JPS6334795B2 - - Google Patents

Info

Publication number
JPS6334795B2
JPS6334795B2 JP10431182A JP10431182A JPS6334795B2 JP S6334795 B2 JPS6334795 B2 JP S6334795B2 JP 10431182 A JP10431182 A JP 10431182A JP 10431182 A JP10431182 A JP 10431182A JP S6334795 B2 JPS6334795 B2 JP S6334795B2
Authority
JP
Japan
Prior art keywords
ammonium water
ammonia
steam
distiller
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10431182A
Other languages
Japanese (ja)
Other versions
JPS58219983A (en
Inventor
Tomonori Kato
Ayao Sekikawa
Susumu Matsumura
Tsutomu Tawara
Seiji Komura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP10431182A priority Critical patent/JPS58219983A/en
Publication of JPS58219983A publication Critical patent/JPS58219983A/en
Publication of JPS6334795B2 publication Critical patent/JPS6334795B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、コークス炉で発生する安水中のアン
モニアを除去する方法に関する。 石炭を乾留して製鉄用コークスを製造する過程
において、石炭中の水分、湿分および分解水が留
出して、いわゆる安水が生成される。この安水
は、石炭乾留時に生成される石炭ガスの冷却、洗
浄用として循環使用されるとともに余剰に発生し
た安水は、活性汚泥処理、凝集沈殿処理、活性炭
吸着処理を経て工場外に排出されている。この活
性汚泥処理は、アンモニア濃度が高いと処理効率
が低下することが知られている。このため従来
は、安水を5〜6倍に希釈して活性汚泥処理して
いるがこの場合処理に用いる曝気槽、沈殿槽など
が大型化し、しかも凝集沈殿処理、活性炭吸着処
理における建設費、運転費がともに著しく高くな
る。 従つて近時活性汚泥処理の前処理として、安水
中に存在する遊離アンモニア(NH4OH)及び固
定アンモニア(NH4Cl)等を除去する方法がお
こなわれている。この方法において、固定アンモ
ニアの除去は、安水中にアルカリを添加して固定
アンモニアを遊離アンモニアに変え、しかる後こ
の遊離アンモニアをスチームにより駆出すること
によりなされる。添加するアルカリとしては、
NaOH,Ca(OH)2(消石灰)があるが、NaOH
は、高価であるため、一般にはCa(OH)2が使用
されている。しかしCa(OH)2を使用すると、温
度変化による析出や不純物によるスケーリングが
発生し、1〜2ケ月ごとに清掃しなければなら
ず、その作業に手間がかかり、又清掃期間中は活
性汚泥処理に悪影響を及ぼす問題がある。これを
防止するため従来は、予備の装置を設けるか、あ
るいは遊離アンモニアのみを除去する単蒸留を行
なつているが、このようにすると効率が悪くスチ
ーム消費量が約230Kg/m3安水と多くなる欠点が
ある。 本発明者は、スチーム使用量を大幅に低減する
方法としてサーモコンプレツサを使用する方法を
考えたが、この方法においてもサーモコンプレツ
サの減圧槽や蒸留器が閉塞する問題がある。 本発明は、上記事情に鑑みてなされたもので、
その目的とするところは、消石灰を添加した安水
を蒸留器、サーモコンプレツサに入れる前に安水
にスケール分散剤を添加して、消石灰による閉塞
を防止し、もつて効率よく安水中のアンモニアを
除去することができる安水中アンモニアの除去方
法を得んとするものである。 すなわち本発明は、安水中の固定アンモニアを
消石灰で分解して遊離アンモニアとした後該安水
にスケール分散剤を添加し、ついでこれを蒸留器
及びサーモコンプレツサーに順に入れ、蒸留器内
にスチーム及びサーモコンプレツサー内の蒸気を
吸込んで遊離アンモニアを除去することを特徴と
する安水中アンモニアの除去方法である。 以下本発明を図面を参照して説明する。 図は安水中アンモニアの除去方法の一例を示す
系統図である。この方法は、コークス炉で発生
し、安水タンク1に貯溜している安水21をプレ
フイルター3、熱交換器4,5を経て第1蒸留器
6に導入する。第1蒸留器6では、スチーム7に
より安水中の遊離アンモニア8を除去する。アン
モニアを除去した安水22は、上記熱交換器5を
経て反応槽9に入り、ここで消石灰(Ca(OH)2
10が添加される。この消石灰10は、安水中の
固定アンモニア(NH4Cl,NH4SCN等)を分解
して遊離アンモニアとする。 消石灰10の添加量は、通常安水221m3
(NH4 +1500ppm)に対し3000〜4000g/m3程度
とする。 次いで反応槽9内の安水23をシツクナ11に
入れて、消石灰との反応物を沈殿除去した後、原
液槽12に導入する。この原液槽12では、スケ
ール分散剤13を添加して、反応物が案内に付着
し、閉塞をおこすのを防止する。スケール分散剤
13には、ホスフオン酸系及びポリマー系のもの
があり、その添加量は安水1m3当り5〜10ppm程
度とする。この場合、ポリマー系のものは、添加
量が少なくても効果があり、好適である。このス
ケール分散剤13は、活性汚泥バクテリアに対す
る毒性は全くない。 次いでスケール分散剤13を添加した安水24
を第2蒸留器14に導入する。第2蒸留器14で
はスチーム151により安水中の遊離アンモニウ
ムを除去する。遊離アンモニウムは上記第1蒸留
器6にスチーム7として導入される。また遊離ア
ンモニアを除去した安水25は、サーモコンプレ
ツサ16に入り、更に上記熱交換器4を経て活性
汚泥処理される。このサーモコンプレツサー16
は、第2蒸留器14に導入するスチーム151
流入量を増量させるもので、スチーム152をエ
ジエクタ17に通してサーモコンプレツサー16
内の蒸気を吸引し、もつて第2蒸留器14内への
スチーム量(スチーム151)を増加させる。こ
のことにより使用スチーム量(スチーム152
を約103Kg/m3と少なくし、省エネルギーを図る
ものである。 次に本発明の実施例につき説明する。 実験例 1 スケール分散剤が生物処理の阻害因子となるか
否かを活性汚泥の酸素吸収速度を測定して検討し
た。 すなわちスケール分散剤としてポリマー系分散
剤(クリフロートD―501,商品名)を用い、こ
れを本発明方法にもとづき所定量安水に添加し
た。この安水をBOD源とし、この安水で馴致さ
れている汚泥(24〜25℃)につき酸素吸収速度を
DOメーターにより測定した。その結果を第1表
に示す。 また比較のためスケール分散剤を添加しないも
のについてもその結果を同表に示す。なお測定時
のBODは300ppmである。
The present invention relates to a method for removing ammonia from ammonium water generated in a coke oven. In the process of carbonizing coal to produce coke for steelmaking, moisture, moisture, and decomposed water in the coal are distilled out, producing so-called ammonium water. This ammonium water is recycled to cool and clean the coal gas produced during coal carbonization, and excess ammonium water is discharged outside the factory after undergoing activated sludge treatment, coagulation sedimentation treatment, and activated carbon adsorption treatment. ing. It is known that the treatment efficiency of this activated sludge treatment decreases when the ammonia concentration is high. For this reason, in the past, ammonium water was diluted 5 to 6 times for activated sludge treatment, but in this case, the aeration tank, sedimentation tank, etc. used for treatment became larger, and the construction costs for coagulation sedimentation treatment and activated carbon adsorption treatment increased. Both operating costs will be significantly higher. Therefore, as a pretreatment for activated sludge treatment, methods have recently been used to remove free ammonia (NH 4 OH), fixed ammonia (NH 4 Cl), etc. present in aqueous aqueous solution. In this method, fixed ammonia is removed by adding an alkali to the aqueous solution to convert the fixed ammonia into free ammonia, and then driving off the free ammonia with steam. The alkali to be added is
There is NaOH, Ca(OH) 2 (slaked lime), but NaOH
