JPS6334169B2 - - Google Patents

Info

Publication number
JPS6334169B2
JPS6334169B2 JP13631278A JP13631278A JPS6334169B2 JP S6334169 B2 JPS6334169 B2 JP S6334169B2 JP 13631278 A JP13631278 A JP 13631278A JP 13631278 A JP13631278 A JP 13631278A JP S6334169 B2 JPS6334169 B2 JP S6334169B2
Authority
JP
Japan
Prior art keywords
titanium
compound
polymerization
halogen
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13631278A
Other languages
Japanese (ja)
Other versions
JPS5562907A (en
Inventor
Masuzo Yokoyama
Tsunenori Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP13631278A priority Critical patent/JPS5562907A/en
Publication of JPS5562907A publication Critical patent/JPS5562907A/en
Publication of JPS6334169B2 publication Critical patent/JPS6334169B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】 〔〕 発明の背景  技術分野 本発明は、チヌグラヌ型觊媒の遷移金属成分ず
しお䜿甚するに適したチタン含有組成物の補造法
に関する。さらに具䜓的には、本発明は、マグネ
シりム化合物、アルコキシチタン化合物および酞
ハロゲン化合物を含む固䜓成分を特定の態様で凊
理するこずにより著じるしく立䜓芏則性および重
合掻性の高いα−オレフむン重合甚チヌグラヌ型
觊媒成分の補造法に関する。
BACKGROUND OF THE INVENTION 1 Technical Field The present invention relates to a method for producing titanium-containing compositions suitable for use as transition metal components of Ziegler-type catalysts. More specifically, the present invention provides a method for polymerizing α-olefins with remarkable stereoregularity and high polymerization activity by treating a solid component containing a magnesium compound, an alkoxytitanium compound, and an acid halogen compound in a specific manner. This invention relates to a method for producing a Ziegler type catalyst component.

 先行技術 α−オレフむン立䜓芏則性重合甚觊媒ずしおチ
ヌグラヌ型觊媒は呚知のものであり、たたその掻
性や立䜓芏則性をさらに改良するために皮々の方
法が提案されおいるこずも呚知である。これらの
皮々の改良方法の内でも特に掻性に察しお著じる
しく改良効果を有する方法は、チヌグラヌ型觊媒
遷移金属觊媒成分䞭にマグネシりム化合物を含有
させる固䜓觊媒成分補造方法である特公昭39−
12105号、特公昭47−41676号、特公昭47−46269
号各公報参照。
2. Prior Art Ziegler type catalysts are well known as catalysts for stereoregular polymerization of α-olefins, and it is also well known that various methods have been proposed to further improve their activity and stereoregularity. Among these various improvement methods, a method that has a particularly remarkable improvement effect on activity is a method for producing a solid catalyst component in which a magnesium compound is incorporated into a Ziegler-type catalyst transition metal catalyst component (Japanese Patent Publication No. 39-1999). −
No. 12105, Special Publication No. 47-41676, Special Publication No. 47-46269
(Refer to each publication).

しかし、これらの方法により補造した觊媒を甚
いおプロピレンなどのα−オレフむンを重合する
堎合には、掻性は非垞に高い倀を瀺すけれども生
成重合䜓の立䜓芏則性が逆に著じるしく䜎䞋し
お、α−オレフむン立䜓芏則性重合觊媒ずしおの
実甚的䟡倀が倧きく倱なわれおいるこずもたた知
られおいる。
However, when α-olefins such as propylene are polymerized using catalysts produced by these methods, although the activity is extremely high, the stereoregularity of the resulting polymer is significantly reduced. It is also known that the practical value of α-olefin as a stereoregular polymerization catalyst has been largely lost.

そこで、マグネシりム化合物を含むチヌグラヌ
型觊媒の遷移金属成分を䜿甚するα−オレフむン
重合においお、生成重合䜓の立䜓芏則性を向䞊さ
せる皮々の方法が提案されおいる特開昭47−
9342号、同50−126590号各公報など参照。これ
らの方法は、共通しお、チタン化合物およびマグ
ネシりムハロゲン化合物を含む固䜓觊媒成分䞭に
さらにアミンや゚ステルなど電子䟛䞎性化合物を
含有させるこずを特城ずするものである。同様
に、生成重合物の立䜓芏則性を向䞊させるこずを
目的ずしお、チタン化合物およびマグネシりム化
合物および酞ハロゲン化合物を特定の態様で補造
しおチヌグラヌ型觊媒の遷移金属成分を補造する
方法特開昭51−136625号公報参照や、さらに
䞊蚘成分以倖に゚ヌテル、特定のリン化合物、ケ
む玠化合物およびアルコヌルなどを必須成分ずす
る特定の觊媒成分補造法も提案されおいる特開
昭53−277号、同53−1276号、同53−2583号、同
53−19395号各公報など参照。
Therefore, in α-olefin polymerization using a transition metal component of a Ziegler-type catalyst containing a magnesium compound, various methods have been proposed to improve the stereoregularity of the resulting polymer (Japanese Patent Application Laid-Open No. 1989-1999).
9342, 50-126590, etc.) These methods are commonly characterized in that an electron-donating compound such as an amine or an ester is further contained in a solid catalyst component containing a titanium compound and a magnesium halide compound. Similarly, for the purpose of improving the stereoregularity of the produced polymer, a method for producing the transition metal component of a Ziegler-type catalyst by producing a titanium compound, a magnesium compound, and an acid halide compound in a specific manner (Japanese Patent Application Laid-open No. 51-136625), and a method for producing a specific catalyst component that uses ether, a specific phosphorus compound, a silicon compound, and alcohol as essential components in addition to the above-mentioned components has also been proposed (Japanese Patent Application Laid-open No. 53-277). , No. 53-1276, No. 53-2583, No. 53-2583, No. 53-1276, No. 53-2583, No.
53-19395, etc.).

しかし、本発明者らの知る限りではこれらのチ
ヌグラヌ型觊媒遷移金属觊媒成分も重合性胜が䞍
充分であり、そのためであろうか䞊蚘特開昭53−
277号、同53−1276号、同53−2583号、同53−
19395号公報など蚘茉の方法では有機アルミニり
ム成分ず組み合せおα−オレフむン重合觊媒を圢
成するに際しおさらに有機カルボン酞゚ステルを
䜿甚するこずが必須芁件ずな぀おいる。たた、遷
移金属觊媒成分およびそれず組み合せおチヌグラ
ヌ型觊媒を圢成するトリアルキルアルミニりム成
分の䞡方に有機カルボン酞゚ステルなどの電子䟛
䞎性化合物を含有させる方法も、特開昭48−
16986号、同16987および同16988各公報などで公
知である。
However, as far as the present inventors know, these Ziegler type catalyst transition metal catalyst components also have insufficient polymerization performance, and this may be due to the above-mentioned JP-A-53-
No. 277, No. 53-1276, No. 53-2583, No. 53-
In the methods described in Japanese Patent No. 19395 and the like, it is essential to further use an organic carboxylic acid ester when combining with an organoaluminum component to form an α-olefin polymerization catalyst. In addition, a method in which an electron-donating compound such as an organic carboxylic acid ester is contained in both the transition metal catalyst component and the trialkylaluminum component that forms the Ziegler type catalyst in combination with the transition metal catalyst component has also been disclosed
It is known from publications such as No. 16986, No. 16987, and No. 16988.

