射素子の給
電点を反射器に短絡または負荷に整合させる為に
前記スイツチング手段をオン・オフさせる手段と
を備えてなるものであり、受信アンテナとして機
能するときには前記スイツチング手段をオフ状態
にしてアンテナ放射素子の給電点を負荷の受信回
路と整合状態にし、反射率可変レフレクタとして
機能するときには前記スイツチング手段をオン・
オフしてその繰り返しの仕方に応じた変調を反射
波にかけるようにしたものである。
In other words, the antenna-cum-variable-reflectance reflector device of the first invention of the present application includes an antenna radiating element, a reflector arranged behind the antenna at a distance, and a switching device connected between the antenna radiating element and the reflector. and means for turning the switching means on and off in order to short-circuit the feeding point of the antenna radiating element to a reflector or match it to a load, and when functioning as a receiving antenna, the switching means is turned on and off. The switching means is turned off to match the feeding point of the antenna radiating element with the receiving circuit of the load, and the switching means is turned on and turned off when functioning as a variable reflectance reflector.
The reflected wave is modulated according to the way it is turned off and repeated.

また本願第2発明の単送信双方向性通信方式は
前記第1発明のアンテナ兼用反射率可変レフレク
タ装置を子局側に用いたものであつてこの単送信
双方向性通信方式においては、送受信機能を有す
る親局から発した送信電波をアンテナ兼用反射率
可変レフレクタを備えた子局で受信して親局から
子局への情報伝達を果すと共に、この受信した親
局からの情報に応答して子局側で前記スイツチン
グ手段のオン・オフ動作を開始させることで子局
のアンテナ兼用反射率可変レフレクタで前記送信
電波を親局へ向けて反射させ、この際の反射率を
前記スイツチング手段のオン・オフ動作に応じて
変化させることによつて反射波を変調して子局か
ら親局への情報伝達を行なうものである。
Further, the single-transmission bidirectional communication system of the second invention of the present application uses the antenna-cum-variable-reflectance-variable reflector device of the first invention on the slave station side. A slave station equipped with a variable reflector that also serves as an antenna receives the transmitted radio waves emitted from a master station, which transmits information from the master station to the slave stations, and responds to the received information from the master station. By starting the on/off operation of the switching means on the slave station side, the transmitted radio wave is reflected toward the master station by the variable reflectance reflector that also serves as an antenna of the slave station, and the reflectance at this time is changed to the ON/OFF operation of the switching means.・By changing it according to the off operation, the reflected wave is modulated and information is transmitted from the slave station to the master station.

前述のように通常の方式では送信局から受信局
へ対して一方向の通信が行われるのに対し、この
発明の通信方式では受信局としての子局に送信局
としての親局からの到来送信電波を受信するアン
テナ機能だけでなく、受信情報に応答した動作に
基づいて親局からの到来電波を、効率良く反射さ
せるレフレクタ機能を持たせ、親局においてはこ
のレフレクタによる反射波を更めて受信できる能
力を持たせ、さらにこのときに子局においてその
レフレクタが電波の反射率を可変とすることがで
きるようにする。すなわち子局において反射波を
振巾或いは位相変調するものであり、この変調波
に子局側からの情報をのせることによつて送信点
(親局)では受信した反射波の復調により子局か
らの情報を取得できるわけである。
As mentioned above, in the normal system, communication is performed in one direction from the transmitting station to the receiving station, but in the communication system of the present invention, incoming transmissions from the master station as the transmitting station are sent to the slave station as the receiving station. In addition to having an antenna function to receive radio waves, it also has a reflector function to efficiently reflect incoming radio waves from the master station based on operations in response to received information. It is provided with the ability to receive radio waves, and furthermore, at this time, the reflectance of the radio waves in the slave station can be made variable. In other words, the reflected wave is amplitude-modulated or phase-modulated at the slave station, and by adding information from the slave station to this modulated wave, the transmission point (master station) demodulates the received reflected wave and modulates the amplitude or phase of the reflected wave. This means that information can be obtained from.

この発明の通信方式は前述のように単一の送信
局で相手局との双方向の通信が行なえるという特
徴を有し、現状の周波数利用の困難性に対して1
周波両方向性通信が行なえるばかりか、単一送信
局で多局からの情報収集ができる利点を持つもの
である。
As mentioned above, the communication system of the present invention has the feature that a single transmitting station can perform two-way communication with the other station, and has the advantage of being able to overcome the current difficulties in frequency utilization.
Not only is it possible to perform frequency bidirectional communication, but it also has the advantage of being able to collect information from multiple stations using a single transmitting station.

