JPS6334639B2 - - Google Patents

Info

Publication number
JPS6334639B2
JPS6334639B2 JP6776882A JP6776882A JPS6334639B2 JP S6334639 B2 JPS6334639 B2 JP S6334639B2 JP 6776882 A JP6776882 A JP 6776882A JP 6776882 A JP6776882 A JP 6776882A JP S6334639 B2 JPS6334639 B2 JP S6334639B2
Authority
JP
Japan
Prior art keywords
radio wave
wave absorbing
producing
absorbing material
liquid polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6776882A
Other languages
Japanese (ja)
Other versions
JPS58184797A (en
Inventor
Saburo Koyama
Chiaki Ueda
Kenichi Hatakeyama
Tetsuji Inui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6776882A priority Critical patent/JPS58184797A/en
Publication of JPS58184797A publication Critical patent/JPS58184797A/en
Publication of JPS6334639B2 publication Critical patent/JPS6334639B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はシート状の電波吸収材の製造法に関す
るものである。 電波吸収材は都市空間に乱立する高層ビルによ
る反射電波妨害電波を防ぐため、或は海岸近くの
高層構築物や海上の架設橋などにより航行中の船
舶レーダーに発生するレーダー偽像を防止するな
ど近年その用途が拡大しつつある新しい部材であ
る。従来、バリウムフエライト(BaO・6Fe2O3
や副生フエライト等のフエライト粉末の適当量を
プラスチツクやゴムに混入成形したものが、これ
ら電波を吸収する目的に使用されている。しかし
ながら、これらを単層で用いる従来型の電波吸収
体では電波吸収性能を示す周波数帯域巾が狭く、
実際の使用に当つてはその用途が限られ甚だ不便
の場合もあつて、もつと周波数帯域巾の広い電波
吸収体の出現が望まれていた。 本願発明者はこのような従来の欠点を解決する
ために特願昭56−109686号、および特願昭56−
169492号において第1図に示すように、金属板1
上に電波吸収材2と変成層3を積層した電波吸収
体構造を提案した。本発明は前記電波吸収材の製
法に関し、特に電波吸収の方向性をなくした電波
吸収材の製造方法を提供することにある。 本発明によれば液状の高分子材料100重量部に
対し、フエライト粉末100〜500重量部、直径が10
〜100μm、長さが500μmから5mmの導電性繊維
5〜150重量部を添加して周速度1m/sec以下で
撹拌混合し、得られた混合ペーストを50rpm以下
の等速ロールまたはロールコーター或いは流し込
みによりシートに成形し、加硫することを特徴と
する電波吸収材の製造方法が得られる。 前記本発明によつて製造された電波吸収材シー
ト自体を何層にも重ね合わせたり、さらにはフエ
ライト粉末のみを混合したシートと組合せ電波吸
収材を構成させることが容易に可能になる。 本発明に於ては導電性繊維を均一に混合するこ
とが肝要であるので、高分子材料として液状のも
のを用いる必要がある。従つて本来液状のゴムの
みならず、固型ゴムを溶解もしくはエマルジヨン
としたもの、プラスチツクの微粉末をエマルジヨ
ンもしくはデイスパージヨンとしたものがいずれ
も使用できる。即ち、ニトリルゴムのような液状
ゴム、天然ゴムを溶媒に溶解したもの、ポリエチ
レン微粉末を水に分散させたもの、或はポリマー
をエスルジヨンとなしたものがいずれも使用でき
るので目的によつて適宜高分子材料を選択すべき
である。 本発明に用いるフエライトはバリウムフエライ
ト、マンガン、フエライト、鉄フエライトなどの
酸化鉄粉末を使用することができる。混合に際し
ては粒子の小さい方が好ましいことは云うまでも
ない。導電性繊維としてはカーボンフアイバーあ
るいは、黄銅などの金属が適当であり、いずれも
径10μ〜100μ、長さ500μ〜5mm程度のものが好ま
しい。混合成形に際しては実宜的に剪断力のかゝ
らない状態で撹拌することが必要であり、そのた
めには措置作用のあるような撹拌機を用いず、ま
た撹拌機をゆるやかに回転させてフアイバーが切
断損傷しない状態で混合しなければならない。そ
うしないとフアイバーが切断されて結局は金属粉
末を混合したと同じ結果となり本発明の効果が表
れない。これは成形してシートにする場合も同じ
でロールを用いるには等速回転ロール、ロールコ
ーター、流し流みなどの方法によらなければなら
ない。加硫剤、促進剤、老化防止剤の適量を添加
することは通常の成形加硫の場合と異らない。こ
のようにして成形したシートも方法によつては方
向性があるので複数枚のシートをずらして重ね合
わせるとよい。 以下実施例により具体的に述べる。 実施例 1 液体ニトリルゴム(Nipol 1312 日本ゼオン
製)に第1表に示す割合の各種添加剤とフエライ
ト粉末を加えゴム糊用撹拌機を用いて均一に混合
した後第1表に示す量の黄銅フアイバーを徐々に
加え実質的に剪断力のかからぬように充分混合し
た。得られたペースト状の混合物を表面離型処理
を施した等速回転3本ロールに通して所定厚みの
シートにした。これをピストン型金型を用いて加
圧加熱して電波吸収体用の加硫ゴムシートを得
た。 実施例 2 液体ニトリルゴム(Nipol 1312 日本ゼオン
製)100重量部に対し25重量部のトルエンを加え、
これに第1表に示す割合の各種添加剤とフエライ
ト粉末ならびに黄銅フアイバーを加え実施例1と
同様に成形して電波吸収体用の加硫ゴムシートを
得た。 実施例 3 天然ゴム100重量部に第1表に示す割合の各種
添加物ならびにフエライト粉末を2本ロールを用
いて均一に混練した。これに等容量のゴム用揮発
油を加えてペースト状に溶解したものを実施例1
と同様にゴム糊用撹拌機を用いて黄銅フアイバー
を添加しながら充分混合した。これを若干溶媒を
蒸発させて適当な粘度に調整した後、等速回転2
本ロールに通して所定厚みの加硫釜中で加熱加硫
して電波吸収体用シートを得た。 前記実施例1〜3の各配合関係をまとめると第
1表のようになる。
The present invention relates to a method for manufacturing a sheet-like radio wave absorbing material. Radio wave absorbing materials have been used in recent years to prevent reflected electromagnetic interference from high-rise buildings lining urban spaces, and to prevent false radar images generated on ship radars during navigation due to high-rise buildings near the coast and bridges on the sea. It is a new component whose uses are expanding. Conventionally, barium ferrite (BaO・6Fe 2 O 3 )
Plastic or rubber mixed with an appropriate amount of ferrite powder such as by-product ferrite is used for the purpose of absorbing these radio waves. However, conventional radio wave absorbers using a single layer of these have a narrow frequency band width that exhibits radio wave absorption performance.
In actual use, the applications are limited and there are cases where it is extremely inconvenient, so the emergence of a radio wave absorber with a wide frequency band has been desired. In order to solve such conventional drawbacks, the inventor of the present application has filed Japanese Patent Application No. 109686/1986 and Japanese Patent Application No.
As shown in Figure 1 in No. 169492, metal plate 1
