JPS6334799B2 - - Google Patents

Info

Publication number
JPS6334799B2
JPS6334799B2 JP56181027A JP18102781A JPS6334799B2 JP S6334799 B2 JPS6334799 B2 JP S6334799B2 JP 56181027 A JP56181027 A JP 56181027A JP 18102781 A JP18102781 A JP 18102781A JP S6334799 B2 JPS6334799 B2 JP S6334799B2
Authority
JP
Japan
Prior art keywords
denitrification
sludge
human waste
activated sludge
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56181027A
Other languages
Japanese (ja)
Other versions
JPS5884096A (en
Inventor
Takayuki Suzuki
Taisuke Tooya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP56181027A priority Critical patent/JPS5884096A/en
Publication of JPS5884096A publication Critical patent/JPS5884096A/en
Publication of JPS6334799B2 publication Critical patent/JPS6334799B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、し尿系汚水の硝化、脱窒素法の改良
に関するものである。 生物学的脱窒素法は、活性汚泥中に棲息する硝
化菌を利用して窒素分(以下NH3とする)を好
気的条件下でNOx(NO2or/and NO3)に硝化し
たのち、脱窒素菌を利用してNOxをN2ガスにま
で還元分解して水中より放散するものである。し
尿系汚水の窒素除去にも活性汚泥を利用した生物
学的脱窒素法が広く採用されているが、活性汚泥
の硝化速度、脱窒素速度が他の排水の生物学的脱
窒素処理装置の活性汚泥に比べはるかに小さいこ
とが特徴的であり、また大きな欠点にもなつてい
る。 本発明は、上記従来法の欠点を解消しし尿系汚
水の生物学的脱窒素処理プロセスの活性汚泥の硝
化活性、脱窒素活性を向上し、これにより処理装
置の容積を縮少することが可能な、改良された方
法を提供することを目的とするものである。 すなわち本発明は、し尿系汚水を目開きが1mm
以下のふるいあるいはスクリーンにより過した
のち、その過水を生物処理工程にて硝化、脱窒
素処理すると共に、該生物処理工程から流出する
活性汚泥を遠心分離機あるいは加圧浮上濃縮装置
にて濃縮し、その濃縮汚泥を前記生物処理工程に
返送することを特徴とするし尿系汚水の硝化、脱
窒素法である。 次に、本発明を想到した経過について述べる。 本発明者らは、し尿の脱窒素活性汚泥装置から
活性汚泥を引き抜き、脱窒素用の水素供与体とし
てメタノールを用い、一過性のガラス反応槽でメ
タノール資化性脱窒素菌の選択培養を行なつたと
ころ水温20℃、PH7.0の条件により約一週間で菌
体より出芽して増殖するHyphomicrobium;SP
が優占種となつていることを発見し、この
Hyphomicrobiumを用いて脱窒素試験を行なつ
たところ、20℃でNO3―Nの除去速度が約20(mg
NO3―N除去/g・Hypho―microbium・h)
となることを見い出した。一方、この選択培養に
供試した活性汚泥は脱窒素に際しメタノールを添
加しているにもかかわらず、脱窒素速度は2.2
mg・NO3―N/g・MLSS・hであつた。すなわ
ち、同一重量の菌体にして約10倍の差のあること
がわかつた。本発明者らはこの主原因が、し尿中
に含有される脱窒素活性のないSSが大量に生物
処理工程に流入して活性汚泥を形成していること
にあると判断し、前記活性汚泥を粉砕して顕微鏡
観察したところ、活性汚泥中に大量の繊繊、植物
の破片、その他菌体と思われないものが含有され
ていることが判明した。 このように、微生物以外に浮遊物が混在し単位
重量あたりの脱窒素活性の低い活性汚泥を利用す
ることは、次式に示す如く脱窒素工程用装置の容
積V(m3)を大きくしなければならないので極め
て不利である。 V=Zn/Xs・Kn 但し、 Zn:脱窒素槽に流入するNOx―N (Kg/日) Xa:活性汚泥濃度 (Kg/m3) Kn:脱窒素速度
(KgNOx―N/Kg・MLSS・日) そこで、し尿のSSを目の細かいふるいで過
したのち、過し尿を第2図にフローシートに示
す連続式の活性汚泥処理装置で処理試験したとこ
ろ、脱窒素活性はもとより硝化活性も大幅に増大
することがわかつた。この結果を第1表及び第2
表に示す。なお、この表の結果は連続式活性汚泥
処理装置より引き抜いた汚泥の回分試験より求め
た。
The present invention relates to improvements in nitrification and denitrification methods for human waste wastewater. The biological denitrification method uses nitrifying bacteria living in activated sludge to nitrify nitrogen (hereinafter referred to as NH 3 ) to NOx (NO 2 or/and NO 3 ) under aerobic conditions. , which uses denitrifying bacteria to reduce and decompose NOx into N2 gas, which is then released from the water. Biological denitrification methods using activated sludge are widely used to remove nitrogen from human wastewater, but the nitrification rate and denitrification rate of activated sludge are different from the activities of biological denitrification treatment equipment for other wastewater. Its characteristic is that it is much smaller than sludge, which is also a major drawback. The present invention eliminates the drawbacks of the conventional methods described above and improves the nitrification activity and denitrification activity of activated sludge in the biological denitrification treatment process of night soil wastewater, thereby making it possible to reduce the volume of the treatment equipment. The purpose is to provide an improved method. In other words, the present invention can collect human waste wastewater with a mesh opening of 1 mm.