Since Ca(OH)2 is expensive, Ca(OH) 2 is generally used. However, when Ca(OH) 2 is used, precipitation due to temperature changes and scaling due to impurities occur, and cleaning must be performed every 1 to 2 months, which is time-consuming and requires activated sludge treatment during the cleaning period. There are problems that have a negative impact on To prevent this, conventional methods have been to install a backup device or to perform simple distillation that removes only free ammonia, but this method is inefficient and reduces steam consumption to about 230 kg/m 3 ammonium chloride. There are many drawbacks. The present inventor considered a method of using a thermo-compressor as a method of significantly reducing the amount of steam used, but this method also has the problem of clogging of the pressure reducing tank and distiller of the thermo-compressor. The present invention was made in view of the above circumstances, and
The purpose of this is to add a scale dispersant to the ammonium water before putting it into the distiller or thermo compressor to prevent blockage caused by slaked lime, and to efficiently remove ammonia from the ammonium water. The purpose of the present invention is to obtain a method for removing ammonia in ammonium water that can remove ammonia. That is, in the present invention, fixed ammonia in ammonium water is decomposed with slaked lime to form free ammonia, and then a scale dispersant is added to the ammonium water, which is then sequentially introduced into a distiller and a thermocompressor. This method of removing ammonia in ammonium water is characterized by removing free ammonia by inhaling steam and steam in a thermocompressor. The present invention will be explained below with reference to the drawings. The figure is a system diagram showing an example of a method for removing ammonia in ammonium water. In this method, ammonium water 2 1 generated in a coke oven and stored in an ammonium water tank 1 is introduced into a first distiller 6 through a prefilter 3 and heat exchangers 4 and 5. In the first distiller 6, free ammonia 8 in the ammonium chloride water is removed by steam 7. Ammonium water 2 2 from which ammonia has been removed passes through the heat exchanger 5 and enters the reaction tank 9, where it is converted into slaked lime (Ca(OH) 2 ).
10 is added. This slaked lime 10 decomposes fixed ammonia (NH 4 Cl, NH 4 SCN, etc.) in aqueous solution into free ammonia. The amount of slaked lime added is usually 2 2 1 m 3 of ammonium water.
(NH 4 + 1500ppm) to about 3000 to 4000g/m 3 . Next, the ammonium water 2 3 in the reaction tank 9 is put into the tanker 11 to precipitate and remove the reaction product with the slaked lime, and then introduced into the stock solution tank 12. In this stock solution tank 12, a scale dispersant 13 is added to prevent reactants from adhering to the guide and causing blockage. The scale dispersant 13 includes phosphonic acid type and polymer type ones, and the amount added is about 5 to 10 ppm per 1 m 3 of ammonium water. In this case, polymer-based materials are preferable because they are effective even when added in small amounts. This scale dispersant 13 has no toxicity to activated sludge bacteria. Next, ammonium water 2 4 to which scale dispersant 13 was added
is introduced into the second distiller 14. In the second distiller 14, free ammonium in the ammonium water is removed by steam 151 . Free ammonium is introduced as steam 7 into the first distiller 6 . Furthermore, the ammonium water 25 from which free ammonia has been removed enters the thermocompressor 16, and further passes through the heat exchanger 4 and is treated with activated sludge. This thermo compressor 16
This is to increase the amount of steam 151 introduced into the second distiller 14, and the steam 152 is passed through the ejector 17 to the thermo compressor 16.
The amount of steam (steam 15 1 ) entering the second distiller 14 is increased. As a result, the amount of steam used (steam 15 2 )
The aim is to reduce energy consumption to approximately 103Kg/m 3 and save energy. Next, examples of the present invention will be described. Experimental Example 1 The oxygen absorption rate of activated sludge was measured to examine whether a scale dispersant would be an inhibitor of biological treatment. That is, a polymeric dispersant (Cryfloat D-501, trade name) was used as a scale dispersant, and a predetermined amount of this was added to ammonium water according to the method of the present invention. This ammonium water is used as a BOD source, and the oxygen absorption rate is determined for the sludge (24-25℃) that has been acclimated with this ammonium water.
Measured using a DO meter. The results are shown in Table 1. For comparison, the results are also shown in the same table for those in which no scale dispersant was added. The BOD at the time of measurement was 300 ppm.

