JPS6335085B2 - - Google Patents

Info

Publication number
JPS6335085B2
JPS6335085B2 JP55170926A JP17092680A JPS6335085B2 JP S6335085 B2 JPS6335085 B2 JP S6335085B2 JP 55170926 A JP55170926 A JP 55170926A JP 17092680 A JP17092680 A JP 17092680A JP S6335085 B2 JPS6335085 B2 JP S6335085B2
Authority
JP
Japan
Prior art keywords
thermistor
mol
present
temperature
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55170926A
Other languages
Japanese (ja)
Other versions
JPS5795603A (en
Inventor
Minoru Aoki
Ryuichi Shimazaki
Tomifumi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Renesas Eastern Japan Semiconductor Inc
Original Assignee
Hitachi Ltd
Hitachi Tohbu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Tohbu Semiconductor Ltd filed Critical Hitachi Ltd
Priority to JP55170926A priority Critical patent/JPS5795603A/en
Publication of JPS5795603A publication Critical patent/JPS5795603A/en
Publication of JPS6335085B2 publication Critical patent/JPS6335085B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高温用サーミスタに関する。 マンガン,コバルト,ニツケル,鉄あるいはア
ルミニウム等の金属元素を含む酸化物は、温度に
よつて抵抗が異なる特性(サーミスタ特性)を有
することからサーミスタ(温度抵抗素子)として
使用されており、これらの金属元素によるサーミ
スタは安定性の点から300℃位までの温度でしか
使用できないことは公知であり。一方、700〜
1000℃の高温で使用できるサーミスタ材料として
安定化ジルコニア(ZrO2―Y2O3,ZrO2―CaO
等),スピネル系等が開発されている(特公昭48
−705,特公昭49−63995,特公昭30−16894,特
公昭50−16895)。しかし、これらの中間の温度で
ある200〜600℃で適当な抵抗値を示しかつ安定に
使用しうるサーミスタ材料は報告されていない。
又、ZrO2系高温サーミスタは酸素イオン伝導を
利用したサーミスタであるのでDC電源では分極
し使用できないという問題もある。 本発明は上記した点にかんがみてなされたもの
で、その目的とするところは、200℃〜600℃で適
当な抵抗値を示し、安定に使用できるサーミスタ
の提供にある。 本発明の一つの実施形態は、マンガン10〜75モ
ル%、ニツケル8〜75モル%、アルミニウム10〜
45モル%のうちから適当に三種の金属元素を混合
比合計100モル%となる組成比に選んだ酸化物か
らサーミスタを構成したものであり、このように
構成することにより、400℃での抵抗値が100Ω〜
250KΩ,サーミスタ定数4000〜7000K,経時安定
性(500℃で放置し1000時間経過)は抵抗変化率
で±3%以内という信頼性にすぐれ、かつ200〜
600℃で測定可能なサーミスタを得ることができ
る。 第1図は本発明によるサーミスタにおける三種
の金属元素の組成比(モル%)をあらわし、同図
の太線で囲む部分は本発明の適用範囲を示す。 本発明によるサーミスタを製造するにあたつて
は、第2図でサーミスタ製造プロセスフローチヤ
ートで示すように、行われる。まずマンガン
(Mn),ニツケル(Ni)粉末を硝酸(H.NO3)に
溶解し、これに硝酸アルミニウム水溶液(Al
(NO33aq.)を加えて混合し、蒸発乾固する。そ
の後、仮焼を600〜1200℃で2回行ない、ボール
ミルで4時間粉砕後に乾燥する。乾燥後、蒸留
水,硝酸塩水溶液を加えてペースト状にし、等間
隔に張つた2本の白金線にビード(粒)状に付
け、1300〜1500℃で2時間焼成する。したがつて
サーミスタは約1mm径の球体に2本の白金電極の
付いた形状となる。これを切断して第3図に示す
ような形状のサーミスタを完成させる。このよう
にして製造されたサーミスタ材料の各組成比につ
いて、300℃及び500℃における抵抗値,サーミス
タ定数及び安定性(500℃で放置,1000時間後の
抵抗変化率)を測定した結果を表に示す。
The present invention relates to a high temperature thermistor. Oxides containing metal elements such as manganese, cobalt, nickel, iron, or aluminum are used as thermistors (temperature resistance elements) because their resistance varies depending on temperature (thermistor characteristics). It is well known that elemental thermistors can only be used at temperatures up to about 300°C due to stability concerns. On the other hand, 700~
Stabilized zirconia (ZrO 2 ―Y 2 O 3 , ZrO 2 ―CaO
etc.), spinel systems, etc. have been developed (Special public interest
-705, Special Publication No. 49-63995, Special Publication No. 30-16894, Special Publication No. 50-16895). However, no thermistor material has been reported that exhibits an appropriate resistance value at temperatures between 200 and 600° C. and can be stably used.
Furthermore, since the ZrO 2 -based high-temperature thermistor is a thermistor that utilizes oxygen ion conduction, there is also the problem that it cannot be used with a DC power source due to polarization. The present invention has been made in view of the above points, and its purpose is to provide a thermistor that exhibits an appropriate resistance value at 200°C to 600°C and can be used stably. One embodiment of the invention includes 10-75 mol% manganese, 8-75 mol% nickel, 10-75 mol% aluminum,
The thermistor is constructed from an oxide in which three metal elements are appropriately selected from among 45 mol% in a composition ratio such that the total mixing ratio is 100 mol%.By configuring it in this way, the resistance at 400℃ Value is 100Ω~
250KΩ, thermistor constant 4000 to 7000K, stability over time (1000 hours after being left at 500℃), excellent reliability with resistance change rate within ±3%, and 200 to 7000K.
A thermistor that can measure at 600℃ can be obtained. FIG. 1 shows the composition ratio (mol %) of three metal elements in the thermistor according to the present invention, and the area surrounded by the thick line in the figure shows the scope of application of the present invention. The thermistor according to the present invention is manufactured as shown in the thermistor manufacturing process flowchart in FIG. First, manganese (Mn) and nickel (Ni) powders are dissolved in nitric acid (H.NO 3 ), and an aluminum nitrate aqueous solution (Al
(NO 3 ) 3 aq.), mix, and evaporate to dryness. Thereafter, calcination is performed twice at 600 to 1200°C, and the mixture is ground in a ball mill for 4 hours and then dried. After drying, distilled water and an aqueous nitrate solution are added to form a paste, which is applied in beads (granules) to two platinum wires stretched at equal intervals and fired at 1,300 to 1,500°C for 2 hours. Therefore, the thermistor has the shape of a sphere with a diameter of about 1 mm and two platinum electrodes attached. This is cut to complete a thermistor shaped as shown in FIG. The results of measuring the resistance value, thermistor constant, and stability (resistance change rate after 1000 hours when left at 500°C) at 300°C and 500°C for each composition ratio of the thermistor material manufactured in this way are shown in the table. show.

