JPS6334484A - Shell and tube type heat exchanger - Google Patents

Shell and tube type heat exchanger

Info

Publication number
JPS6334484A
JPS6334484A JP17663986A JP17663986A JPS6334484A JP S6334484 A JPS6334484 A JP S6334484A JP 17663986 A JP17663986 A JP 17663986A JP 17663986 A JP17663986 A JP 17663986A JP S6334484 A JPS6334484 A JP S6334484A
Authority
JP
Japan
Prior art keywords
heat exchanger
header
tube
fluid
intermediate header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17663986A
Other languages
Japanese (ja)
Inventor
Yoshito Abe
義人 阿部
Tamotsu Sano
佐野 保
Masao Kurokawa
黒川 真佐夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17663986A priority Critical patent/JPS6334484A/en
Publication of JPS6334484A publication Critical patent/JPS6334484A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent the generation of unstable flow phenomenon, by a method wherein an intermediate header is provided and area of heat transfer tubes between the intermediate header and an outlet port header is made larger than the same between the intermediate header and an inlet port header. CONSTITUTION:High-temperature fluid A1, which flows through the outside of tubes, enters into a heat exchanger from a nozzle 1 and rises along the outside of respective heat transfer tubes 4a, 4b. On the other hand, a fluid (feed water) B1, which flows through the inside of the tube, rises from a header 3 through the inside of respective heat transfer tubes 4a and enters into an intermediate header 5 while being heated by the fluid A1 into vapor. Thereafter, the fluid B1 descends through the inside of a straight heat transfer tubes 4b and is sent into the outlet port header 7 while becoming superheated vapor. According to this method, the pressure of the fluid B1, which joins in the intermediate header, is equalized, therefore, a negative gradient will never be generated in the characteristics of pressure loss - flow rate of the fluid B1. Further, the area of flow passageway inside of tubes between the intermediate header and the outlet port header is made larger than the same between the intermediate header and an inlet port header, therefore, the pressure loss in the area of superheated vapor is reduced, whereby the generation of unstable flow phenomenon may be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は伝熱管内を流れる管内流体を伝熱管外を流れる
管外流体により加熱するシェルアンドチューブ型熱交換
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a shell-and-tube heat exchanger that heats a fluid flowing inside a heat transfer tube by an extratube fluid flowing outside the heat transfer tube.

(従来の技術) 従来のシェルアンドチューブ型熱交換器を第3図により
説明すると、:(a)が管外流体(A1)の高温側出口
ノズル、(b)が管外流体(A1)の低温側出口ノズル
、(C)が管内流体(B、)の伝熱管入口ヘッダー、 
(d)が同伝熱管入ロヘッダー(c)に連通した多数の
ヘリカルコイル型伝熱管、(e)が同各伝熱管(d)に
連通した管内流体(B2)の伝熱管出口ヘッダー、(f
)が内部シュラウド、(g)がシェルで。
(Prior Art) A conventional shell-and-tube heat exchanger will be explained with reference to Fig. 3: (a) shows the high temperature side outlet nozzle for the extratubular fluid (A1), and (b) shows the outlet nozzle for the extratubular fluid (A1). Low temperature side outlet nozzle, (C) is the heat exchanger tube inlet header for the fluid in the tube (B,),
(d) is a large number of helical coil type heat exchanger tubes communicating with the heat exchanger tube entry header (c), (e) is the heat exchanger tube outlet header of the tube fluid (B2) communicating with each heat exchanger tube (d), (f)
) is the inner shroud, (g) is the shell.

高温の管外流体(例えば高温ナトリウム) (AI)が
高温側入口ノズル(a)から熱交換器内へ供給されて、
各伝熱管(d)外を下降する。このとき、管内流体(例
えば給水) (Bl)が伝熱管入口ヘッダー(C)から
各伝熱管(d)内へ導かれて、同各伝熱管(d)内を上
昇し、その間に、上記管外流体(A1)により加熱され
て、沸騰し、最終的には過熱蒸気(B2)になって、伝
熱管出口ヘッダー(e)からタービン(図示せず)へ送
られる。一方、上記管内流体(B1)を加熱して低温に
なった管外流体(AI)は、低温側出口ヘッダー(b)
から熱交換器外へ取り出される。
A hot extratubular fluid (e.g. hot sodium) (AI) is supplied into the heat exchanger from the hot side inlet nozzle (a),
Descend outside each heat exchanger tube (d). At this time, the fluid in the tube (for example, water supply) (Bl) is guided from the heat exchanger tube inlet header (C) into each heat exchanger tube (d) and rises inside each heat exchanger tube (d), while It is heated by the external fluid (A1), boils, and finally becomes superheated steam (B2), which is sent from the heat exchanger tube outlet header (e) to the turbine (not shown). On the other hand, the fluid outside the pipe (AI), which has become low temperature by heating the fluid inside the pipe (B1), is transferred to the low temperature side outlet header (b).
from the heat exchanger.