【表】 上表からスケール分散剤を添加した場合と無添
加の場合とでその酸素吸収速度があまり変らず、
又通常スケール分散剤の添加は500ppm以下であ
ることからスケール分散剤の使用により活性汚泥
処理に対する影響はないことがわかる。 実施例 2 スケール分散剤によるスケール付着防止効果を
みるために次のような実験をおこなつた。 消石灰を添加した安水にポリマー系スケール分
散剤(クリフロートD・601)を10ppm添加して、
内径10mm、長さ100mmの短管内に4/minの流
量で流通して14日後における付着物重量、短管内
径、付着速度を測定した。また比較のために無添
加のものについても同様に付着物重量、短管内径
付着速度を測定した。更にこれら測定結果からス
ケール分散剤によるスケール付着抑制率を測定し
た。消石灰を添加した安水の組成を第2表に示す
とともに、測定結果を第3表に示す。 実施例 3 また上記ポリマー系スケール分散剤を20ppm添
加したものについても同様にしてスケール付着抑
制率を測定した。その結果を第2表、第3表に示
す。
[Table] From the table above, the oxygen absorption rate does not change much between when a scale dispersant is added and when it is not added.
Furthermore, since the amount of scale dispersant added is usually 500 ppm or less, it can be seen that the use of scale dispersant has no effect on activated sludge treatment. Example 2 The following experiment was conducted to examine the scale adhesion prevention effect of a scale dispersant. Add 10 ppm of polymer scale dispersant (Cryfloat D 601) to ammonium water containing slaked lime.
The mixture was passed through a short tube with an inner diameter of 10 mm and a length of 100 mm at a flow rate of 4/min, and the weight of deposits, the inner diameter of the short tube, and the deposition rate were measured 14 days later. For comparison, the weight of deposits and the rate of deposition on the inner diameter of the short tube were measured in the same manner for the sample without additives. Furthermore, based on these measurement results, the scale adhesion inhibition rate by the scale dispersant was measured. The composition of ammonium water to which slaked lime was added is shown in Table 2, and the measurement results are shown in Table 3. Example 3 The scale adhesion inhibition rate was also measured in the same manner for a sample to which 20 ppm of the above polymer scale dispersant was added. The results are shown in Tables 2 and 3.