この発明を実施例に基づいて図面と共に説明す
れば、第1図aはこの発明の基本となる子局側ア
ンテナ兼用反射率可変素子1の概念的構成を示す
斜視図、同図bは同じく素子1の構成原理を示す
回路図であり、2はアンテナ放射素子、3は反射
器、4は反射率を可変とするためのスイツチング
ダイオード、5は直流阻止回路、6は高周波阻止
回路、7はダイオード駆動用バイアス電源、8は
スイツチを示す。
The present invention will be described based on embodiments with reference to the drawings. FIG. 1a is a perspective view showing a conceptual configuration of a variable reflectance element 1 that serves as a slave station antenna, which is the basis of the invention, and FIG. 1 is a circuit diagram showing the configuration principle of 1, in which 2 is an antenna radiation element, 3 is a reflector, 4 is a switching diode for making the reflectance variable, 5 is a DC blocking circuit, 6 is a high frequency blocking circuit, and 7 is a high frequency blocking circuit. Bias power supply for driving the diode, 8 indicates a switch.

第2図a,bは前記素子1を用いて構成したア
ンテナ兼用反射率可変レフレクタの概念図であ
り、前記素子1を電波レンズ9又は電波反射鏡1
0の焦点位置に配置してある。この素子1は、必
ずしも図示の例のような平板状でなくてもよく、
例えば電波レンズの表面や電波反射鏡の焦点面の
曲率に合わせて湾曲させることは好ましいことで
ある。さてこのようなアンテナ兼用反射率可変レ
フレクタによれば、スイツチ8をOFFにしてお
くことで前記アンテナ放射素子2が端子11側の
負荷と整合して受信アンテナとして機能し、受信
電波の高周波出力は直流阻止回路5を介して端子
11に得られる。またスイツチ8をONにすると
スイツチングダイオード4によつてアンテナ放射
素子2が等価的に短絡され、従つて入射した電波
は全てここで反射されて電波レンズ9もしくは電
波反射鏡10を通して反射波として効率良く空間
へ戻される。ここでスイツチ8のON・OFFをく
り返すことにより反射波は振巾変調を受けること
になる。このON・OFFのくり返しの仕方によ
り、パルス変調、周波数変調等が可能となる。
FIGS. 2a and 2b are conceptual diagrams of a variable reflector serving as an antenna and constructed using the element 1.
It is placed at the zero focus position. This element 1 does not necessarily have to be flat like the illustrated example,
For example, it is preferable to curve it in accordance with the curvature of the surface of a radio wave lens or the focal plane of a radio wave reflecting mirror. According to such a variable reflector that also serves as an antenna, by turning off the switch 8, the antenna radiation element 2 matches the load on the terminal 11 side and functions as a receiving antenna, and the high frequency output of the received radio wave is It is obtained at the terminal 11 via the DC blocking circuit 5. Furthermore, when the switch 8 is turned on, the antenna radiation element 2 is equivalently short-circuited by the switching diode 4, and therefore, all incident radio waves are reflected here and efficiently transmitted as reflected waves through the radio wave lens 9 or the radio wave reflector 10. Good to be returned to space. By repeating ON/OFF of the switch 8, the reflected wave undergoes amplitude modulation. Depending on how this ON/OFF is repeated, pulse modulation, frequency modulation, etc. are possible.

第3図にこの発明に係る単送信双方向性通信方
式の基本システム構成の一例をブロツク図によつ
て示す。第3図において12は親局、13は子
局、14は子局13に設けられた前述のような構
成のアンテナ兼用反射率可変レフレクタである。
親局12は、送信すべき情報内容を変調器15に
よつて与えられる送信機16と、送受信アンテナ
17およびデユープレクサ18と、反射波を受信
する受信機19およびその反射波中の情報を解読
する復調器20とレコーダ21とを備えている。
また子局13は、前記アンテナ兼用反射率可変レ
フレクタ14のほかに、該レフレクタ14からの
受信高周波出力を受信する受信機22とその復調
器23、例えば子局における環境条件等の測定セ
ンサの如き返信用信号発生装置24、復調器23
の出力の情報内容に応じて返信用信号発生装置2
4の出力信号を符号化する符号化回路25、この
符号化回路25からのコード信号によつて前述ス
イツチ8をON・OFF制御する変調器26などを
備えている。
FIG. 3 is a block diagram showing an example of the basic system configuration of the single-transmission bidirectional communication system according to the present invention. In FIG. 3, 12 is a master station, 13 is a slave station, and 14 is a variable reflector serving as an antenna and configured as described above, provided in the slave station 13.
The master station 12 transmits the information content to be transmitted to a transmitter 16 provided by a modulator 15, a transmitting/receiving antenna 17 and a duplexer 18, a receiver 19 for receiving reflected waves, and decoding the information in the reflected waves. It includes a demodulator 20 and a recorder 21.
In addition to the variable reflectance reflector 14 which also serves as an antenna, the slave station 13 includes a receiver 22 for receiving the received high frequency output from the reflector 14, a demodulator 23 thereof, and a sensor for measuring environmental conditions in the slave station. Reply signal generator 24, demodulator 23
reply signal generator 2 according to the information content of the output.
The encoder 25 includes an encoding circuit 25 for encoding the output signal of No. 4, a modulator 26 for controlling the switch 8 on and off based on the code signal from the encoding circuit 25, and the like.