(発明が解決しようとする問題点) 前記第3図に示す従来のシェルアンドチューブ型熱交換
器には1次の問題を生じている。
(Problems to be Solved by the Invention) The conventional shell-and-tube heat exchanger shown in FIG. 3 has the following problem.

(1)一般に貫流一体型のシェルアンドチューブ型熱交
換器では、伝熱管入口ヘッダ−(c)付近における圧力
損失が小さい程、また伝熱管出口ヘッダー(e)付近に
おける過熱蒸気の圧力損失が大きい程、流動不安定現象
が発生して、運転制御や耐久性の上に問題が生じるので
、これらの問題を解消する必要があるが、前記第3図に
示す従来のシェルアンドチューブ型熱交換器では、伝熱
管(d)の流路面積が終始一定であるため、管内流体(
給水) (Bl)が沸騰して、蒸気流量率が増えてゆく
程。
(1) In general, in a once-through integrated shell-and-tube heat exchanger, the smaller the pressure loss near the heat exchanger tube inlet header (c), the greater the pressure loss of superheated steam near the heat exchanger tube outlet header (e). However, it is necessary to solve these problems because the flow instability phenomenon occurs and problems arise in terms of operation control and durability. In this case, since the flow path area of the heat transfer tube (d) is constant from beginning to end, the fluid in the tube (
Water supply) (Bl) boils and the steam flow rate increases.

比容積が大きくなって、流速が著しく増大してゆき、そ
の結果、伝熱管出口ヘッダ−(e)付近の蒸気域では摩
擦に基づく圧力損失が大きくなり、流動不安定現象が発
生して、運転制御や耐久性の上に問題が生じている。
As the specific volume increases, the flow velocity increases significantly, and as a result, the pressure loss due to friction increases in the steam region near the heat exchanger tube outlet header (e), causing flow instability and operation. Problems have arisen in terms of control and durability.

(n)前記第3図に示す従来のシェルアンドチューブ型
熱交換器では、第4図に示す特性を持ち易い。即ち、管
内流体流量が増大してゆくと、伝熱管(d)の入口ヘッ
ダー及び出口ヘッダ−(e)間の圧力損失も大きくなっ
てゆくが、管内流体流量が成る程度増大すると、圧力損
失が減少に転じて。
(n) The conventional shell-and-tube heat exchanger shown in FIG. 3 tends to have the characteristics shown in FIG. 4. That is, as the fluid flow rate in the tube increases, the pressure loss between the inlet header and the outlet header (e) of the heat transfer tube (d) also increases, but when the fluid flow rate in the tube increases to a certain extent, the pressure loss increases. Turning to a decline.

負の勾配(A)が生じ、管内流体流量がさらに増大して
ゆくと、圧力損失が再び増大に転じ、それからは管内流
体流量の増大とともに増大してゆく。
When a negative gradient (A) occurs and the fluid flow rate in the tube increases further, the pressure drop starts to increase again and then increases with increasing fluid flow rate in the tube.

このように〔圧力損失−管内流体流量〕特性曲線の途中
に負の勾配(A)が生じるので、管内流体を増大させて
ゆく過程で流動不安定現象が発生して。
As described above, since a negative slope (A) occurs in the middle of the characteristic curve [pressure loss - fluid flow rate in the pipe], an unstable flow phenomenon occurs in the process of increasing the fluid in the pipe.

この点からも、運転制御や耐久性の上に問題が生じてい
る。
From this point as well, problems arise in terms of operational control and durability.