We proposed a radio wave absorber structure in which a radio wave absorber 2 and a metamorphic layer 3 are laminated on top. The present invention relates to a method for manufacturing the radio wave absorbing material, and in particular, it is an object of the present invention to provide a method for manufacturing a radio wave absorbing material that eliminates the directionality of radio wave absorption. According to the present invention, 100 to 500 parts by weight of ferrite powder and 10 parts by weight of ferrite powder are added to 100 parts by weight of liquid polymer material.
Add 5 to 150 parts by weight of conductive fibers with a length of ~100 μm and a length of 500 μm to 5 mm, stir and mix at a circumferential speed of 1 m/sec or less, and pour the resulting mixed paste using a constant speed roll or roll coater at 50 rpm or less, or pour it. A method for producing a radio wave absorbing material is obtained, which is characterized by forming the material into a sheet and vulcanizing it. It becomes possible to easily construct a radio wave absorbing material by stacking the radio wave absorbing material sheet produced according to the present invention in many layers, or by combining it with a sheet mixed only with ferrite powder. In the present invention, it is important to uniformly mix the conductive fibers, so it is necessary to use a liquid polymer material. Therefore, not only liquid rubber, but also solid rubber dissolved or emulsified, and fine plastic powder emulsion or dispersion can be used. That is, liquid rubber such as nitrile rubber, natural rubber dissolved in a solvent, polyethylene fine powder dispersed in water, or a polymer made into an esulsion can all be used, depending on the purpose. Polymeric materials should be selected. As the ferrite used in the present invention, iron oxide powders such as barium ferrite, manganese, ferrite, and iron ferrite can be used. Needless to say, smaller particles are preferable during mixing. As the conductive fibers, carbon fibers or metals such as brass are suitable, and both preferably have a diameter of about 10 μm to 100 μm and a length of about 500 μm to 5 mm. When mixing and molding, it is practically necessary to stir without shearing force, and for this purpose, do not use a stirrer that has a mechanical effect, and rotate the stirrer slowly so that the fibers are Must be mixed without cutting damage. Otherwise, the fibers will be cut and the result will be the same as mixing metal powder, and the effect of the present invention will not be achieved. This is the same when forming into a sheet, and when using rolls, methods such as constant-velocity rotating rolls, roll coaters, and flow casting must be used. Adding appropriate amounts of vulcanizing agents, accelerators, and anti-aging agents is the same as in ordinary mold vulcanization. The sheets formed in this way also have directionality depending on the method, so it is preferable to shift a plurality of sheets and overlap them. This will be described in detail below with reference to Examples. Example 1 Add various additives and ferrite powder in the proportions shown in Table 1 to liquid nitrile rubber (Nipol 1312 manufactured by Nippon Zeon), mix uniformly using a rubber glue stirrer, and then add brass in the amount shown in Table 1. The fibers were gradually added and mixed thoroughly without applying substantial shearing force. The resulting paste-like mixture was passed through three uniformly rotating rolls whose surfaces had been subjected to mold release treatment to form a sheet of a predetermined thickness. This was heated under pressure using a piston type mold to obtain a vulcanized rubber sheet for a radio wave absorber. Example 2 25 parts by weight of toluene was added to 100 parts by weight of liquid nitrile rubber (Nipol 1312 manufactured by Nippon Zeon),
Various additives, ferrite powder and brass fibers in the proportions shown in Table 1 were added to this and molded in the same manner as in Example 1 to obtain a vulcanized rubber sheet for a radio wave absorber. Example 3 100 parts by weight of natural rubber were uniformly kneaded with various additives and ferrite powder in the proportions shown in Table 1 using two rolls. Example 1: To this, an equal volume of rubber volatile oil was added and dissolved into a paste.
Brass fibers were added and thoroughly mixed using a rubber glue stirrer in the same manner as above. After slightly evaporating the solvent and adjusting the viscosity to an appropriate level, it was rotated at a constant speed of 2.
It was passed through a main roll and heated and vulcanized in a vulcanizing pot to a predetermined thickness to obtain a sheet for a radio wave absorber. The formulation relationships of Examples 1 to 3 are summarized in Table 1.