【表】【table】

【表】【table】

【表】 以上の結果から明らかなように本発明によれば
サーモコンプレツサを利用することによりスチー
ム使用量を大幅に低減できるとともに、スケール
分散剤の添加によりサーモコンプレツサ、蒸留器
が閉塞するのを防止してその機能を長期間維持で
き、安定した活性汚泥処理ができるとともに清掃
費が不要となるなど顕著な効果を奏する。
[Table] As is clear from the above results, according to the present invention, the amount of steam used can be significantly reduced by using a thermo-compressor, and the addition of a scale dispersant can prevent clogging of the thermo-compressor and distiller. It has remarkable effects, such as preventing this and maintaining its function for a long period of time, allowing stable activated sludge treatment and eliminating the need for cleaning costs.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る安水中アンモニアの除去方
法の1例を示す系統図である。 1…安水タンク、21〜25…安水、6…第1蒸
留器、9…反応槽、10…消石灰、11…シツク
ナ、12…原液槽、13…スケール分散剤、14
…第2蒸留器、16…サーモコンプレツサ、17
…エジエクター。
The drawing is a system diagram showing an example of the method for removing ammonia in ammonium water according to the present invention. DESCRIPTION OF SYMBOLS 1... Ammonium water tank, 2 1 to 2 5 ... Ammonium water, 6... First distiller, 9... Reaction tank, 10... Slaked lime, 11... Chickener, 12... Stock solution tank, 13... Scale dispersant, 14
...Second distiller, 16...Thermo compressor, 17
...Egiector.