(問題点を解決するための手段) 本発明は前記の問題点に対処するもので、伝熱管内を流
れる管内流体を伝熱管外を流れる管外流体により加熱す
るシェルアンドチューブ型熱交換器において、伝熱管入
口ヘッダーと伝熱管出口ヘッダーとの中間の伝熱管に中
間ヘッダーを設け。
(Means for Solving the Problems) The present invention addresses the above-mentioned problems, and is directed to a shell-and-tube heat exchanger in which fluid flowing inside the heat transfer tubes is heated by fluid flowing outside the heat transfer tubes. , an intermediate header is provided on the heat exchanger tube between the heat exchanger tube inlet header and the heat exchanger tube outlet header.

中間ヘッダーと伝熱管出口ヘッダーとの間の管内流体流
路面積を伝熱管入口ヘッダーと中間ヘッダーとの間の管
内流体流路面積よりも大きくしたことを特徴とするシェ
ルアンドチューブ型熱交換器に係わり、その目的とする
処は、流動不安定現象の発生を防止できる改良されたシ
ェルアンドチューブ型熱交換器を供する点にある。
A shell-and-tube heat exchanger characterized in that the fluid flow area in the tubes between the intermediate header and the heat exchanger tube outlet header is made larger than the fluid flow path area in the tubes between the heat exchanger tube inlet header and the intermediate header. The object thereof is to provide an improved shell-and-tube heat exchanger that can prevent the occurrence of flow instability phenomena.

(作用) 本発明のシェルアンドチューブ型熱交換器は前記のよう
に伝熱管入口ヘッダーと伝熱管出口ヘッダーとの間の伝
熱管の途中に中間ヘッダーを設けており、伝熱管入口ヘ
ッダーから伝熱管内へ入った管内流体が同中間ヘッダー
へ流入して、−置台流し、管内流体が均圧化されて、圧
力損失−管内流体流量特性に負の勾配が生じない。また
本発明のシェルアンドチューブ型熱交換器は前記のよう
に中間ヘッダーと伝熱管出口ヘッダーとの間の管内流体
流路面積を伝熱管入口ヘッダーと中間ヘッダーとの間の
管内流体流路面積よりも大きくしおり、過熱蒸気域の圧
力損失が小さくなる。
(Function) As described above, the shell-and-tube heat exchanger of the present invention is provided with an intermediate header in the middle of the heat exchanger tube between the heat exchanger tube inlet header and the heat exchanger tube outlet header, and heat is transferred from the heat exchanger tube inlet header. The fluid in the pipe that has entered the pipe flows into the intermediate header, and the pressure of the fluid in the pipe is equalized, so that no negative gradient occurs in the pressure loss-flow rate characteristic of the fluid in the pipe. Furthermore, in the shell-and-tube heat exchanger of the present invention, as described above, the fluid flow area in the tubes between the intermediate header and the heat exchanger tube outlet header is smaller than the fluid flow path area in the tubes between the heat exchanger tube inlet header and the intermediate header. The bookmark is also large, and the pressure loss in the superheated steam region is reduced.

(実施例) 次に本発明のシェルアンドチューブ型熱交換器を第1図
に示す一実施例により説明すると、(1)が管外流体(
AI)の高温側入口ヘッダー、(2)が管外流体(A、
)の低温側出口ノズル、(3)が管内流体(B1)の伝
熱管入口ヘッダー、 (4a)が同伝熱管入ロヘッタ−
(3)に連通した多数のヘリカルコイル型伝熱管、(5
)が同伝熱管(4a)に連通した中間ヘッダー、 (4
b)が同中間ヘッダー(5)に連通した直管型伝熱管、
(7)が同伝熱管(4b)に連通した管内流体(B1)
の伝熱管出口ヘッダー、(8)が内部シュラウド、(9
)がバッフル板、 (10)がシェルで、直管型伝熱管
(4b)の管内流体流路面積がヘリカルコイル型伝熱管
(4a)の管内流体流路面積よりも大きくなっている。
(Example) Next, the shell-and-tube heat exchanger of the present invention will be explained using an example shown in FIG.
AI) high temperature side inlet header, (2) is the extra-tubular fluid (A,
), (3) is the heat exchanger tube inlet header for the fluid in the tube (B1), and (4a) is the heat exchanger tube entry header.
(3) A large number of helical coil type heat exchanger tubes connected to (5)
) communicated with the heat exchanger tube (4a), (4
b) is a straight heat exchanger tube that communicates with the intermediate header (5);
Fluid (B1) in the tube where (7) communicated with the heat transfer tube (4b)
heat exchanger tube outlet header, (8) is the internal shroud, (9
) is a baffle plate, (10) is a shell, and the tube fluid flow area of the straight heat exchanger tube (4b) is larger than that of the helical coil type heat exchanger tube (4a).