【表】 比較例 実施例3の配合を通常の2本ロールを用いて液
状にせずに黄銅フアイバーを混練し実施例3と同
様に加硫して電波吸収体用シートを得た。 実施例 4 市販の天然ゴムラテツクスに加硫剤、活性剤、
促進剤、老化防止剤を第2表に示す割合に添加混
合したものにフエライト粉末を添加混合した後、
ゆるやかに撹拌しながら黄銅フアイバーを徐々に
添加混合した。得られたペースト状混合物をロー
ルコーターを用いて剥離性基布上に一定の厚さで
塗工し、加熱乾燥して所定厚みのシートとなし、
これを加硫釜中で加熱加硫し電波吸収体用の加硫
ゴムシートを得た。 実施例 5 ポリエチレン微粉末(製鉄化学製フローセン
UF20:MI20平均粒子径15μ)を用いて第3表に
示す配合によりデイスパージヨンとした。ついで
フエライト粉末を添加混合した後黄銅フアイバー
を徐々に添加しゆるやかに撹拌混合した。得られ
たペースト状混合物を表面離型処理を施した等速
回転2本ロールを通して所定厚みのシートとなし
加熱乾燥した。これをピストン型金型にて加熱加
圧して電波吸収体用シートを得た。
[Table] Comparative Example The formulation of Example 3 was kneaded with brass fiber without making it into a liquid using a conventional two-roller, and the mixture was vulcanized in the same manner as in Example 3 to obtain a sheet for a radio wave absorber. Example 4 Adding a vulcanizing agent, an activator, and a commercially available natural rubber latex
After adding and mixing ferrite powder to a mixture of accelerator and anti-aging agent in the proportions shown in Table 2,
Brass fiber was gradually added and mixed while stirring gently. The obtained paste-like mixture is coated on a releasable base fabric at a constant thickness using a roll coater, and heated and dried to form a sheet of a predetermined thickness.
This was heated and vulcanized in a vulcanization pot to obtain a vulcanized rubber sheet for a radio wave absorber. Example 5 Polyethylene fine powder (Frozen manufactured by Steel Chemical Co., Ltd.)
A dispersion was prepared using UF20:MI20 (average particle size 15μ) according to the formulation shown in Table 3. Then, after adding and mixing the ferrite powder, the brass fiber was gradually added and mixed with gentle stirring. The resulting paste-like mixture was passed through two uniformly rotating rolls whose surfaces had been subjected to a mold release treatment to form a sheet of a predetermined thickness, and then heated and dried. This was heated and pressed in a piston mold to obtain a sheet for a radio wave absorber.