After passing through the following sieves or screens, the superfluous water is nitrified and denitrified in the biological treatment process, and the activated sludge flowing out from the biological treatment process is concentrated using a centrifuge or pressure flotation concentrator. This is a nitrification and denitrification method for human waste wastewater, which is characterized in that the concentrated sludge is returned to the biological treatment process. Next, the process by which the present invention was conceived will be described. The present inventors extracted activated sludge from a human waste denitrification activated sludge device, used methanol as a hydrogen donor for denitrification, and selectively cultivated methanol-utilizing denitrifying bacteria in a temporary glass reaction tank. As a result, Hyphomicrobium; SP sprouted from the bacterial cells in about a week under conditions of water temperature 20℃ and pH 7.0.
discovered that this species has become the dominant species.
When we conducted a denitrification test using Hyphomicrobium, we found that the removal rate of NO 3 -N was approximately 20 (mg) at 20°C.
NO 3 -N removal/g・Hypho-microbium・h)
I found that. On the other hand, despite the addition of methanol during denitrification of the activated sludge used in this selective culture, the denitrification rate was 2.2%.
mg・NO 3 -N/g・MLSS・h. In other words, it was found that there was a difference of about 10 times when considering the same weight of bacterial cells. The present inventors have determined that the main cause of this is that a large amount of SS that does not have denitrification activity contained in human waste flows into the biological treatment process and forms activated sludge. When the activated sludge was crushed and observed under a microscope, it was found that the activated sludge contained a large amount of fibers, plant fragments, and other things that did not appear to be bacterial cells. In this way, in order to use activated sludge that contains suspended matter in addition to microorganisms and has low denitrification activity per unit weight, the volume V (m 3 ) of the denitrification process equipment must be increased as shown in the following equation. This is extremely disadvantageous. V=Zn/Xs・Kn However, Zn: NOx-N flowing into the denitrification tank (Kg/day) Xa: Activated sludge concentration (Kg/m 3 ) Kn: Denitrification rate
(KgNOx - N/Kg・MLSS・day) Therefore, after passing the SS of human waste through a fine sieve, we conducted a treatment test on the human waste in a continuous activated sludge treatment equipment shown in the flow sheet in Figure 2. It was found that not only denitrification activity but also nitrification activity increased significantly. These results are shown in Tables 1 and 2.
Shown in the table. The results in this table were obtained from a batch test of sludge extracted from a continuous activated sludge treatment device.