次に前記第1図に示すシェルアンドチューブ型熱交換器
の作用を説明する。高温の管外流体(例えば高温ナトリ
ウム) (AI)が高温側入口ノズル(1)から熱交換
器内へ供給されて、各伝熱管(4a)(4b)外を上昇
する。このとき、管内流体(給水)(Bl)が伝熱管入
口ヘッダ−(3)から各ヘリカルコイル型伝熱管(4a
)内へ導かれて、同各ヘリカルコイル型伝熱管(4a)
内を上昇し、その間に、上記管外流体(A1)により加
熱され、中間ヘッダー(5)へ入って合流する。このと
きには、若干過熱された蒸気になっている。この蒸気は
、その後、各直管型伝熱管(4b)内へ入り、同各直管
型伝熱管(4b)内を下降し、その間に、上記管外流体
(AI)により加熱され、最終的には過熱蒸気(B2)
になって、伝熱管出口ヘッダー(7)からタービン(図
示せず)へ送られる。一方、上記管内流体(B、)を加
熱して。
Next, the operation of the shell and tube type heat exchanger shown in FIG. 1 will be explained. Hot extratubular fluid (eg hot sodium) (AI) is fed into the heat exchanger from the hot side inlet nozzle (1) and rises outside each heat transfer tube (4a) (4b). At this time, fluid in the tube (water supply) (Bl) flows from the heat exchanger tube inlet header (3) to each helical coil type heat exchanger tube (4a).
), each helical coil type heat exchanger tube (4a)
During this time, it is heated by the extratubular fluid (A1), enters the intermediate header (5), and joins. At this point, the steam is slightly superheated. This steam then enters each straight heat exchanger tube (4b) and descends inside each straight heat exchanger tube (4b), during which it is heated by the extra-tube fluid (AI) and finally superheated steam (B2)
and is sent from the heat exchanger tube outlet header (7) to the turbine (not shown). Meanwhile, the fluid in the tube (B,) is heated.

低温になった管外流体(A2)は、低温側出口ヘッダ−
(2)から熱交換器外へ取り出される。なお中間ヘッダ
ー(5)下流側の伝熱管(4b)を直管型にして。
The extra pipe fluid (A2) which has become low temperature is transferred to the low temperature side outlet header.
(2) is taken out of the heat exchanger. In addition, the heat exchanger tube (4b) on the downstream side of the intermediate header (5) is a straight tube type.

内部シュラウド(8)の内側に配設しているが、このよ
うにすると、内部シュラウド(8)内側の空間部を有効
利用できる。また内部シュラウド(8)の内側にバッフ
ル板(9)を設けているが、このようにすると、管外流
体(AI)が攪拌、混合されて、直管型伝熱管(4b)
に対する熱伝達率が向上する。また本実施例では、管外
流体の出入口ノズル(1) (2)及び管内流体の伝熱
管出入口ヘッダー(3) (7)を1個ずつ設けている
が、複数個ずつ設けてもよい。
Although it is disposed inside the internal shroud (8), by doing so, the space inside the internal shroud (8) can be effectively utilized. In addition, a baffle plate (9) is provided inside the internal shroud (8), which allows the extratubular fluid (AI) to be stirred and mixed, and the straight heat exchanger tube (4b)
The heat transfer coefficient is improved. Further, in this embodiment, one inlet/outlet nozzle (1) (2) for the extra-tube fluid and one heat exchanger tube inlet/outlet header (3) (7) for the in-tube fluid are provided, but a plurality of them may be provided.