〔〕 発明の抂芁 芁 æ—š 本発明は䞊蚘の点に解決を䞎えるこずを目的ず
し、特定の成分からなる固䜓組成物を特定の凊理
に付すこずによ぀おオレフむン重合甚觊媒成分を
補造するこずによ぀おこの目的を達成しようずす
るものである。
[] Summary of the Invention The purpose of the present invention is to provide a solution to the above-mentioned problems, and to produce a catalyst component for olefin polymerization by subjecting a solid composition consisting of specific components to a specific treatment. Therefore, it is an attempt to achieve this purpose.

埓぀お、本発明によるオレフむン重合甚觊媒成
分の補造法は、䞋蚘の、およびを合
䜓させおなる固䜓組成物を、ハロゲン化炭化氎玠
溶剀たたは芳銙族炭化氎玠溶剀から遞ばれる䞍掻
性溶媒を甚いお、䞋蚘凊理条件で凊理するこずを
特城ずする、オレフむン重合甚觊媒成分の補造
法。
Therefore, in the method for producing a catalyst component for olefin polymerization according to the present invention, a solid composition obtained by combining a), b), and c) below is mixed with a halogenated hydrocarbon solvent or an aromatic hydrocarbon solvent. A method for producing a catalyst component for olefin polymerization, characterized by using an inert solvent and treating under the following treatment conditions.

固䜓組成物  MgX1 2ここで、X1はハロゲンを瀺す、Mg
OR12ここで、OR1は炭玠数〜12の有機残
基を瀺す、 MgOCOR22ここで、−OCOR2は炭玠数
〜12の有機カルボン酞残基を瀺すたたはこれ
らの混合物から遞ばれるマグネシりム化合物、  䞀般匏TiOR3oX2 4-oここで、は≊
、R3は炭玠数〜12のアルキル基、X2はハ
ロゲンを瀺すで衚わされるアルコキシチタン
化合物、  䞀般匏R4COX3ここで、R4は炭玠数〜12
の脂肪族、脂環族たたは芳銙族の有機残基、
X3はハロゲンを瀺すで衚わされる酞ハロゲ
ン化合物、 凊理条件 䞍掻性溶媒がハロゲン化炭化氎玠溶剀の堎合
は、宀枩〜100℃の枩床で、芳銙族炭化氎玠の堎
合は50〜140℃の枩床で行う。
Solid composition a MgX 1 2 (where X 1 represents halogen), Mg
(OR 1 ) 2 (here, OR 1 indicates an organic residue with 1 to 12 carbon atoms), Mg(OCOR 2 ) 2 (here, -OCOR 2 indicates an organic residue with 1 to 12 carbon atoms)
~12 organic carboxylic acid residues) or mixtures thereof, b with general formula Ti(OR 3 ) o X 2 4-o (where n is O<n≩
4, R 3 is an alkyl group having 1 to 12 carbon atoms, X 2 is a halogen), c an alkoxytitanium compound represented by the general formula R 4 COX 3 (wherein R 4 is an alkyl group having 1 to 12 carbon atoms),
aliphatic, cycloaliphatic or aromatic organic residues,
X 3 represents a halogen) Processing conditions When the inert solvent is a halogenated hydrocarbon solvent, the temperature is from room temperature to 100°C, and when the inert solvent is a halogenated hydrocarbon solvent, the temperature is from 50 to 140°C. Do it with

効 果 䞊蚘、およびを合䜓させおなる固
䜓組成物をチヌグラヌ型觊媒遷移金属成分ずしお
䜿甚しおも党く䜎䜍の性胜しか瀺さず、埓぀おこ
の組成物そのものでは実甚的䟡倀はほずんど無い
が、この固䜓組成物を䞍掻性溶媒で凊理するこず
により觊媒成分性胜が著じるしく改善される。
Effects Even when a solid composition obtained by combining a), b) and c) above is used as a transition metal component of a Ziegler type catalyst, it shows only a very low performance, and therefore this composition itself has no practical value. Although rare, treatment of this solid composition with an inert solvent significantly improves catalyst component performance.

その結果、本発明で埗られる觊媒成分をα−オ
レフむン重合に䜿甚すれば、生成ポリマヌからの
觊媒残枣の陀去凊理やアタクチツクポリマヌの陀
去凊理を斜さなくおも垂堎の芁求する物性を有す
るポリマヌ補品が埗られるので、非垞に簡略化さ
れたポリマヌ補造プロセスで経枈的に有利な方法
でポリマヌを生産するこずができる。
As a result, if the catalyst component obtained according to the present invention is used in α-olefin polymerization, a polymer product having physical properties required by the market can be produced without removing catalyst residue from the produced polymer or removing attic polymer. The polymer can be produced in an economically advantageous manner with a very simplified polymer production process.

〔〕 発明の具䜓的説明  固䜓組成物 本発明による固䜓觊媒成分は、先ず耇数の構成
分、およびからなる固䜓組成からな
る。
[] Detailed Description of the Invention 1 Solid Composition The solid catalyst component according to the present invention first consists of a solid composition consisting of a plurality of components a), b) and c).

 構成分 (1) マグネシりム化合物成分 マグネシりム化合物ずしおは、䞀般匏MgX1 2
は、塩玠、臭玠、沃玠などのハロゲン、Mg
OR12OR1は、アルコキシ基、プノキシ基な
ど炭玠数〜1.2の有機残基、MgOCOR22−
OCOR2は、炭玠数〜12の有機カルボン酞残基
およびこれらの混合物が甚いられる。
1 Component (1) Magnesium compound (component a)) The magnesium compound has the general formula MgX 1 2
(X is halogen such as chlorine, bromine, iodine), Mg
(OR 1 ) 2 (OR 1 is an organic residue with 1 to 1.2 carbon atoms, such as an alkoxy group or a phenoxy group), Mg (OCOR 2 ) 2 (−
OCOR 2 is an organic carboxylic acid residue with 1 to 12 carbon atoms)
and mixtures thereof are used.