尚、この変調器26が出力を生じていないとき
は前記アンテナ兼用反射率可変レフレクタ14は
受信アンテナとして機能する状態になつている。
Incidentally, when the modulator 26 is not producing an output, the antenna-cum-variable reflectance reflector 14 is in a state of functioning as a receiving antenna.

第3図において、親局12から送信された変調
電波は子局13でアンテナ兼用反射率可変レフレ
クタ14により受信され、受信機22および復調
器23によつて検波・復調されて親局12からの
情報ないし指令内容が解読される。この情報ない
し指令内容に従つて子局13から返信情報ないし
測定データ等を親局へ伝達しようとするときは、
復調器23の出力で符号化回路25に指令して信
号発生装置24からのこれらデータ等の信号を符
号化回路25および変調器26によりレフレクタ
14のスイツチ8のON・OFFによる反射率変化
のコード信号として反射波の変調に用いる。従つ
てこのときのレフレクタ14による反射波は信号
発生回路24の出力内容に応じたコード信号で変
調されており、親局12ではこの変調された反射
波を受信機19で受信して復調器20により復調
し、かくして子局13からの情報がレコーダ21
に取得されるものである。このようなシステム構
成においては、親局12の送信波に対し、受信機
19により同期パルスを検出できるため、反射波
の変調波の同期も容易にとれることになり、従つ
て伝送の信頼性も向上できるものである。
In FIG. 3, modulated radio waves transmitted from the master station 12 are received by the antenna-cum-variable reflector 14 at the slave station 13, detected and demodulated by the receiver 22 and demodulator 23, and then transmitted from the master station 12. Information or command content is decoded. When attempting to transmit reply information or measurement data etc. from the slave station 13 to the master station according to this information or command content,
The output of the demodulator 23 commands the encoding circuit 25, and the signals such as these data from the signal generator 24 are converted into codes of reflectance changes due to ON/OFF of the switch 8 of the reflector 14 by the encoding circuit 25 and the modulator 26. Used as a signal to modulate reflected waves. Therefore, the reflected wave from the reflector 14 at this time is modulated with a code signal according to the output content of the signal generation circuit 24, and in the master station 12, this modulated reflected wave is received by the receiver 19 and sent to the demodulator 20. The information from the slave station 13 is thus demodulated by the recorder 21.
This is what is acquired. In such a system configuration, the synchronization pulse can be detected by the receiver 19 with respect to the transmitted wave from the master station 12, so it is easy to synchronize the modulated wave of the reflected wave, and therefore the reliability of transmission is improved. It is something that can be improved.