【表】 表から明らかなように、本発明によるサーミス
タは400℃における抵抗値が100Ω〜250KΩの範囲
にあり、また室温における抵抗層も数百MΩ以下
であり、これらは十分測定可能である。また抵抗
値変化も±3%以内であり、十分に実用化できる
ほど安定である。 以上実施例で述べた本発明によれば、従来の高
温サーミスタに比較して本発明によるサーミスタ
は300〜500℃で低抵抗値を有し、サーミスタ定数
が4000〜7000Kと高く、また特性の経時変化が少
ない等の特色を有する。このため本発明によるサ
ーミスタは室温から500℃までの高精度な測定な
らしめるものである。 本発明による高温サーミスタは次のように利用
できる。例えば白金抵抗体温度センサの置替えが
可能である。又、熱電対温度センサは互換性を有
するが感度がわるく、これを使つた増幅装置では
特別な注意が必要であるが、本発明によるサーミ
スタセンサであれば特にその必要なく高感度の制
御系を作ることが可能となつた。本発明によるサ
ーミスタはさらに、電子レンジ,石油気化の温度
制御及び安全装置用その他の各種家庭電気製品用
サーミスタ、暖房機の温度制御用及び安全装置用
サーミスタ、複写機の温度制御用サーミスタある
いはその他の熱電対,金属抵抗測温体の代替とし
て利用できる。
[Table] As is clear from the table, the resistance value of the thermistor according to the present invention at 400° C. is in the range of 100Ω to 250KΩ, and the resistance layer at room temperature is several hundred MΩ or less, which can be sufficiently measured. Further, the resistance value change is within ±3%, and is stable enough to be put to practical use. According to the present invention described in the examples above, compared to conventional high temperature thermistors, the thermistor according to the present invention has a low resistance value at 300 to 500°C, a high thermistor constant of 4000 to 7000 K, and characteristics that change over time. It has characteristics such as little change. Therefore, the thermistor according to the present invention allows highly accurate measurement from room temperature to 500°C. The high temperature thermistor according to the present invention can be used as follows. For example, a platinum resistor temperature sensor can be replaced. In addition, although thermocouple temperature sensors are compatible, they have poor sensitivity and require special precautions in amplifiers using them, but with the thermistor sensor of the present invention, this is not necessary and a highly sensitive control system can be installed. It became possible to make. The thermistor according to the present invention can also be used as a thermistor for various home appliances such as microwave ovens, oil vaporizer temperature control and safety devices, heater temperature control and safety device thermistors, copying machine temperature control thermistors, and other thermistors. It can be used as a replacement for thermocouples and metal resistance temperature sensors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるサーミスタの組成の範囲
を示す状態図、第2図は本発明によるサーミスタ
の製造プロセスのフローチヤート図、第3図は本
発明に従つて形成されたサーミスタの構造図をそ
れぞれ示す。
FIG. 1 is a phase diagram showing the composition range of the thermistor according to the present invention, FIG. 2 is a flow chart of the manufacturing process of the thermistor according to the present invention, and FIG. 3 is a structural diagram of the thermistor formed according to the present invention. Each is shown below.