【表】【table】

【表】【table】

【表】 実施例 6 市販のエチレン酢ビ共重合体エマルジヨン100
重量部にフエライト粉末100重量部を添加混合し、
ついで黄銅フアイバー28重量部を徐々に添加しな
がらゆるやかに撹拌混合した。得られたペースト
状混合物を所定厚さの枠板内に流し込み、加熱乾
燥して所定厚みの電波吸収体用シートを得た。こ
れらの電波吸収体用シートについて、変成層と組
合せて電波吸収性能を測定した結果は第4表に示
す。 一般に電波吸収体に偏波面を90゜回転させて入
射させた電波の減衰量は同じ周波数で異なつた値
となる。従つて第2図のA,Bで示す偏向面が
90゜異なる特性で示すように電波吸収性能として
1と′1で定められる周波数帯域が2と′2で定め
られる帯域と一致するほど優れた電波吸収体であ
ると云える。そこで、第4表における電波吸収特
性として前記1、′12、′2を測定している。
[Table] Example 6 Commercially available ethylene vinyl acetate copolymer emulsion 100
Add and mix 100 parts by weight of ferrite powder to parts by weight,
Next, 28 parts by weight of brass fibers were gradually added and mixed with gentle stirring. The obtained paste-like mixture was poured into a frame plate of a predetermined thickness and dried by heating to obtain a sheet for a radio wave absorber of a predetermined thickness. Table 4 shows the results of measuring the radio wave absorption performance of these radio wave absorber sheets in combination with a metamorphic layer. Generally, the amount of attenuation of radio waves incident on a radio wave absorber with the plane of polarization rotated by 90 degrees will be different values at the same frequency. Therefore, the deflection planes indicated by A and B in Fig. 2 are
As shown in the 90° different characteristics, the radio wave absorption performance
It can be said that the more the frequency band defined by 1 and ' 1 matches the band defined by 2 and ' 2 , the better the radio wave absorber is. Therefore, the above-mentioned 1 , ' 1 , 2 , and ' 2 were measured as the radio wave absorption characteristics in Table 4.

【表】 前記第4表から明らかなように比較例の天然ゴ
ムを電波吸収体用シートとして用いたものでは、
第2図における1と′1の値が第2図における2
2の値と全く異つているのに反し、他の実施例
では12および′1と′2がほゞ等しいことを示
している。このことは実施例ではシートの面内の
方向について媒質は何ら特異な性質を持つていな
いこと、すなわち等方的な媒質であることを示
し、本発明が電波吸収体用シートの製造法として
有効であることを示している。
[Table] As is clear from Table 4 above, in the comparative example in which natural rubber was used as a radio wave absorber sheet,
Whereas the values of 1 and ' 1 in FIG. 2 are completely different from the values of 2 and ' 2 in FIG. 2, other embodiments show that 1 and 2 and ' 1 and ' 2 are approximately equal. It shows. This shows that the medium in the example does not have any unique properties in the in-plane direction of the sheet, that is, it is an isotropic medium, and the present invention is effective as a method for manufacturing a sheet for radio wave absorbers. It shows that.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に関する電波吸収体の構造を
示し、1は金属板、2は本発明の対象とする電波
吸収材、3は変成層である。 第2図は、反射減衰量を入射電波の偏向面を
90゜回転させて測定した場合の周波数特性を示し、
AとBは偏向面が90゜異る。
FIG. 1 shows the structure of a radio wave absorber according to the present invention, where 1 is a metal plate, 2 is a radio wave absorber to which the present invention is applied, and 3 is a metamorphic layer. Figure 2 shows the return loss calculated using the deflection plane of the incident radio wave.
Shows the frequency characteristics when measured by rotating 90 degrees,
The deflection planes of A and B differ by 90°.