第4図a〜eに、第3図に示したこの発明に係
る通信方式における送信波や反射波等の動作波形
の一例を示してある。第4図aは親局12からの
送信波パルスを拡大したものであつて、ここでは
情報伝送用に6パルス中3パルス選択方式のパル
スコードを用いた例を示してある。送信波パルス
は、その開始時を示すためのパルス間隔の狭い二
本対となつたスタートパルスと、6ケ所のパルス
位置(時間)を定めたうち任意に選んだ三本のパ
ルスとを構成単位として第4図bに示すように所
定のくり返し周期Tで送信される。送信波パルス
内の情報は前述の任意に選んだ三本のパルスの位
置(時間)に含まれているわけである。子局13
においてはこの送信波パルスを受信・復調し、そ
の三本のパルス位置の組合せから送信されてきた
情報ないし指令内容を解読する。この情報ないし
指令内容に従い、子局13ではこれに応答すべき
情報ないし測定データ(例えば子局における温
度、風向、風速等)を符号化してレフレクタ14
の反射率を変化させる。この場合、反射率の変化
によつてレフレクタ14による反射波を変調する
が、この変調の周期T′は第4図Cに示すように
送信波パルスの繰返し周期Tより長い周期となる
ようにする。
4a to 4e show examples of operating waveforms of transmitted waves, reflected waves, etc. in the communication system according to the present invention shown in FIG. 3. FIG. 4a shows an enlarged view of the transmitted wave pulses from the master station 12, and shows an example in which a pulse code of 3 out of 6 pulses selection type is used for information transmission. The transmission wave pulse consists of a pair of start pulses with a narrow pulse interval to indicate the start time, and three pulses arbitrarily selected from six pulse positions (times). The signal is transmitted at a predetermined repetition period T as shown in FIG. 4b. The information in the transmitted wave pulse is contained in the positions (times) of the three arbitrarily selected pulses mentioned above. Child station 13
The transmitter receives and demodulates the transmitted wave pulses, and deciphers the transmitted information or command content from the combination of the three pulse positions. According to this information or command content, the slave station 13 encodes the information or measurement data to be responded to (for example, temperature, wind direction, wind speed, etc. at the slave station) and sends it to the reflector 14.
changes the reflectance of In this case, the wave reflected by the reflector 14 is modulated by a change in reflectance, but the period T' of this modulation is set to be longer than the repetition period T of the transmitted wave pulse, as shown in FIG. 4C. .

かくして送信波はレフレクタ14で変調を受け
て第4図Cの如く送信繰返し周期Tより長い周期
T′で変調された反射波が親局12へ向つて返さ
れることになる。親局12ではこの変調された反
射波を受信機19で受信して復調器20によつて
ピークホールド検波後第4図dのように波形成形
することにより同図eの如く符号を解読し、子局
13から送られてきた情報ないし測定データをレ
コーダ21に記録する。
In this way, the transmitted wave is modulated by the reflector 14 and has a period longer than the transmission repetition period T, as shown in FIG. 4C.
The reflected wave modulated by T' is returned toward the master station 12. In the master station 12, this modulated reflected wave is received by a receiver 19, and after peak-hold detection is performed by a demodulator 20, the code is decoded as shown in FIG. 4e by shaping the waveform as shown in FIG. Information or measurement data sent from the slave station 13 is recorded on the recorder 21.

尚、親局12における送信波の変調方式および
子局13における反射波の変調方式としては、前
述に述べたパルス符号変調のほかにも、振巾変
調、位相変調、その他の変調方式のいずれもが適
用可能である。
In addition to the above-mentioned pulse code modulation, amplitude modulation, phase modulation, and other modulation methods can be used as the modulation method for the transmitted wave at the master station 12 and the modulation method for the reflected wave at the slave station 13. is applicable.

またこの発明の単送信双方向性通信方式では、
第3図に示した子局13を複数にして、一基の親
局に対し複数基の子局を配置することが可能であ
り、各所に分布させた子局からの情報ないしデー
タを親局で収集するのに都合がよい。この場合、
親局は特定の子局に対して指令を送り、子局側で
は自局の呼出しを識別してこれに応答しデータの
返送を行なう。これを順次複数の子局に対して行
なうことにより、中央の親局において複数個所に
分布した子局からのデータの収集が果せる。また
親局の送受信アンテナを常に水平面内で回転さ
せ、予じめ判明している各子局の方位・距離に対
して反射波を取り出す方位ゲートおよび距離ゲー
トを親局受信系に装備することにより、各子局か
らほぼ並列的に情報収集することができるように
もなる。
Furthermore, in the single transmission bidirectional communication system of this invention,
It is possible to arrange a plurality of slave stations 13 as shown in FIG. Convenient for collecting. in this case,
The master station sends a command to a specific slave station, and the slave station identifies its own call, responds to it, and sends back data. By sequentially performing this for a plurality of slave stations, the central master station can collect data from slave stations distributed at a plurality of locations. In addition, the transmitting and receiving antenna of the master station is always rotated in a horizontal plane, and the master station receiving system is equipped with an azimuth gate and a distance gate that extract reflected waves for the pre-known azimuth and distance of each slave station. It also becomes possible to collect information from each slave station almost in parallel.