【表】【table】

【表】【table】

【表】 さらに、上記連続運転継続中の汚泥を沈殿池溢
流水で希釈して濃度を均一化(100mg/に調整)
したのち、100mlメスシリンダーにより30分の
SVI(Sludge Volume Index汚泥容量示標)を測
定したところ第1図に示す如き結果となり、し尿
SS濃度の低いほどSVIが高くなることが判明し
た。 一方、連続運転でも1.0mmのスクリーンによる
過し尿を用いた場合、沈殿池よりSSが溢流し
始じめることがあり、返送汚泥濃度が低下し硝
化、脱窒素槽のMLSSが低下したため、活性汚泥
の硝化、脱窒素活性が上昇したにもかかわらず槽
単位容積あたりの硝化、脱窒素活性が向上せず、
装置の窒素負荷を増加することができなかつた。
そこで、SVIの上昇した汚泥を遠心分離機、加圧
浮上装置で濃縮したところ、極めてよく固液分離
され、汚泥の濃縮度を上げることができた。すな
わち、撹拌レーキ付沈降管(直径60mm、高さ1200
mm)による沈降試験では、6時間で3300mg/に
しか濃縮されなかつた汚泥が遠心分離機で86000
mg/(2000G)、加圧浮上装置で38000mg/そ
れぞれに濃縮することができた。 このように本発明は、し尿系汚水を目開きが1
mm以下のふるい、あるいはスクリーンで過する
ことにより脱窒素活性、硝化活性の大巾に向上し
た活性汚泥が増殖すること、及びこのような過
処理したし尿系汚水を硝化脱窒素処理した場合に
該処理工程から流出する活性汚泥は沈降性が悪い
ため沈降分離装置では濃縮性が不良である遠心分
離機または加圧浮上装置によれば的確に濃縮分離
されること、したがつて、この濃縮汚泥を硝化、
脱窒素槽に返送することにより、該槽中に硝化、
脱窒活性の高い汚泥が容易にかつ安定的に高濃度
に維持され、し尿系汚水を効率良く硝化脱窒素処
理できる、という知見に基づくものである。 次に、本発明の一実施態様について第2図に基
づき説明すると、砂除去、夾雑物の除去、破砕等
の行なわれたし尿系汚水1は、目開き1mm以下の
スクリーンあるいはふるい単段あるいは多段に配
備されたスクリーン工程2を経由してし尿系汚水
1中のSSが除去されたのち、返送汚泥3、循環
硝化液4とともに嫌気的条件下にある第1脱窒素
工程5に流入し、循環硝化液4中のNOxは主に
し尿系汚水1のBOD成分を還元体として脱窒素
菌により脱窒素されたのち、硝化工程6に流入
し、し尿系汚水1のNH3はNOxに硝化され、第
1脱窒素工程5で残留したBODは酸化分解され
る。 NOxの一部は第1脱窒素工程5に循環され、
残部は第2脱窒素工程7に流入し、メタノールな
どのアルコール8の添加あるいはアルコール無添
加で脱窒素されたのち遠心濃縮機9で固液分離さ
れ、遠心分離水10は放流、あるいはさらに凝
集、オゾン酸化、活性炭処理などの高度処理を受
ける。 返送汚泥3は濃度30000〜100000mg/にまで
濃縮することができるが、返送汚泥ポンプ(図示
せず)は高濃度の汚泥を移送できるもの、例えば
モーノポンプ(商品名)などのスクリユーポンプ
を使用するとよいが、濃度60000〜100000mg/
の汚泥を移送する場合にはポンプの最大流量の50
%程度で運転することが望ましい。ポンプの吸込
み、吐出しポンプの長さによつて設定流量は大き
く異なるので予め確認しておくとよい。 遠心濃縮機9の後段に凝集沈殿あるいは凝集加
圧浮上などSSを捕捉できる工程があれば遠心濃
縮機9の流量負荷を大きくとつて遠心分離水10
のSSを増加させてもよいが、遠心分離水10を
直接放流する場合は流量負荷、汚泥負荷を小さく
とれば遠心分離水のSSを減少させることができ
る。 スクリーン工程2のスクリーンの目開きは、
0.2mm以下では目詰りによつて、し尿系汚水の
過速度が極端に減少するので、0.2mm〜1mmとす
るのが好ましくスクリーンは目開き1mm以下のも
のを単段で用いるよりも、複数段にすることが望
ましく、例えば3段に組み合わせる場合1段目を
1mm、2段目を0.7mm、3段目を0.4mmとするのが
よい。また、同一の目開きのものでも2段あるい
は3段に組み合わせることより効果的である。ス
クリーンの型式としては回転ドラム式のスクリー
ンが望ましく、スクリーンの目はバースクリーン
でもよいが、網目状のものがより効果的である。
スクリーンのSSの目詰まりを防止するためには、
連続的あるいは断続的に高圧水で洗浄すればよ
い。 以上述べたように、本発明によつて硝化、脱窒
素活性度の高い活性汚泥を高濃度に生物処理工程
に維持することができ、生物処理装置の容積を著
しく減少できるので、装置建設費の大幅な節減が
可能となり、また敷地面積の制限される場所でも
し尿系汚水の脱窒素処理が可能となる。
[Table] Furthermore, the sludge during the above continuous operation was diluted with overflow water from the settling tank to equalize the concentration (adjusted to 100mg/).
After that, use a 100ml graduated cylinder for 30 minutes.
When SVI (Sludge Volume Index) was measured, the results were as shown in Figure 1.
It was found that the lower the SS concentration, the higher the SVI. On the other hand, even in continuous operation, when using human waste through a 1.0 mm screen, SS may begin to overflow from the settling tank, and the concentration of returned sludge decreases, resulting in a decrease in the MLSS of the nitrification and denitrification tank. Although the nitrification and denitrification activities of sludge increased, the nitrification and denitrification activities per unit volume of the tank did not improve.
It was not possible to increase the nitrogen load on the equipment.
Therefore, when the sludge with increased SVI was concentrated using a centrifuge and a pressure flotation device, solid-liquid separation was achieved extremely well, and the degree of concentration of the sludge could be increased. i.e. settling tube with stirring rake (diameter 60 mm, height 1200
In a sedimentation test using sludge (mm), sludge that was only concentrated to 3,300 mg in 6 hours was concentrated to 86,000 mg in a centrifuge.
mg/(2000G), and could be concentrated to 38000mg/each using a pressure flotation device. In this way, the present invention can treat human waste wastewater with a mesh size of 1.
By passing through a sieve or screen with a diameter of 1.5 mm or less, activated sludge with greatly improved denitrification and nitrification activities proliferates, and when such overtreated human waste wastewater is subjected to nitrification and denitrification treatment, Activated sludge flowing out from the treatment process has poor sedimentation properties, so sedimentation separators have poor concentration properties.A centrifugal separator or pressurized flotation equipment can accurately concentrate and separate the activated sludge. nitrification,