これらのうちで、MgX1 2ずしおは塩化マグネシ
りム、MgOR12ずしおはゞ゚トキシマグネシり
ム、MgOCOR22ずしおは安息銙酞マグネシり
ムのPCl5やSOCl2の凊理物などが奜適に甚いられ
る。
Among these, magnesium chloride is preferably used as MgX 1 2 , diethoxymagnesium is used as Mg(OR 1 ) 2 , and magnesium benzoate treated with PCl 5 or SOCl 2 is preferably used as Mg(OCOR 2 ) 2 . It will be done.

(2) アルコキシチタン化合物成分 アルコキシチタン化合物ずしおは、䞀般匏Ti
OR3oX2 4-o、R3は炭玠数〜12のア
ルキル基、X2はハロゲンで衚わされる化合物
が甚いられる。
(2) Alkoxy titanium compound (component b)) The alkoxy titanium compound has the general formula Ti
A compound represented by (OR 3 ) o X 2 4-o (O<n4, R 3 is an alkyl group having 1 to 12 carbon atoms, and X 2 is a halogen) is used.

具䜓的には、䞋蚘のものがある。 Specifically, there are the following.

 トリハロゲン化アルコキシチタン、たずえば
䞉塩化メトキシチタン、䞉塩化゚トキシチタ
ン、䞉塩化−ブトキシチタン、䞉臭化−ブ
トキシチタン。
1 Alkoxytitanium trihalides, such as methoxytitanium trichloride, ethoxytitanium trichloride, n-butoxytitanium trichloride, i-butoxytitanium tribromide.

 ゞハロゲン化アルコキシチタン、たずえば二
塩化ゞメトキシチタン、二塩化ゞ゚トキシチタ
ン、二臭化ゞ゚トキシチタン。
2 Alkoxytitanium dihalides, such as dimethoxytitanium dichloride, diethoxytitanium dichloride, diethoxytitanium dibromide.

 モノハロゲン化トリアルコキシチタン、たず
えば塩化トリメトキシチタン、塩化トリ゚トキ
シチタン、塩化トリ−−ブトキシチタン、臭
化トリ゚トキシチタン。
3 Monohalogenated trialkoxytitanium, such as trimethoxytitanium chloride, triethoxytitanium chloride, tri-n-butoxytitanium chloride, triethoxytitanium bromide.

 テトラアルコキシチタン、たずえばテトラメ
トキシチタン、テトラ゚トキシチタン、テトラ
−−ブトキシチタン。
4 Tetraalkoxytitanium, such as tetramethoxytitanium, tetraethoxytitanium, tetra-n-butoxytitanium.

この䞭でも特に奜たしいのは、䞉塩化゚トキシ
チタン、二塩化゚トキシチタンなどである。
Among these, particularly preferred are ethoxytitanium trichloride, ethoxytitanium dichloride, and the like.

(3) ハロゲン化合物成分 酞ハロゲン化合物ずしおは、䞀般匏R4COX3
R4は炭玠数〜12の脂肪族、脂環族および芳銙
族の有機残基、X3はハロゲンで衚わされる化
合物がある。
(3) Halogen compound (component c)) The acid halogen compound has the general formula R 4 COX 3
(R 4 is an aliphatic, alicyclic, or aromatic organic residue having 1 to 12 carbon atoms, and X 3 is a halogen).

具䜓的には、塩化アセチル、塩化プロピオニ
ル、塩化ブリチル、塩化ステアロむル、塩化メタ
クリロむル、塩化ベンゟむル、塩化トルオむル、
塩化フタロむル、およびこれら塩玠のペり玠たた
は臭化眮換䜓である。
Specifically, acetyl chloride, propionyl chloride, brityl chloride, stearoyl chloride, methacryloyl chloride, benzoyl chloride, toluoyl chloride,
Phthaloyl chloride, and iodine or bromide substituted products of these chlorines.

これらの酞ハロゲン化合物のうち、特に塩化ベ
ンゟむル、塩化トルオむルなどが奜たしい。
Among these acid halogen compounds, benzoyl chloride, toluoyl chloride, and the like are particularly preferred.

(4) 補助成分成分 本発明固䜓組成物は䞉成分〜を必須構
成分ずするものであるが、付加的に補助成分を含
有するこずもできる。補助成分の䟋ずしおは、塩
化アルミニりム、䞉塩化リン、五塩化リン、四塩
化ケむ玠のような無機ハロゲン化物、アルコヌ
ル、゚ヌテルなどの電子䟛䞎性化合物、あるいは
マグネシりム化合物ずしお安息銙酞マグネシりム
を䜿甚しおPCl5やSOCl2で凊理した堎合の反応副
生成物、などである。
(4) Auxiliary component (component b)) The solid composition of the present invention has three components a) to c) as essential components, but may additionally contain an auxiliary component. Examples of auxiliary components include inorganic halides such as aluminum chloride, phosphorus trichloride, phosphorus pentachloride, silicon tetrachloride, electron-donating compounds such as alcohols, ethers, or PCl using magnesium benzoate as a magnesium compound. 5 and reaction by-products when treated with SOCl 2 .

 組 成 䞉成分〜の成分比は、本発明の効果が
認められる限り任意であ぀お限界的なものではな
い。䞀般的には、、およびならびに
補助成分の順序で瀺せば各成分のモル比は䞋
蚘の通りである。
2 Composition The component ratio of the three components a) to c) is arbitrary and not critical as long as the effects of the present invention are recognized. In general, the molar ratio of each component is as follows, given the order of a), b) and c) and the auxiliary component d).

100〜0.5察察0.1〜10察〜50
奜たしくは必須成分のみに぀いお瀺す 50〜察察0.5〜である。
(100-0.5) vs. 1 vs. (0.1-10) vs. (0-50)
Preferably the ratio is (50 to 1) to 1 to (0.5 to 5) (shown only for essential components).

 固䜓組成物の調補 本発明固䜓組成物は䞊蚘構成成分〜を
合䜓させおなるものである。この発明でこれら構
成成分を「合䜓させおなる」ずいうこずは、これ
ら必須䞉成分および堎合により䜿甚する前蚘のよ
うな補助成分を䞀時にあるいは段階的に接觊状態
に到らせお埗られるこずを意味する。埓぀お、諞
成分を合䜓させおなる本発明の固䜓組成物はこれ
ら諞成分の単なる混合物である堎合もあれば諞成
分の䞀郚たたは党郚が䜕らかの盞互䜜甚を及がし
あ぀おいるかあるいは反応しおいる堎合もあり、
本発明はそのいずれの堎合も包含するものであ
る。
3 Preparation of Solid Composition The solid composition of the present invention is obtained by combining the above constituent components a) to c). In this invention, "combining" these components means that these three essential components and optionally used auxiliary components as described above are brought into contact with each other all at once or in stages. means. Therefore, the solid composition of the present invention made by combining various components may be a mere mixture of these components, or some or all of the components may be interacting or reacting in some way. In some cases,
The present invention encompasses both cases.