Claims (1)

【特許請求の範囲】 1 マンガン、ニツケル及びアルミニウムの三種
の金属元素を含む酸化物から成り、マンガン10〜
75モル%、ニツケル8〜75モル%、アルミニウム
10〜45モル%のうちから適当に三種の金属元素が
混合比合計100モル%に選ばれたことを特徴とす
るサーミスタ。 2 400℃前後での抵抗値が100Ω〜250KΩ、サー
ミスタ定数が4000〜7000Kである特許請求の範囲
第1項記載のサーミスタ。
[Claims] 1. Consisting of an oxide containing three types of metal elements: manganese, nickel, and aluminum;
75 mol%, nickel 8-75 mol%, aluminum
A thermistor characterized in that three metal elements are appropriately selected from 10 to 45 mol% at a total mixing ratio of 100 mol%. 2. The thermistor according to claim 1, which has a resistance value of 100Ω to 250KΩ at around 400°C and a thermistor constant of 4000 to 7000K.
JP55170926A 1980-12-05 1980-12-05 Thermistor Granted JPS5795603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55170926A JPS5795603A (en) 1980-12-05 1980-12-05 Thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55170926A JPS5795603A (en) 1980-12-05 1980-12-05 Thermistor

Publications (2)

Publication Number Publication Date
JPS5795603A JPS5795603A (en) 1982-06-14
JPS6335085B2 true JPS6335085B2 (en) 1988-07-13

Family

ID=15913914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55170926A Granted JPS5795603A (en) 1980-12-05 1980-12-05 Thermistor

Country Status (1)

Country Link
JP (1) JPS5795603A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967603A (en) * 1982-10-12 1984-04-17 秩父セメント株式会社 Thermistor element
JPH03279252A (en) * 1990-03-29 1991-12-10 Taiyo Yuden Co Ltd Composition for thermister

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2720471A (en) * 1952-03-12 1955-10-11 Suchet Jacques High temperature coefficient resistances, compositions and resistance formed therefrom having a silicate or borosilicate coating thereon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2720471A (en) * 1952-03-12 1955-10-11 Suchet Jacques High temperature coefficient resistances, compositions and resistance formed therefrom having a silicate or borosilicate coating thereon

Also Published As

Publication number Publication date
JPS5795603A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
JPS6054259B2 (en) Moisture sensitive ceramic
US4543273A (en) Carbon monoxide sensing element and method of making same
JPS6335085B2 (en)
JPS5814043B2 (en) humidity sensor element
JP4276180B2 (en) Ceramic mixture having negative temperature coefficient, thermistor containing ceramic mixture and preparation method thereof
JPS639722B2 (en)
JPH08162302A (en) Thermistor and its manufacture
JPS5840801A (en) Humidity sensor element
JP2652785B2 (en) Thermistor element
JPS63108257A (en) Humidity detector
JPS6388801A (en) Humidity sensor
JPS5811082B2 (en) Temperature and humidity detection element
JPS60247901A (en) Moisture sensitive material
JPS58201057A (en) Sensing element of gas
JPH01232702A (en) Thermistor element
JPS5928861B2 (en) gas detection element
JPS5918658B2 (en) Flammable gas detection element
JPH1070010A (en) Thermistor composition
JPS58171656A (en) Detecting element of combustible gas
JPS59157558A (en) Solid electrolyte for oxygen probe
JPS5849820B2 (en) oxygen gas sensor
JPH02172201A (en) Humidity sensor
JPS5891601A (en) Moisture sensitive resistor
JPS6161241B2 (en)
JPS6161242B2 (en)