次に本発明のシェルアンドチューブ型熱交換器を第2図
に示す他の実施例により説明すると、(1)が管外流体
(AI)の高温側入口ノズル、(2)が管外流体(A1
)の低温側出口ノズル、(3′)が管内流体(B1)の
入口ノズル、(3)が管内流体(B1)の伝熱管入口ヘ
ッダー、(4)が水平直管型伝熱管、 (5a)(5a
’)が管板(12)外側の空間部を仕切板(6)により
区画して形成した中間ヘッダー、 (5b)が管板(1
1)外側の空間部を仕切板(6) (6)により区画し
て形成した中間ヘッダー、(7)が管内流体(Bl)の
伝熱管出口ヘッダー、 (7’)が管内流体(B2)の
出口ノズルで、伝熱管入口ヘッダ(3)と中間ヘッダー
(5a)。
Next, the shell-and-tube heat exchanger of the present invention will be explained with reference to another embodiment shown in FIG. A1
), (3') is the inlet nozzle for the tube fluid (B1), (3) is the heat exchanger tube inlet header for the tube fluid (B1), (4) is the horizontal straight heat exchanger tube, (5a) (5a
') is an intermediate header formed by dividing the space outside the tube plate (12) with a partition plate (6), and (5b) is an intermediate header formed by dividing the space outside the tube plate (12).
1) An intermediate header formed by dividing the outer space with partition plates (6) (6), (7) is the heat exchanger tube outlet header for the fluid in the tube (Bl), and (7') is the header for the outlet of the heat exchanger tube for the fluid in the tube (B2). At the outlet nozzle, the heat exchanger tube inlet header (3) and the intermediate header (5a).

中間ヘッダー(5a)と中間ヘッダー(5b)、中間ヘ
ッダー(5b)と中間ヘッダー(5a’)、及び中間ヘ
ッダー(5a’)と伝熱管出口ヘッダー(7)とが水平
直管型伝熱管(4)により連通している。また例えば伝
熱管(4)の本数を中間ヘッダーを経る毎に多くするこ
とにより、管内流体流路面積を、伝熱管入口ヘッダ(3
)と中間ヘッダー(5a)との間の管内流路面積、中間
ヘッダー(5a)と中間ヘッダー(5b)との間の管内
流路面積、中間ヘッダー(5b)と中間ヘッダー(5a
’)との間の管内流路面積、中間ヘッダー(51)と伝
熱管出口ヘッダ−(7)との間の管内流路面積の順に大
きくしている。(9)はバッフル板である。
The intermediate header (5a) and the intermediate header (5b), the intermediate header (5b) and the intermediate header (5a'), and the intermediate header (5a') and the heat exchanger tube outlet header (7) are connected to the horizontal straight heat exchanger tube (4). ). For example, by increasing the number of heat exchanger tubes (4) each time they pass through an intermediate header, the area of the fluid flow in the tubes can be increased by increasing the number of heat exchanger tubes (4) at each intermediate header.
) and the intermediate header (5a), the pipe passage area between the intermediate header (5a) and the intermediate header (5b), the intermediate header (5b) and the intermediate header (5a)
'), and the inner pipe flow area between the intermediate header (51) and the heat exchanger tube outlet header (7) are increased in this order. (9) is a baffle plate.

次に前記第2図に示すシェルアンドチューブ型熱交換器
の作用を具体的に説明する。高温の管外流体(例えば高
温ナトリウム) (AI)が高温側入口ノズル(1)か
ら熱交換器内へ供給されて、各伝熱管(4)外をバッフ
ル板(9)に沿い流動する。このとき、管内流体(給水
) (Bl)が入口ノズル(3゛)及び伝熱管入口ヘッ
ダ−(3)から各伝熱管(4)内へ導かれて、同伝熱管
(4)内を左方に流れ、その間に、管外流体(AI)に
より加熱され、中間ヘッダー(5a)に入って合流する
。このときには、若干過熱されている。この蒸気は、そ
の後、中間ヘッダー(5a)から各伝熱管(4)内に入
って、右方に流れ。
Next, the operation of the shell-and-tube heat exchanger shown in FIG. 2 will be explained in detail. Hot extratubular fluid (e.g. hot sodium) (AI) is supplied into the heat exchanger from the hot side inlet nozzle (1) and flows outside each heat transfer tube (4) along the baffle plate (9). At this time, the fluid in the tube (water supply) (Bl) is guided from the inlet nozzle (3゛) and the heat exchanger tube inlet header (3) into each heat exchanger tube (4), and moves inside the heat exchanger tube (4) to the left. during which it is heated by the extratubular fluid (AI) and enters and joins the intermediate header (5a). At this time, it is slightly overheated. This steam then enters each heat exchanger tube (4) from the intermediate header (5a) and flows to the right.