以上のようにこの発明の通信方式では、送信機
能をもつのはただ1局の親局だけであり、この親
局と、その他の送信機能をもたない子局との間で
双方向性の通信ができるばかりか、情報収集に際
して子局を多数配置しても、それら子局は送信機
を不要とする構成であるので、単一周波で多数地
点からのデータ伝送が果せ、周波数利用の面およ
び電波公害の観点から多大の利点をもつものであ
ることが明らかである。
As described above, in the communication system of the present invention, only one master station has a transmission function, and bidirectional communication is possible between this master station and other slave stations that do not have a transmission function. Not only is communication possible, but even if a large number of slave stations are installed to collect information, these slave stations do not require transmitters, so data can be transmitted from multiple points using a single frequency, reducing frequency usage. It is clear that this method has many advantages from the viewpoint of surface and radio wave pollution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aはこの発明の基本となる局側アンテナ
兼用反射率可変素子の概念的構成を示す斜視図、
同図bは同じくこの素子の構成原理を示す回路
図、第2図a,bは前記素子を用いて構成したア
ンテナ兼用反射率可変レフレクタの概念図、第3
図はこの発明の単送信双方向性通信方式の基本シ
ステム構成の一例を示すブロツク図、第4図a〜
eはこの発明の通信方式の動作を説明するための
波形を示す線図である。 1:アンテナ兼用反射率可変素子、2:アンテ
ナ放射素子、3:反射板、4:スイツチングダイ
オード、5:直流阻止回路、6:高周波阻止回
路、7:ダイオード駆動用バイアス電源、8:ス
イツチ、9:電波レンズ、10:電波反射鏡、1
1:出力端子、13:子局、14:アンテナ兼用
反射率可変レフレクタ、15:変調器、16:送
信機、17:送受信アンテナ、18:デユープレ
クサ、19:受信機、20:復調器、21:レコ
ーダ、22:受信機、23:復調器、24:信号
発生装置、25:符号化回路、26:変調器。
FIG. 1a is a perspective view showing the conceptual configuration of a variable reflectance element that also serves as a station antenna, which is the basis of this invention;
Figure b is a circuit diagram showing the principle of construction of this element, Figures 2a and b are conceptual diagrams of a variable reflector that also functions as an antenna, and Figure 3
The figure is a block diagram showing an example of the basic system configuration of the single-transmission bidirectional communication system of the present invention.
e is a diagram showing waveforms for explaining the operation of the communication system of the present invention. 1: Variable reflectance element that also serves as an antenna, 2: Antenna radiation element, 3: Reflector, 4: Switching diode, 5: DC blocking circuit, 6: High frequency blocking circuit, 7: Bias power supply for driving the diode, 8: Switch, 9: Radio wave lens, 10: Radio wave reflector, 1
1: Output terminal, 13: Slave station, 14: Variable reflectance that also serves as an antenna, 15: Modulator, 16: Transmitter, 17: Transmitting/receiving antenna, 18: Duplexer, 19: Receiver, 20: Demodulator, 21: Recorder, 22: Receiver, 23: Demodulator, 24: Signal generator, 25: Encoding circuit, 26: Modulator.

Claims (1)