Claims (1)

【特許請求の範囲】 1 液状の高分子材料100重量部に対し、フエラ
イト粉末100〜500重量部、直径が10〜100μm、
長さが500μmから5mmの導電性繊維5〜150重量
部を添加して周速度1m/sec以下で撹拌混合し、
得られた混合ペーストを50rpm以下の等速ロール
またはロールコーター或いは流し込みによりシー
トに成形し、加硫することを特徴とする電波吸収
材の製造方法。 2 液状の高分子材が液状ゴムである特許請求の
範囲第1項記載の電波吸収材の製造方法。 3 液状の高分子材が固型ゴムを有機溶剤に溶解
もしくは樹潤軟化させたものである特許請求の範
囲第1項記載の電波吸収材の製造方法。 4 液状の高分子材がゴムラテツクスである特許
請求の範囲第1項記載の電波吸収材の製造方法。 5 液状の高分子材がプラスチツクデイスパージ
ヨンである特許請求の範囲第1項記載の電波吸収
材の製造方法。 6 液状の高分子材がプラスチツクエマルジヨン
である特許請求の範囲第1項記載の電波吸収材の
製造方法。
[Claims] 1. 100 to 500 parts by weight of ferrite powder, a diameter of 10 to 100 μm, per 100 parts by weight of liquid polymer material;
5 to 150 parts by weight of conductive fibers with a length of 500 μm to 5 mm are added and mixed by stirring at a circumferential speed of 1 m/sec or less,
1. A method for producing a radio wave absorbing material, which comprises forming the obtained mixed paste into a sheet using a constant velocity roll or roll coater at 50 rpm or less, or by pouring, and vulcanizing it. 2. The method for producing a radio wave absorbing material according to claim 1, wherein the liquid polymer material is liquid rubber. 3. The method for producing a radio wave absorbing material according to claim 1, wherein the liquid polymer material is obtained by dissolving or softening solid rubber in an organic solvent. 4. The method for producing a radio wave absorbing material according to claim 1, wherein the liquid polymer material is rubber latex. 5. The method for producing a radio wave absorbing material according to claim 1, wherein the liquid polymer material is a plastic dispersion. 6. The method for producing a radio wave absorbing material according to claim 1, wherein the liquid polymer material is a plastic emulsion.
JP6776882A 1982-04-22 1982-04-22 Method of producing radio wave absorber Granted JPS58184797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6776882A JPS58184797A (en) 1982-04-22 1982-04-22 Method of producing radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6776882A JPS58184797A (en) 1982-04-22 1982-04-22 Method of producing radio wave absorber

Publications (2)

Publication Number Publication Date
JPS58184797A JPS58184797A (en) 1983-10-28
JPS6334639B2 true JPS6334639B2 (en) 1988-07-11

Family

ID=13354445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6776882A Granted JPS58184797A (en) 1982-04-22 1982-04-22 Method of producing radio wave absorber

Country Status (1)

Country Link
JP (1) JPS58184797A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248299A (en) * 1986-04-22 1987-10-29 横浜ゴム株式会社 Electric wave absorbing composite unit

Also Published As

Publication number Publication date
JPS58184797A (en) 1983-10-28

Similar Documents

Publication Publication Date Title
US5837739A (en) Loaded syntactic foam-core material
EP0067418B1 (en) A polyvinyl chloride resinous composition and product thereof
US6106946A (en) Microcapsule containing magnetic fluid, manufacturing method, and use thereof
US20080311373A1 (en) Electromagnetic wave absorbing material and method for preparing the same
JPS5970559A (en) Flake filled high molecular group vibration damping material, orientation thereof is controlled
JP2006128649A (en) Electromagnetic compatibility suppressor and method of manufacturing the same
JPS6334639B2 (en)
JPS6164326A (en) Preparation of composite particle
EP1824937A1 (en) Composition for producing a barrier layer on a laminated packaging material
JPH0311303B2 (en)
RU2598090C1 (en) Radar-absorbent coating composition
JPH0552336B2 (en)
KR910020050A (en) Effervescent Styrene Polymer
US2411470A (en) Composition comprising vermiculite and a thermoplastic resin
KR870011394A (en) Anti-shake lining material and process for manufacturing anti-shake lining from this material
JPS6134460B2 (en)
JPS6045142B2 (en) Method for manufacturing conductive cured body
GB2188641A (en) Article having magnetic properties and production thereof
JPS61501732A (en) Magnetic articles and their manufacture
JPS58201399A (en) Method of producing radio wave absorber
RU2783658C1 (en) Radio absorbing material and method for producing radio absorbing coating
JPS561056A (en) Preparation of photosensitive printing plate
KR102663076B1 (en) Silica aerogel with core-shell structure, the preparation methods and the application products containing core-shell structured silica aerogel
JPS6222849A (en) Epoxy resin composition and production thereof
JPS5824906Y2 (en) One-component epoxy resin adhesive sheet