その間に、管外流体(AI)によりさらに加熱され。Meanwhile, it is further heated by extraluminal fluid (AI).

中間ヘッダー(5b)に入って合流し9次いで同中間ヘ
ッダー(5b)から各伝熱管(4)内に入って左方に流
れ、その間に、管外流体(A1)によりさらに加熱され
、中間ヘッダー(5a’)に入って合流し1次いで同中
間ヘッダー(5a’)から各伝熱管(4)内に入って右
方に流れ、その間に、管外流体(A1)によりさらに加
熱され、伝熱管出口ヘッダー(7)に入って合流する。
The mixture enters the intermediate header (5b) and flows to the left from the intermediate header (5b) into each heat transfer tube (4), during which time it is further heated by the extra-tube fluid (A1) and flows into the intermediate header. (5a'), join together, and then enter each heat exchanger tube (4) from the same intermediate header (5a') and flow to the right, during which time it is further heated by the extra-tube fluid (A1), and the heat exchanger tube Enter the exit header (7) and merge.

このときには、過熱蒸気(B2)になっており、この過
熱蒸気(B2)が出口ノズル(7゛)からタービンへ送
られる。一方、上記管内流体(B1)を加熱して低温に
なった管外流体(A2)は、低温側ノズル(2)から熱
交換器外へ取り出される。
At this time, the superheated steam (B2) is turned into superheated steam (B2), and this superheated steam (B2) is sent to the turbine from the outlet nozzle (7'). On the other hand, the fluid outside the tube (A2), which has been heated to a low temperature by heating the fluid inside the tube (B1), is taken out of the heat exchanger from the low temperature side nozzle (2).

(発明の効果) 本発明のシェルアンドチューブ型熱交換器は前記のよう
に伝熱管入口ヘッダーと伝熱管出口ヘッダーとの間の伝
熱管の途中に中間ヘッダーを設けており、伝熱管入口ヘ
ッダーから伝熱管内へ入った管内流体が同中間へラダー
へ流入して、−置台流し、管内流体が均圧化されて、圧
力損失−管内流体流量特性に負の勾配が生じない。また
中間ヘッダーと伝熱管出口ヘッダーとの間の管内流体流
路面積を伝熱管入口ヘッダーと中間ヘッダーとの間の管
内流体流路面積よりも大きくしおり、過熱蒸気域の圧力
損失が小さくなる。従って本発明のシェルアンドチュー
ブ型熱交換器によれば、流動不安定現象の発生を防止で
きる効果がある。
(Effects of the Invention) As described above, the shell-and-tube heat exchanger of the present invention is provided with an intermediate header in the middle of the heat exchanger tube between the heat exchanger tube inlet header and the heat exchanger tube outlet header. The fluid in the tube that has entered the heat transfer tube flows into the ladder at the same intermediate point, and the pressure of the fluid in the tube is equalized, so that no negative gradient occurs in the pressure loss-flow rate characteristic of the fluid in the tube. In addition, the area of the fluid flow path in the tube between the intermediate header and the heat exchanger tube outlet header is made larger than the area of the fluid flow path in the tube between the heat exchanger tube inlet header and the intermediate header, thereby reducing pressure loss in the superheated steam region. Therefore, the shell-and-tube heat exchanger of the present invention has the effect of preventing the occurrence of flow instability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるシェルアンドチューブ型熱交換
器の一実施例を示す縦断側面図、第2図は他の実施例を
示す縦断側面図、第3図は従来のシェルアンドチューブ
型熱交換器を示す縦断側面図、第4図はその圧力損失−
管内流体流量特性を示す説明類である。 (AI)(A2)・・・管外流体、(Bl)(th) 
 ・・・管内流体、(3)・・・伝熱管入口ヘッダー、
(4)または(4a)(4b)・・・伝熱管、(5)ま
たは(5a) (5a’)(5b)・・・中間ヘッダー
、(7)・・・伝熱管出口ヘッダー。 復代理人弁理士岡本重文外2名
Fig. 1 is a vertical side view showing one embodiment of the shell-and-tube heat exchanger according to the present invention, Fig. 2 is a longitudinal side view showing another embodiment, and Fig. 3 is a conventional shell-and-tube heat exchanger. A longitudinal side view showing the exchanger, Figure 4 shows its pressure loss.
These are explanations showing the fluid flow characteristics in the pipe. (AI) (A2)... Extravascular fluid, (Bl) (th)
... Fluid in the pipe, (3) ... Heat exchanger tube inlet header,
(4) or (4a) (4b)...heat exchanger tube, (5) or (5a) (5a') (5b)...intermediate header, (7)...heat exchanger tube outlet header. Sub-agent patent attorney Shigefumi Okamoto and two others