具䜓的な調補法のいく぀かを瀺せば、䞋蚘の通
りである。なお、本発明はこれらの調補法に限定
されるものではない。
Some specific preparation methods are as follows. Note that the present invention is not limited to these preparation methods.

 マグネシりム化合物、酞ハロゲン化物および
アルコキシチタン化合物の䞉成分を同時に混合
し、粉砕する。
a The three components of the magnesium compound, acid halide, and alkoxytitanium compound are simultaneously mixed and pulverized.

 あらかじめマグネシりム化合物ず酞ハロゲン
化合物ずを混合粉砕し、さらに続いおアルコキ
シチタン化合物を添加しお混合粉砕する。
b A magnesium compound and an acid halide compound are mixed and ground in advance, and then an alkoxytitanium compound is added and mixed and ground.

 䞊蚘においお酞ハロゲン化物ずアルコキ
シチタン化合物の添加順序を逆にする。
c. In b) above, the order of addition of the acid halide and the alkoxytitanium compound is reversed.

 マグネシりム化合物に察しお酞ハロゲン化合
物およびアルコキシチタン化合物を亀互に少く
ずも各回以䞊接觊させお粉砕する。
d) A magnesium compound is alternately brought into contact with an acid halogen compound and an alkoxy titanium compound at least twice or more each to be pulverized.

 䞊蚘〜の方法においお、酞ハロゲン
化合物ずアルコキシチタン化合物を連続的に継
続しお所定量添加しながら混合する。
e In methods b) to d) above, the acid halogen compound and the alkoxy titanium compound are mixed while being continuously added in a predetermined amount.

 マグネシりム化合物ずアルコヌルずを反応さ
せおマグネシりム化合物ずアルコヌルずの附加
物を合成し、垞法に埓぀おチタンハロゲン化物
を反応させおマグネシりム化合物䞊にアルコキ
シチタン化合物を「珟堎圢成」させ、その埌に
酞ハロゲン化物ず接觊させる。
f. Reacting a magnesium compound and alcohol to synthesize an adduct of the magnesium compound and alcohol, reacting titanium halide in accordance with a conventional method to "in situ form" an alkoxytitanium compound on the magnesium compound, and then Contact with acid halide.

 マグネシりム化合物ず酞ハロゲン化物を混合
粉砕埌、アルコキシチタン化合物を溶解した溶
液ず接觊させる。
g After mixing and pulverizing a magnesium compound and an acid halide, they are brought into contact with a solution in which an alkoxytitanium compound is dissolved.

 マグネシりム化合物ずアルコキシチタン化合
物ずを混合粉砕埌、酞ハロゲン化物を溶解した
溶液ず接觊させる。
h After mixing and pulverizing a magnesium compound and an alkoxytitanium compound, they are brought into contact with a solution in which an acid halide is dissolved.

 前蚘䞉成分を溶媒䞭にお、䞉者の同時接觊を
行な぀た埌に、蒞発也固しおさらに粉砕凊理を
行なう。
i The three components are brought into simultaneous contact with each other in a solvent, and then evaporated to dryness and further pulverized.

䞊蚘の方法においお、粉砕は䞀般に時間以䞊
行なう。10ないし100時間の範囲で実斜されるの
が䞀般的である。粉砕は䞍掻性雰囲気で行なうの
が望たしい。たた、溶媒䞭での接觊凊理を行なう
堎合には、䞀般に宀枩〜150℃、30分〜10時間の
範囲で実斜されるのが䞀般的である。
In the above method, the grinding is generally carried out for 5 hours or more. The duration is generally between 10 and 100 hours. Grinding is preferably carried out in an inert atmosphere. Further, when contact treatment is performed in a solvent, it is generally carried out at room temperature to 150°C for 30 minutes to 10 hours.

 固䜓組成物の凊理 前蚘のような方法により埗られる固䜓組成物を
チヌグラヌ型觊媒成分ずしお䜿甚しおも党く䜎䜍
の性胜しか瀺さず、実甚的な䟡倀を芋い出すこず
はできない。この組成物を䞍掻性有機溶剀で凊理
しお始めお本発明の目的ずするチタン組成物、す
なわちオレフむン重合甚觊媒成分、が埗られる。
2. Treatment of Solid Composition Even if the solid composition obtained by the method described above is used as a Ziegler type catalyst component, it exhibits only low performance and cannot be of any practical value. Only by treating this composition with an inert organic solvent can the titanium composition targeted by the present invention, that is, the catalyst component for olefin polymerization, be obtained.

 䞍掻性有機溶剀凊理 本発明で䜿甚される䞍掻性有機溶剀ずしおは、
脂肪族、脂環族、芳銙族炭化氎玠化合物あるいは
これらのハロゲン化炭化氎玠化合物が甚いられ
る。これらのうちでも、ハロゲン化炭化氎玠溶剀
および芳銙族炭化氎玠溶剀が奜たしい。具䜓的に
は、ヘキサン、ヘブタン、ベンれン、トル゚ン、
キシレン、メシチレン、シクロヘキサン、メチル
シクロヘキサン、−ゞクロル゚タン、塩化
プロピル、塩化ブチル、クロルベンれン、ブロム
ベンれンなどが䜿甚できる。或いはこれらの混合
溶媒が䜿甚できる。
1 Inert organic solvent treatment Inert organic solvents used in the present invention include:
Aliphatic, alicyclic, aromatic hydrocarbon compounds or halogenated hydrocarbon compounds thereof are used. Among these, halogenated hydrocarbon solvents and aromatic hydrocarbon solvents are preferred. Specifically, hexane, hebutane, benzene, toluene,
Xylene, mesitylene, cyclohexane, methylcyclohexane, 1,2-dichloroethane, propyl chloride, butyl chloride, chlorobenzene, bromobenzene, etc. can be used. Alternatively, a mixed solvent of these can be used.