By returning to the denitrification tank, nitrification and
This is based on the knowledge that sludge with high denitrification activity can be easily and stably maintained at a high concentration and that human waste wastewater can be efficiently nitrified and denitrified. Next, one embodiment of the present invention will be explained based on FIG. 2. Human waste wastewater 1 that has been subjected to sand removal, impurity removal, crushing, etc. After the SS in the human waste sewage 1 is removed via the screen process 2 installed in the After the NOx in the nitrification solution 4 is denitrified by denitrifying bacteria using the BOD component of the human waste water 1 as a reductant, it flows into the nitrification process 6, where the NH 3 of the human waste water 1 is nitrified to NOx, The BOD remaining in the first denitrification step 5 is oxidized and decomposed. A part of NOx is recycled to the first denitrification step 5,
The remainder flows into a second denitrification step 7, where it is denitrified with the addition of alcohol 8 such as methanol or without the addition of alcohol, and then solid-liquid separation is performed in a centrifugal concentrator 9, and the centrifuged water 10 is discharged or further agglomerated. It undergoes advanced treatments such as ozone oxidation and activated carbon treatment. The return sludge 3 can be concentrated to a concentration of 30,000 to 100,000 mg/cm, but if the return sludge pump (not shown) is one that can transfer high concentration sludge, for example, a screw pump such as Mono Pump (trade name) is used. Good, but concentration 60000-100000mg/
50% of the pump's maximum flow rate when transferring sludge.
It is desirable to operate at around %. The set flow rate varies greatly depending on the length of the suction and discharge pumps, so it is best to check in advance. If there is a process that can capture SS, such as coagulation sedimentation or coagulation pressurized flotation, after the centrifugal concentrator 9, the flow rate load of the centrifugal concentrator 9 can be increased and the centrifuged water 10
However, if the centrifuged water 10 is directly discharged, the SS of the centrifuged water can be reduced by reducing the flow rate load and sludge load. The opening of the screen in screen process 2 is as follows:
If it is less than 0.2 mm, the overspeed of human waste water will be extremely reduced due to clogging, so it is preferable to set the screen to 0.2 mm to 1 mm, rather than using a single screen with openings of 1 mm or less. For example, when combining three stages, the first stage is preferably 1 mm, the second stage is 0.7 mm, and the third stage is 0.4 mm. Furthermore, it is more effective to combine two or three stages of the same mesh size. As for the type of screen, a rotating drum type screen is preferable, and the mesh of the screen may be a bar screen, but a mesh type screen is more effective.
To prevent the screen SS from clogging,
It may be washed continuously or intermittently with high-pressure water. As described above, according to the present invention, activated sludge with high nitrification and denitrification activities can be maintained at a high concentration in the biological treatment process, and the volume of the biological treatment equipment can be significantly reduced, thereby reducing equipment construction costs. Significant savings can be made, and denitrification treatment of human waste wastewater can be performed even in areas where site area is limited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基礎実験の結果を示すグラ
フ、第2図は本発明の一実施態様を示すフローシ
ートである。 1…し尿汚水、2…スクリーン工程、3…返送
汚泥、4…循還硝化液、5…第1脱窒素工程、6
…硝化工程、7…第2脱窒素工程、8…アルコー
ル、9…遠心濃縮機、10…遠心分離水。
FIG. 1 is a graph showing the results of basic experiments of the present invention, and FIG. 2 is a flow sheet showing one embodiment of the present invention. 1... Human waste sewage, 2... Screen process, 3... Returned sludge, 4... Circulating nitrification liquid, 5... First denitrification process, 6
...Nitrification process, 7...Second denitrification process, 8...Alcohol, 9...Centrifugal concentrator, 10...Centrifuged water.