Claims (1)

【特許請求の範囲】[Claims] 伝熱管内を流れる管内流体を伝熱管外を流れる管外流体
により加熱するシェルアンドチューブ型熱交換器におい
て、伝熱管入口ヘッダーと伝熱管出口ヘッダーとの中間
の伝熱管に中間ヘッダーを設け、中間ヘッダーと伝熱管
出口ヘッダーとの間の管内流体流路面積を伝熱管入口ヘ
ッダーと中間ヘッダーとの間の管内流体流路面積よりも
大きくしたことを特徴とするシェルアンドチューブ型熱
交換器。
In a shell-and-tube heat exchanger that heats the fluid inside the tubes by the fluid outside the tubes, an intermediate header is provided in the heat exchanger tube between the heat exchanger tube inlet header and the heat exchanger tube outlet header, and the intermediate A shell-and-tube heat exchanger characterized in that the fluid flow area in the tubes between the header and the heat exchanger tube outlet header is larger than the fluid flow area in the tubes between the heat exchanger tube inlet header and the intermediate header.
JP17663986A 1986-07-29 1986-07-29 Shell and tube type heat exchanger Pending JPS6334484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17663986A JPS6334484A (en) 1986-07-29 1986-07-29 Shell and tube type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17663986A JPS6334484A (en) 1986-07-29 1986-07-29 Shell and tube type heat exchanger

Publications (1)

Publication Number Publication Date
JPS6334484A true JPS6334484A (en) 1988-02-15

Family

ID=16017098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17663986A Pending JPS6334484A (en) 1986-07-29 1986-07-29 Shell and tube type heat exchanger

Country Status (1)

Country Link
JP (1) JPS6334484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500526A (en) * 2006-08-08 2010-01-07 スルザー ケムテック アクチェンゲゼルシャフト Apparatus for performing combined heat exchange and static mixing with liquids

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010500526A (en) * 2006-08-08 2010-01-07 スルザー ケムテック アクチェンゲゼルシャフト Apparatus for performing combined heat exchange and static mixing with liquids
JP2013117376A (en) * 2006-08-08 2013-06-13 Sulzer Chemtech Ag Apparatus for combined heat exchange and static mixing using liquid
KR101495687B1 (en) * 2006-08-08 2015-02-25 술저 켐테크 악티엔게젤샤프트 Apparatus for combined heat transfer and static mixing with a liquid

Similar Documents

Publication Publication Date Title
US4499859A (en) Vapor generator
US3135251A (en) Circuit for vapor generator
US4632064A (en) Boiler
JPS6334484A (en) Shell and tube type heat exchanger
JPS5773392A (en) Corrugated fin type heat exchanger
US4541366A (en) Feed water preheater
US3081748A (en) Forced flow fluid heating unit
EP0089027B1 (en) Heat exchanger
JP3190939B2 (en) Steam generator
US3102514A (en) High capacity, high temperature vapor generator
US2914040A (en) Vapor generator
JPH03140701A (en) Ascending/descending flow heating pipe-type circulating system
US3202135A (en) Vapor temperature control method
JPS59191897A (en) Multitubular heat exchanger
JP2823339B2 (en) Regenerator
JP3916784B2 (en) Boiler structure
CN108826281A (en) Circulating fluidized bed boiler with independent twin flue
JPS59112197A (en) Heat exchanger
JP2673306B2 (en) Square multi-tube once-through boiler
US3003480A (en) Vapor generator
US2986128A (en) Steam generator
CN208025489U (en) A kind of full film type wall boiler water wall loop structure
US3136301A (en) Tubulous vapor generating and superheating units
JP2000199601A (en) Boiler
US2897796A (en) Steam generating and superheating unit with recirculated gas introduction at one endof hopper bottom furnace