䞍掻性有機溶剀の凊理は、通垞宀枩〜150℃繋
床の枩床で30分〜10時間撹拌するこずにより行な
う。具䜓的には、䞍掻性有機溶剀がハロゲン化炭
化氎玠の堎合は、粉砕固䜓10皋床圓りハロゲン
化炭化氎玠50〜100mlを甚いお宀枩〜100℃の枩床
で〜時間凊理を行なえばよい。たた芳銙族炭
化氎玠を䞍掻性有機溶剀ずしお䜿甚する堎合は、
同様の条件䞋で50〜140℃の枩床で実斜すればよ
い。しかしいずれの堎合にも、凊理枩床による觊
媒性胜の倉化は限界的なものではない。凊理埌
は、充分掗浄するこずが奜たしい。
Treatment with an inert organic solvent is usually carried out by stirring at a temperature of about room temperature to 150°C for 30 minutes to 10 hours. Specifically, when the inert organic solvent is a halogenated hydrocarbon, the treatment may be carried out using 50 to 100 ml of the halogenated hydrocarbon per about 10 g of the pulverized solid at a temperature of room temperature to 100°C for 1 to 3 hours. In addition, when aromatic hydrocarbons are used as inert organic solvents,
It may be carried out under similar conditions at a temperature of 50 to 140°C. However, in any case, the change in catalyst performance due to treatment temperature is not critical. After treatment, it is preferable to wash thoroughly.

この䞍掻性有機溶剀凊理により被凊理固䜓組成
物のチタン含量が䜎䞋するこずが認められるか
ら、䞍掻性有機溶剀凊理の終点は適圓なチタン含
量の䜎䞋が実珟された時点ずいうこずができる。
最適チタン含量䜎䞋量は、固䜓組成物の調補方
法、その組成および䞍掻性有機溶剀の皮類、量、
枩床、時間などによ぀お異なるが、実隓的に容易
に決定するこずができる。
Since it is recognized that the titanium content of the solid composition to be treated is reduced by this inert organic solvent treatment, the end point of the inert organic solvent treatment can be said to be the point at which an appropriate reduction in the titanium content is achieved.
The optimum titanium content reduction amount depends on the preparation method of the solid composition, its composition, the type and amount of the inert organic solvent,
Although it varies depending on temperature, time, etc., it can be easily determined experimentally.

本発明でこの溶剀凊理が劂䜕なる理由によ぀お
有効であるのかは必ずしも明らかではない。しか
し、この凊理により固䜓組成物䞭のチタン含有量
が䜎䞋するこずにより、䜕らかのチタン化合物が
抜出ないし溶出されるこずがその理由の少くずも
䞀郚であるず掚定されるただし、このような理
由によ぀お本発明は限定を受けるものではない。
It is not necessarily clear why this solvent treatment is effective in the present invention. However, it is presumed that at least part of the reason for this is that some titanium compounds are extracted or eluted due to the reduction in the titanium content in the solid composition due to this treatment (however, this is not the case). The present invention is not limited by this).

 むンタヌハロゲンたたはハロゲン 䞊蚘固䜓組成物の䞍掻性有機溶剀凊理時にむン
タヌハロゲンたたはハロゲンを存圚させおおくこ
ずにより、固䜓組成物のオレフむン重合觊媒成分
ずしおの性胜をさらに向䞊させるこずができる。
2 Interhalogen or Halogen By allowing interhalogen or halogen to be present during the treatment of the solid composition with an inert organic solvent, the performance of the solid composition as an olefin polymerization catalyst component can be further improved.

このような目的で䜿甚されるむンタヌハロゲン
およびハロゲンずしおは、䞀般匏XYnで定矩さ
れるものである。のずき、≠
のずき、、たたは、およびはハ
ロゲン。具䜓䟋ずしおは、Cl2Br2I2ClF
BrFIFBrClIClIBrClF3BrF3IF3
ICl3たたはI2Cl6ClF5BrF5IF5IF7など
がある。これらのハロゲン化合物のうち、特に
IClICl3Cl2I2が奜たしい。
Interhalogens and halogens used for such purposes are those defined by the general formula XYn. (When X=Y, n=1, X≠Y
(when n=1, 3, 5 or 7, X and Y are halogens). Specific examples include Cl 2 , Br 2 , I 2 , ClF,
BrF, IF, BrCl, ICl, IBr, ClF 3 , BrF 3 , IF 3 ,
Examples include ICl 3 (or I 2 Cl 6 ), ClF 5 , BrF 5 , IF 5 and IF 7 . Among these halogen compounds, especially
ICl, ICl3 , Cl2 , I2 are preferred.

これらの化合物の䜿甚される量は、䞀般に固䜓
組成物䞭のチタン化合物に察しおモル比で
0.001〜20、奜たしくは0.005〜10皋床でよい。
The amounts used of these compounds are generally in molar ratio to the titanium compound in the solid composition ().
It may be about 0.001 to 20, preferably about 0.005 to 10.

このむンタヌハロゲンたたはハロゲンの固䜓觊
媒成分補造工皋での導入時期は必ずしも䞍掻性有
機溶剀䞭で凊理する際でなくおもよく、マグネシ
りム化合物、酞ハロゲン化物およびアルコキシチ
タン化合物の接觊合䜓段階で、あらかじめ存圚さ
せおおくこずもできる。
The interhalogen or halogen does not necessarily need to be introduced during the process of producing the solid catalyst component during the treatment in an inert organic solvent, but may be introduced in advance during the catalytic combination stage of the magnesium compound, acid halide, and alkoxytitanium compound. You can also leave it there.

 オレフむンの重合 以䞊のように補造されたチタン組成物は、チヌ
グラヌ型觊媒の遷移金属成分ずしお、還元性の呚
期埋衚第〜族化合物、特に䞀般匏AlR5 nX4 3-n
〜、X4ハロゲン、R5たたは炭玠
数〜10の炭化氎玠残基で衚わされる有機アル
ミニりム化合物、ず組み合されお、α−オレフむ
ン立䜓芏則性重合觊媒を圢成する。
3 Polymerization of Olefin The titanium composition produced as described above contains, as the transition metal component of the Ziegler-type catalyst, a reducing compound of group ~~ of the periodic table, especially a compound with the general formula AlR 5 n X 4 3-n
(m = 1 to 3, X 4 = halogen, R 5 = H or a hydrocarbon residue having 1 to 10 carbon atoms). Form.

適圓な有機アルミニりム化合物の䟋を挙げれ
ば、トリ゚チルアルミニりム、トリむ゜ブチルア
ルミニりム、トリヘキシルアルミニりム、トリオ
クチルアルミニりム、ゞ゚チルアルミニりムハむ
ドラむド、ゞ゚チルアルミニりムクロラむドなど
がある。
Examples of suitable organoaluminum compounds include triethylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, diethylaluminium hydride, diethylaluminum chloride, and the like.