【特許請求の範囲】 1 アンテナ放射素子と、その背後に間隔を開け
て配置された反射器と、これらアンテナ放射素子
と反射器との間に接続されたスイツチング手段
と、前記アンテナ放射素子の給電点を反射器に短
絡または負荷に整合させる為に前記スイツチング
手段をオン・オフさせる手段とを備えたことを特
徴とするアンテナ兼用反射率可変レフレクタ装
置。 2 アンテナ放射素子と、その背後に間隔を開け
て配置された反射器と、これらアンテナ放射素子
と反射器との間に接続されたスイツチング手段
と、前記アンテナ放射素子の給電点を反射器に短
絡または負荷に整合させる為に前記スイツチング
手段をオン・オフさせる手段とを備えてなるアン
テナ兼用反射率可変レフレクタ装置を子局側に用
い、送信機能を有する親局から発した送信電波を
前記アンテナ兼用反射率可変レフレクタ装置によ
り子局で受信して親局から子局への情報伝達を果
し、この受信した親局からの情報に応答して子局
側で前記アンテナ兼用反射率可変レフレクタ装置
により親局からの送信電波を親局へ向けて反射さ
せ、この際の該レフレクタ装置の反射率を前記ス
イツチング手段のオン・オフ動作に応じて変化さ
せることによりこの反射波を変調して子局から親
局への情報伝達を行うことを特徴とする単送信双
方向性通信方式。
[Scope of Claims] 1. An antenna radiating element, a reflector arranged at a distance behind the antenna radiating element, a switching means connected between the antenna radiating element and the reflector, and a power supply for the antenna radiating element. 1. A variable reflectance reflector device serving as an antenna, comprising means for turning on and off the switching means in order to short-circuit a point to a reflector or to match a load. 2. An antenna radiating element, a reflector arranged at a distance behind the antenna radiating element, switching means connected between the antenna radiating element and the reflector, and short-circuiting the feeding point of the antenna radiating element to the reflector. Alternatively, a variable reflector device that also serves as an antenna and is equipped with means for turning the switching means on and off in order to match the load is used on the slave station side, and the transmitted radio waves emitted from the master station having a transmission function are used also as the antenna. The slave station receives the information using the variable reflectance reflector device and transmits the information from the master station to the slave station, and in response to the received information from the master station, the slave station uses the variable reflectance reflector device that also serves as an antenna. The transmitted radio waves from the master station are reflected toward the master station, and the reflectance of the reflector device at this time is changed in accordance with the on/off operation of the switching means, thereby modulating the reflected waves and transmitting them from the slave station. A single-transmission bidirectional communication method characterized by transmitting information to a master station.
JP12820281A 1981-08-18 1981-08-18 Simplex bidirectional communication system Granted JPS5887927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12820281A JPS5887927A (en) 1981-08-18 1981-08-18 Simplex bidirectional communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12820281A JPS5887927A (en) 1981-08-18 1981-08-18 Simplex bidirectional communication system

Publications (2)

Publication Number Publication Date
JPS5887927A JPS5887927A (en) 1983-05-25
JPS6335132B2 true JPS6335132B2 (en) 1988-07-13

Family

ID=14978987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12820281A Granted JPS5887927A (en) 1981-08-18 1981-08-18 Simplex bidirectional communication system

Country Status (1)

Country Link
JP (1) JPS5887927A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6128229A (en) * 1984-06-20 1986-02-07 Nozomi Hasebe Radar reflector having two-way communication function
JP2705076B2 (en) * 1988-01-14 1998-01-26 ソニー株式会社 Reflective transmitter
JPH0218174U (en) * 1988-07-15 1990-02-06
JP2840832B2 (en) * 1997-02-10 1998-12-24 ソニー株式会社 Reflective transmitter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136093A (en) * 1975-05-19 1976-11-25 Mitsui Eng & Shipbuild Co Ltd Vessel position indication system
JPS54149596A (en) * 1978-05-17 1979-11-22 Morio Onoue Reflectivity variable radar reflector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136093A (en) * 1975-05-19 1976-11-25 Mitsui Eng & Shipbuild Co Ltd Vessel position indication system
JPS54149596A (en) * 1978-05-17 1979-11-22 Morio Onoue Reflectivity variable radar reflector

Also Published As

Publication number Publication date
JPS5887927A (en) 1983-05-25

Similar Documents

Publication Publication Date Title
US4815044A (en) Seismic signal transmission system using relay radios
US4081748A (en) Frequency/space diversity data transmission system
JP3265911B2 (en) Mobile communication device
JP3484336B2 (en) Communications system
US5825302A (en) System and method for transmitting data using reflected electromagnetic radiation
EP0346438B1 (en) Optical wireless data communication system
US4161634A (en) Count-down addressing system
CN1157657A (en) Range-gated field disturbance sensor with range-sensitivity compensation
US11503591B2 (en) Transmission of payload between a mobile device and a plurality of anchor devices via ranging-capable physical layer communication
JPH0935185A (en) Vehicle communication system and vehicle
JPS6335132B2 (en)
GB2032735A (en) Mobile data communication system
US4510497A (en) Ramark beacon apparatus
JPH0712932A (en) Tag discriminating device
JPH07140236A (en) Radio response system
US11477061B2 (en) Wireless digital communication method and system for the communication between two electronic devices of an industrial apparatus
JPH07174845A (en) Code responding method, core responder, and code responding system using the code responder
CN108712206B (en) Multi-wave-frequency synchronous receiving and sending system and communication method based on unmanned aerial vehicle
JPH0145260B2 (en)
GB2242328A (en) Radar systems
SU572817A1 (en) Device for reading information from moving object
JP2501439B2 (en) Security system
RU1787854C (en) Device for identifying moving objects
RU2136051C1 (en) Controlled entity identifying system
JPH0722913Y2 (en) Laser light communication device