Claims (1)

【特許請求の範囲】[Claims] 1 し尿系汚水を活性汚泥法により硝化、脱窒素
処理する方法において、し尿系汚水を目開きが1
mm以下のふるいあるいはスクリーンにより過し
たのち、その過水を生物処理工程にて硝化、脱
窒素処理すると共に、該生物処理工程から流出す
る活性汚泥を遠心分離機あるいは加圧浮上濃縮装
置にて濃縮し、その濃縮汚泥を前記生物処理工程
に返送することを特徴とするし尿系汚水の硝化、
脱窒素法。
1 In a method of nitrifying and denitrifying human waste water using the activated sludge method, human waste water is treated with a mesh size of 1.
After passing through a sieve or screen with a diameter of less than mm, the filtrate is nitrified and denitrified in a biological treatment process, and the activated sludge flowing out from the biological treatment process is concentrated using a centrifuge or pressure flotation concentrator. and returning the concentrated sludge to the biological treatment process,
Denitrification method.
JP56181027A 1981-11-13 1981-11-13 Digesting and denitrifying method for night soil sewage Granted JPS5884096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56181027A JPS5884096A (en) 1981-11-13 1981-11-13 Digesting and denitrifying method for night soil sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56181027A JPS5884096A (en) 1981-11-13 1981-11-13 Digesting and denitrifying method for night soil sewage

Publications (2)

Publication Number Publication Date
JPS5884096A JPS5884096A (en) 1983-05-20
JPS6334799B2 true JPS6334799B2 (en) 1988-07-12

Family

ID=16093481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56181027A Granted JPS5884096A (en) 1981-11-13 1981-11-13 Digesting and denitrifying method for night soil sewage