䜿甚されるベき有機アルミニりム化合物は、チ
タン組成物䞭の原子圓り〜300、奜たしくは
〜150重量比、の範囲内で甚いられる。たたこ
のずき、觊媒の立䜓芏則性重合胜を向䞊させるこ
ずを目的ずしお、゚ヌテル、アミン、゚ステルな
どの電子䟛䞎性化合物を附加的に䜿甚するこずも
できる。
The organoaluminum compound to be used has a content of 1 to 300, preferably 1 per atom in the titanium composition.
~150 (weight ratio). Further, at this time, an electron-donating compound such as ether, amine, or ester may be additionally used for the purpose of improving the stereoregular polymerization ability of the catalyst.

重合法ずしおは、ヘキサン、ヘプタン等の䞍掻
性炭化氎玠を溶媒ずするいわゆるスラリヌ重合
法、液化モノマヌを溶媒ずする液盞重合法あるい
はモノマヌがガス盞ずしお存圚する気盞重合法な
どが可胜である。重合圢匏ずしおは、連続匏およ
び回分匏が実斜可胜である。重合枩床は30〜120
℃皋床、奜たしくは40〜80℃皋床、重合圧力は倧
気圧〜100気圧皋床、奜たしくは倧気圧〜50気圧
皋床、である。
Possible polymerization methods include a so-called slurry polymerization method using an inert hydrocarbon such as hexane or heptane as a solvent, a liquid phase polymerization method using a liquefied monomer as a solvent, or a gas phase polymerization method where the monomer exists as a gas phase. . As for the polymerization method, continuous method and batch method can be carried out. Polymerization temperature is 30-120
℃, preferably about 40 to 80 degrees Celsius, and the polymerization pressure is about atmospheric pressure to 100 atm, preferably about atmospheric pressure to 50 atm.

本発明のチタン組成物からの觊媒により、単独
たたは共重合されるオレフむンずしおは、゚チレ
ン、プロピレン、−ブテン、−メチルペンテ
ン−などがある。本発明のチタン組成物は特に
プロピレンの重合およびプロピレンずその〜15
重量の゚チレンずの共重合觊媒成分ずしお有効
である。重合䜓の分子量調節は氎玠等を甚いる公
知の方法が実斜可胜である。
Olefins that can be monopolymerized or copolymerized with the catalyst from the titanium composition of the present invention include ethylene, propylene, 1-butene, 4-methylpentene-1, and the like. The titanium composition of the present invention is particularly suitable for polymerization of propylene and propylene and its 1 to 15
It is effective as a copolymerization catalyst component with weight% of ethylene. The molecular weight of the polymer can be adjusted by a known method using hydrogen or the like.

 実隓䟋 実斜䟋  (1) チタン組成物の補造 アルゎン雰囲気䞋においお、無氎のMgCl220
ず塩化ベンゟむル7.3ml〔塩化ベンゟむル
MgCl20.3モル比〕を内容積リツトルの振
動ミル内にお接觊混合したポツト内には、盎埄
12.7mmのステンレス鋌球SUS−27800ml芋
掛䜓積を入れおある。12時間の接觊粉砕埌、
TiCl3OEt゚トキシトリクロルチタン、12.6
〔Ti3OEtMgCl20.3モル比〕を加え
お再び16時間接觊粉砕凊理を行な぀お、粉砕固䜓
組成物を埗た。
4 Experimental Examples Example 1 (1) Production of titanium composition 20 g of anhydrous MgCl 2 in an argon atmosphere
and benzoyl chloride 7.3ml [benzoyl chloride/
MgCl 2 = 0.3 (mole ratio)] was contact mixed in a vibrating mill with an internal volume of 1 liter (inside the pot,
Contains 800ml (apparent volume) of 12.7mm stainless steel ball (SUS-27). After 12 hours of contact grinding,
TiCl3 (OEt) (ethoxytrichlortitanium), 12.6
g [Ti 3 (OEt)/MgCl 2 = 0.3 (molar ratio)] was added thereto and the contact pulverization treatment was performed again for 16 hours to obtain a pulverized solid composition.

埗られた粉砕固䜓のうち玄を200mlのフラ
スコに小分けし、これに䞍掻性有機溶剀ずしお
−ゞクロル゚タン100mlを加えお80℃にお
時間撹拌した。この凊理埌、デカンテヌシペン
により固䜓を掗浄しお−ヘキサン100mlで
回、目的ずするチタン組成物本発明觊媒成分
を埗た。このチタン組成物スラリヌ䞭のチタン濃
床を過酞化氎玠発色法による比色分析により求
め、次の重合詊隓に䟛した。なお、このチタン組
成物固䜓䞭のチタン含量を分析したずころ、固䜓
䞭には1.42重量のチタンが含たれおいるこずが
刀぀た。
Approximately 7 g of the obtained crushed solid was divided into 200 ml flasks, 100 ml of 1,2-dichloroethane was added thereto as an inert organic solvent, and the mixture was stirred at 80° C. for 2 hours. After this treatment, the solid was washed by decantation (100 ml of n-hexane
), target titanium composition (catalyst component of the present invention)
I got it. The titanium concentration in this titanium composition slurry was determined by colorimetric analysis using a hydrogen peroxide coloring method, and the slurry was subjected to the following polymerization test. When the titanium content in the solid titanium composition was analyzed, it was found that the solid contained 1.42% by weight of titanium.

(2) プロピレンの重合液盞重合 内容積リツトルの撹拌装眮を備えたオヌトク
レヌブにトリ゚チルアルミニりム10mgおよびチタ
ン組成物スラリヌよりチタン原子0.4mgを含有す
る固䜓組成物AlTi10.5モル比をこの順
序でプロピレンガス雰囲気䞋に導入し、最埌に液
化プロピレン750mlを加えお昇枩しお、重合を開
始した。重合は、70℃で時間行な぀た。重合終
了埌、残存モノマヌをパヌゞしお240.5の重合
䜓PPを埗た。
(2) Polymerization of propylene (liquid phase polymerization) A solid composition containing 10 mg of triethylaluminum and 0.4 mg of titanium atoms from the titanium composition slurry (Al/Ti = 10.5 molar ratio ) were introduced in this order under a propylene gas atmosphere, and finally 750 ml of liquefied propylene was added and the temperature was raised to initiate polymerization. Polymerization was carried out at 70°C for 1 hour. After the polymerization was completed, residual monomers were purged to obtain 240.5 g of polymer (PP).

察チタン原子収率gPPgTiは600000であ
り、察チタン組成物収率gPPチタン組成
物は8500である。この重合䜓の立䜓芏則性以
äž‹å…šIIず呌ぶは、沞隰−ヘプタン抜出詊隓よ
り87.7であ぀た。
The atom yield to titanium (gPP/gTi) is 600,000, and the yield to titanium composition (gPP/g titanium composition) is 8,500. The stereoregularity (hereinafter referred to as total II) of this polymer was 87.7% as determined by a boiling n-heptane extraction test.