Claims (1)

【特許請求の範囲】[Claims] 1 安水中の固定アンモニアを消石灰で分解して
遊離アンモニアとした後該安水にスケール分散剤
を添加し、ついでこれを蒸留器及びサーモコンプ
レツサーに順に入れ、蒸留器内にスチーム及びサ
ーモコンプレツサー内の蒸気を吹込んで遊離アン
モニアを除去することを特徴とする安水中アンモ
ニアの除去方法。
1. After decomposing the fixed ammonia in the ammonium water with slaked lime to form free ammonia, add a scale dispersant to the ammonium water, then put it into a distiller and a thermo-compressor in order, and add steam and thermo-compressor to the distiller. A method for removing ammonia in ammonium water, which is characterized by removing free ammonia by blowing steam in a tsser.
JP10431182A 1982-06-17 1982-06-17 Removal of ammonia in ammonium sulfate solution Granted JPS58219983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10431182A JPS58219983A (en) 1982-06-17 1982-06-17 Removal of ammonia in ammonium sulfate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10431182A JPS58219983A (en) 1982-06-17 1982-06-17 Removal of ammonia in ammonium sulfate solution

Publications (2)

Publication Number Publication Date
JPS58219983A JPS58219983A (en) 1983-12-21
JPS6334795B2 true JPS6334795B2 (en) 1988-07-12

Family

ID=14377375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10431182A Granted JPS58219983A (en) 1982-06-17 1982-06-17 Removal of ammonia in ammonium sulfate solution

Country Status (1)

Country Link
JP (1) JPS58219983A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128763U (en) * 1987-02-17 1988-08-23

Also Published As

Publication number Publication date
JPS58219983A (en) 1983-12-21

Similar Documents

Publication Publication Date Title
US3920419A (en) Method of removing ammonia from ammonia containing liquor
JPH04277074A (en) Method for treating aqueous solution containing hydrogen sulfide, hydrogen cyanide and ammonia
US3278423A (en) Process for the treatment of aqueous crude effluent liquors from coal carbonizing plants
CN107399876A (en) A kind of processing method of high ammonia-nitrogen wastewater
US10421674B2 (en) Process and plant for separating off and/or recovering nitrogen compounds from a liquid or sludge substrate
US3419493A (en) Reclaiming water from textile mill waste waters
US4311597A (en) Method and apparatus for treatment of wastewater
US2090143A (en) Gas washing
US4104131A (en) Process for separating ammonia and acid gases from waste waters containing fixed ammonia salts
US4481112A (en) Process of treating gas condensate
GB2033769A (en) Method of purifying waste water
EP0769479A1 (en) Process for cleaning a waste water stream or the like
Barker et al. Biological removal of carbon and nitrogen compounds from coke plant wastes
JPS6334795B2 (en)
RU2715529C1 (en) Method of treating waste water from ammonium ions
JPH01194997A (en) Treatment of cyanide-containing solution and aerobe obtained by conditioning of facultative anaerobe
JPH06285331A (en) Wet denitrification method for no containing gas of low concentration
JPH0141115B2 (en)
JPH1029000A (en) Method for suppressing hydrogen sulfide in sewage treatment
SU1096236A1 (en) Method for purifying waste liquors contaning fluorides and ammonia
CN1018175B (en) Method for treating cyanide containing waste water
SU656976A1 (en) Method of reprocessing ammonia liquor of byproduct coke industry
JPS5951358B2 (en) How to remove ammonia
SU929575A1 (en) Process for purifying ammonia-containing effluents
GB713911A (en) Improvements in the purification of the effluents from gas-producing plants