Country Status (1)

Country Link
JP (1) JPS5884096A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438665A (en) * 1977-08-31 1979-03-23 Yoshikazu Shiyouda Improvement of nighttsoil treatment system
JPS5439955A (en) * 1977-09-06 1979-03-28 Yoshikazu Shiyouda Improvement of nighttsoil treatment system
JPS54141053A (en) * 1978-04-24 1979-11-01 Yamada Kogyo Kk Preetreatment method of raw sewage
JPS5573395A (en) * 1978-11-25 1980-06-03 Ebara Infilco Co Ltd Biological treatment of organic waste water
JPS55114395A (en) * 1979-02-26 1980-09-03 Fumio Nakajima Treatment of excretion
JPS55155798A (en) * 1979-05-23 1980-12-04 Ebara Infilco Co Ltd Treating method of organic waste water
JPS5684695A (en) * 1979-12-13 1981-07-10 Nishihara Environ Sanit Res Corp Sewage treatment method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438665A (en) * 1977-08-31 1979-03-23 Yoshikazu Shiyouda Improvement of nighttsoil treatment system
JPS5439955A (en) * 1977-09-06 1979-03-28 Yoshikazu Shiyouda Improvement of nighttsoil treatment system
JPS54141053A (en) * 1978-04-24 1979-11-01 Yamada Kogyo Kk Preetreatment method of raw sewage
JPS5573395A (en) * 1978-11-25 1980-06-03 Ebara Infilco Co Ltd Biological treatment of organic waste water
JPS55114395A (en) * 1979-02-26 1980-09-03 Fumio Nakajima Treatment of excretion
JPS55155798A (en) * 1979-05-23 1980-12-04 Ebara Infilco Co Ltd Treating method of organic waste water
JPS5684695A (en) * 1979-12-13 1981-07-10 Nishihara Environ Sanit Res Corp Sewage treatment method

Also Published As

Publication number Publication date
JPS5884096A (en) 1983-05-20

Similar Documents

Publication Publication Date Title
US10822261B1 (en) Carbon removal and denitrification treatment device for leachate from waste incineration plant and method thereof
US3709364A (en) Method and apparatus for denitrification of treated sewage
US4159945A (en) Method for denitrification of treated sewage
CN106430845A (en) Kitchen garbage wastewater treatment apparatus
CN208136047U (en) A kind of coking wastewater processing system
CN1309665C (en) Nitrogen and phosphorus removing process
JP2004000941A (en) Treatment method for organic wastewater or sludge and treatment apparatus therefor
CN110734199A (en) garlic processing wastewater treatment process
CN109879572A (en) Landfill leachate advanced purification process system
JPS6334799B2 (en)
CN204958650U (en) Hydrolytic acidification -AO - deposits integration reaction tank
Chung et al. Treatment of swine wastewater using MLE process and membrane bio-reactor
JPH02237698A (en) Biological removing method of nitrogen and phosphorus and its apparatus
CN208562064U (en) It is a kind of composite anaerobic, anoxic, aerobic in the sewage disposal device in same unit cells
CN208648878U (en) A kind of biological treating equipment of environment-friendly sewage purification
RU2170710C1 (en) Method for biological cleaning of domestic and compositionally analogous industrial waste waters from organic and suspended substances
JPS596996A (en) Treatment of organic filthy water of high concentration
JPS61185400A (en) Apparatus for treating excretion sewage
CN205603409U (en) High -efficient nitrogen and phosphorus removal's of integration sewage treatment unit
KR102085280B1 (en) Method and system for processing high-dense organic wastewater by sequencing and batch type aeksangbusik process
JPS61146397A (en) Method and apparatus for treating night soil
CN210559934U (en) Pure oxygen aeration system for wastewater treatment
JPH0722756B2 (en) Biological denitrification and dephosphorization methods for wastewater
CN106587353A (en) System for treating high ammonia nitrogen and organic wastewater through immobilized microorganisms
KR100472248B1 (en) Method of nitrogen removal from the high strength wastewater