比范䟋  実斜䟋−で埗た粉砕固䜓組成物7.6重量
のチタンを含有するを䜕らの凊理を斜すこずな
くヘキサン䞭にスラリヌ状態にしお重合詊隓に䟛
した。実斜䟋−ず同䞀の重合条件にお重合を行
な぀たずころ、44のプロピレンポリマヌが埗ら
れた。察チタン原子収率は110000であり、察チタ
ン組成物収率は8400であ぀た。たた党IIは72.3
であ぀た。
Comparative Example 1 Pulverized solid composition obtained in Example-1 (7.6% by weight
(containing titanium) was slurried in hexane without any treatment and subjected to a polymerization test. When polymerization was carried out under the same polymerization conditions as in Example-1, 44 g of propylene polymer was obtained. The atom yield to titanium was 110,000, and the yield to titanium composition was 8,400. Also, total II is 72.3%
It was hot.

実斜䟋  実斜䟋−の−ゞクロル゚タン溶媒によ
る䞍掻性有機溶剀凊理時に䞉塩化ペり玠0.1を
甚いお凊理を行な぀た粉砕固䜓9.0を甚いお
凊理する以倖はすべお実斜䟋−ず同䞀条件。
凊理埌の觊媒固䜓組成物䞭のチタン含量は1.56重
量である。
Example 2 0.1 g of iodine trichloride was used during the treatment with an inert organic solvent using 1,2-dichloroethane solvent in Example 1 (all examples were the same except for the treatment using 9.0 g of pulverized solid). (same conditions as 1).
The titanium content in the catalyst solid composition after treatment is 1.56% by weight.

この固䜓組成物觊媒スラリヌを甚いお重合詊隓
を行な぀たずころ、察チタン収率は560000であ
り、察チタン組成物収率は8700であ぀た。たた、
å…šIIは93.5であ぀た。
When a polymerization test was conducted using this solid composition catalyst slurry, the yield relative to titanium was 560,000, and the yield relative to titanium was 8,700. Also,
Total II was 93.5%.

実斜䟋  実斜䟋−の−ゞクロル゚タン溶媒によ
る䞍掻性有機溶剀凊理時に、䞉塩化ペり玠0.1
および五塩化リン0.5を甚いお凊理を行な぀た
粉砕固䜓8.0䜿甚。凊理埌の觊媒固䜓組成物
䞭のチタン含量は1.50重量である。この觊媒固
䜓組政成物スラリヌを甚いお、実斜䟋−ず同様
の重合詊隓を行な぀たずころ〔䜆し、TEA8mg、
チタン0.4mg、AlTi8.4モル比〕206のポ
リマヌが埗られた。察チタン収率は515000であり
察チタン組成物収率は7700であ぀た。党IIは95.2
である。
Example 3 During treatment with an inert organic solvent using 1,2-dichloroethane solvent in Example-1, 0.1 g of iodine trichloride
and 0.5 g of phosphorus pentachloride (8.0 g of ground solid was used). The titanium content in the catalyst solid composition after treatment is 1.50% by weight. Using this catalyst solid composition slurry, a polymerization test similar to that in Example 1 was conducted [However, TEA8mg,
0.4 mg of titanium, 206 g of polymer with Al/Ti=8.4 (molar ratio) was obtained. The yield relative to titanium was 515,000, and the yield relative to titanium was 7,700. All II is 95.2
%.

実斜䟋  実斜䟋−においおMgCl2に察する塩化ベンゟ
むルおよびTiCl3OEtの接觊順序を逆にしお粉
砕固䜓を補造した。すなわち、MgCl220に察し
おTiCl3OEt12.6を加えお12時間粉砕凊理
し、さらに塩化ベンゟむル7.3mlを加えお再び16
時間粉砕凊理を行な぀お、粉砕固䜓を補造した。
Example 4 A pulverized solid was produced by reversing the contact order of benzoyl chloride and TiCl 3 (OEt) with respect to MgCl 2 in Example-1. That is, 12.6 g of TiCl 3 (OEt) was added to 20 g of MgCl 2 and pulverized for 12 hours, and then 7.3 ml of benzoyl chloride was added and pulverized again for 16 hours.
A time milling process was performed to produce a ground solid.

この粉砕固䜓7.0を甚いお実斜䟋−ず同䞀
条件で−ゞクロル゚タンによる䞍掻性溶剀
凊理を行な぀た埗られた固䜓觊媒組成物䞭のチ
タン含量は1.41であ぀た。
Using 7.0 g of this pulverized solid, an inert solvent treatment with 1,2-dichloroethane was performed under the same conditions as in Example 1 (the titanium content in the obtained solid catalyst composition was 1.41%).

この固䜓觊媒組政成物を甚いお実斜䟋−ず同
様の重合詊隓を行な぀たずころ〔䜆し、TEA12
mg、Ti0.4mg、AlTi12.6モル比〕、92の
ポリマヌが埗られた。察チタン収率230000、察チ
タン組成物収率3200および党II93.1であ぀た。
A polymerization test similar to that in Example 1 was conducted using this solid catalyst composition [however, TEA12
mg, Ti=0.4 mg, Al/Ti=12.6 (molar ratio)], 92 g of polymer was obtained. The yield relative to titanium was 230,000, the yield relative to titanium was 3,200, and the total II was 93.1%.

実斜䟋  無氎のMgCl220、安息銙酞マグネシりム塩
9.9および五塩化リン14を振動ミルポツトに
充填し、時間接觊混合しお、マグネシりム化合
物および塩化ベンゟむルを含む固䜓を埗た。これ
にさらにTiCl3OEt13.5を加えお16時間混合
粉砕しお、粉砕固䜓組成物を埗た。
Example 5 20 g of anhydrous MgCl 2 , magnesium benzoate salt
9.9 g and 14 g of phosphorus pentachloride were charged into a vibrating mill pot and mixed in contact for 4 hours to obtain a solid containing a magnesium compound and benzoyl chloride. Further, 13.5 g of TiCl 3 (OEt) was added thereto, and the mixture was mixed and pulverized for 16 hours to obtain a pulverized solid composition.

この固䜓組成物を甚いお実斜䟋−ず同様
の方法で−ゞクロル゚タンによる䞍掻性溶
剀凊理を行な぀た埗られた固䜓觊媒組成物䞭の
チタン含量は1.06重量であ぀た。
Using 7 g of this solid composition, an inert solvent treatment with 1,2-dichloroethane was performed in the same manner as in Example 1 (the titanium content in the obtained solid catalyst composition was 1.06% by weight). ).

この固䜓觊媒組成物を甚いお実斜䟋−ず同様
の重合詊隓を行な぀たずころ〔䜆し、TEA16mg、
Ti0.4mg、AlTi16.8モル比〕、128のポリ
マヌが埗られた。察チタン収率320000、察チタン
組成物収率3400および党II92.0であ぀た。
A polymerization test similar to that in Example 1 was conducted using this solid catalyst composition.
0.4 mg of Ti, Al/Ti = 16.8 (molar ratio)], 128 g of polymer was obtained. The yield relative to titanium was 320,000, the yield relative to titanium was 3,400, and the total II was 92.0%.

【図面の簡単な説明】[Brief explanation of drawings]

第図は、チヌグラヌ觊媒に関する本発明の技
術内容の理解を助けるためのものである。
FIG. 1 is intended to assist in understanding the technical content of the present invention regarding Ziegler catalysts.

Claims (1)

【特蚱請求の範囲】  䞋蚘の、およびを合䜓させおな
る固䜓組成物を、ハロゲン化炭化氎玠溶剀たたは
芳銙族炭化氎玠溶剀から遞ばれる䞍掻性溶媒を甚
いお、䞋蚘凊理条件で凊理するこずを特城ずす
る、オレフむン重合甚觊媒成分の補造法。 固䜓組成物  MgX1 2ここで、X1はハロゲンを瀺す、Mg
OR12ここで、OR1は炭玠数〜12の有機残
基を瀺す、 MgOCOR22ここで、−OCOR2は炭玠数〜
12の有機カルボン酞残基を瀺すたたはこれら
の混合物から遞ばれるマグネシりム化合物、  䞀般匏TiOR3oX2 4-oここで、は≊
、R3は炭玠数〜12のアルキル基、X2はハ
ロゲンを瀺すで衚わされるアルコキシチタン
化合物、  䞀般匏R4COX3ここで、R4は炭玠数〜12
の脂肪族、脂環族たたは芳銙族の有機残基、
X3はハロゲンを瀺すで衚わされる酞ハロゲ
ン化合物、 凊理条件 䞍掻性溶媒がハロゲン化炭化氎玠溶剀の堎合
は、宀枩〜100℃の枩床で、芳銙族炭化氎玠の堎
合は50〜140℃の枩床で行う。
[Claims] 1. A solid composition obtained by combining a), b) and c) below is subjected to the following treatment using an inert solvent selected from a halogenated hydrocarbon solvent or an aromatic hydrocarbon solvent. 1. A method for producing a catalyst component for olefin polymerization, characterized by processing under certain conditions. Solid composition a MgX 1 2 (where X 1 represents halogen), Mg
(OR 1 ) 2 (here, OR 1 indicates an organic residue having 1 to 12 carbon atoms), Mg(OCOR 2 ) 2 (here, -OCOR 2 indicates an organic residue having 1 to 12 carbon atoms)
12 organic carboxylic acid residues) or a mixture thereof, b General formula Ti(OR 3 ) o X 2 4-o (where n is 0<n≩
4, R 3 is an alkyl group having 1 to 12 carbon atoms, X 2 is a halogen), c an alkoxytitanium compound represented by the general formula R 4 COX 3 (where R 4 is an alkyl group having 1 to 12 carbon atoms),
aliphatic, cycloaliphatic or aromatic organic residues,
X 3 represents a halogen) Processing conditions When the inert solvent is a halogenated hydrocarbon solvent, the temperature is from room temperature to 100°C, and when the inert solvent is a halogenated hydrocarbon solvent, the temperature is from 50 to 140°C. Do it with
JP13631278A 1978-11-07 1978-11-07 Preparation of olefin polymerization catalyst component Granted JPS5562907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13631278A JPS5562907A (en) 1978-11-07 1978-11-07 Preparation of olefin polymerization catalyst component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13631278A JPS5562907A (en) 1978-11-07 1978-11-07 Preparation of olefin polymerization catalyst component

Publications (2)

Publication Number Publication Date
JPS5562907A JPS5562907A (en) 1980-05-12
JPS6334169B2 true JPS6334169B2 (en) 1988-07-08

Family

ID=15172249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13631278A Granted JPS5562907A (en) 1978-11-07 1978-11-07 Preparation of olefin polymerization catalyst component

Country Status (1)

Country Link
JP (1) JPS5562907A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042797A1 (en) 2011-09-21 2013-03-28 Sumitomo Chemical Company, Limited Process for producing solid catalyst component for olefin polymerization

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2509735A1 (en) * 1981-07-20 1983-01-21 Charbonnages Ste Chimique HALOGEN CATALYST COMPRISING A TRANSITION METAL AND MAGNESIUM, PROCESS FOR PREPARING THE SAME AND APPLICATION THEREOF TO THE POLYMERIZATION OF ETHYLENE
JPS60110704A (en) * 1983-11-22 1985-06-17 Idemitsu Kosan Co Ltd Production of polyolefin
JP3885336B2 (en) 1998-02-19 2007-02-21 䜏友化孊株匏䌚瀟 α-Olefin Polymerization Catalyst and Method for Producing α-Olefin Polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042797A1 (en) 2011-09-21 2013-03-28 Sumitomo Chemical Company, Limited Process for producing solid catalyst component for olefin polymerization

Also Published As

Publication number Publication date
JPS5562907A (en) 1980-05-12

Similar Documents

Publication Publication Date Title
US4172050A (en) High efficiency titanate catalyst for polymerizing olefins
EP1082359B1 (en) Components and catalysts for the polymerization of olefins
JPH0216324B2 (en)
AU8435498A (en) Components and catalysts for the polymerization of olefins
EP0012397B1 (en) Polymerization catalyst and process for polymerizing alpha-olefins
JPS6330328B2 (en)
US4563436A (en) Catalyst component for α-olefin polymerization and method of producing the same
US4820786A (en) Process for the preparation of linear low density polyethylene
JP2752404B2 (en) Olefin polymerization catalyst
JPS5923561B2 (en) Olefin polymerization method
JPS6334169B2 (en)
JPS595202B2 (en) Method for producing a catalyst component for α-olefin polymerization
US4364853A (en) Catalyst for polymerizing olefins
US4857612A (en) Process for the polymerization of alpha olefins
JPS61213209A (en) Production of olefin polymer
US4288579A (en) Process for preparing polyolefins
JPS6146481B2 (en)
JPH0128049B2 (en)
JPH0819176B2 (en) Olefin polymerization catalyst
JP2652217B2 (en) Olefin polymerization method
JP2811863B2 (en) Solid catalyst component for olefin polymerization and use thereof
JP2559747B2 (en) Olefin polymerization catalyst
JPS58117206A (en) Production of catalytic component for olefin polymerization
JPS59124909A (en) Production of olefin polymerization catalyst
JPH0721019B2 (en) Method for producing olefin polymer