JPS6334167B2 - - Google Patents

Info

Publication number
JPS6334167B2
JPS6334167B2 JP9711978A JP9711978A JPS6334167B2 JP S6334167 B2 JPS6334167 B2 JP S6334167B2 JP 9711978 A JP9711978 A JP 9711978A JP 9711978 A JP9711978 A JP 9711978A JP S6334167 B2 JPS6334167 B2 JP S6334167B2
Authority
JP
Japan
Prior art keywords
compound
zirconium
vanadium
titanium
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9711978A
Other languages
Japanese (ja)
Other versions
JPS5523173A (en
Inventor
Tooru Tanaka
Eiji Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP9711978A priority Critical patent/JPS5523173A/en
Priority to PCT/JP1979/000209 priority patent/WO1980000347A1/en
Priority to DE7979900930T priority patent/DE2965617D1/en
Publication of JPS5523173A publication Critical patent/JPS5523173A/en
Priority to EP79900930A priority patent/EP0019637B1/en
Publication of JPS6334167B2 publication Critical patent/JPS6334167B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳现な説明】 本発明はオレフむン重合䜓の補造法に関するも
のである。曎に詳しくは、チタン化合物、バナゞ
りム化合物及びゞルコニりム化合物を含む新芏な
觊媒を甚いおオレフむン重合䜓を補造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing olefin polymers. More specifically, the present invention relates to a method for producing an olefin polymer using a novel catalyst containing a titanium compound, a vanadium compound, and a zirconium compound.

埓来、゚チレン等のα―オレフむンを、遷移金
属化合物ず有機アルミニりム化合物ずからなるい
わゆるチヌグラヌ觊媒を甚いお重合するこずは公
知であり、䟋えば特公昭49−11269号においおは、
四䟡のハロゲン化チタンずバナゞりムのオキシア
ルコキサむドの混合物ないしは反応物を有機アル
ミニりム化合物で還元しお埗られる共晶䜓ず、有
機アルミニりム化合物からなる觊媒系が提案され
おいる。この觊媒系は觊媒掻性がきわめお倧き
く、たたこの觊媒系により埗られた重合䜓は粒埄
分垃が狭く、嵩密床が高い等の重合䜓の生産にお
ける非垞に倧きな利点を持぀おいる。
It has been known to polymerize α-olefins such as ethylene using a so-called Ziegler catalyst consisting of a transition metal compound and an organoaluminium compound. For example, in Japanese Patent Publication No. 11269/1983,
A catalyst system consisting of an organoaluminum compound and a eutectic obtained by reducing a mixture or reactant of tetravalent titanium halide and vanadium oxyalkoxide with an organoaluminum compound has been proposed. This catalyst system has extremely high catalytic activity, and the polymer obtained using this catalyst system has very large advantages in the production of polymers, such as a narrow particle size distribution and high bulk density.

しかしながら、この觊媒系によ぀お埗られる重
合䜓は分子量分垃が狭く、射出成型甚には適しお
いたが、抌出成型甚たたはブロヌ成型甚等分子量
分垃が広いこずを必芁ずする甚途には適しおいな
か぀た。
However, the polymers obtained with this catalyst system have a narrow molecular weight distribution and are suitable for injection molding, but are not suitable for applications that require a wide molecular weight distribution such as extrusion molding or blow molding. Nakatsuta.

そこで、本発明者等は、分子量分垃の広い重合
䜓を補造するに有利な觊媒系に぀いお怜蚎した結
果、さきに、特願昭53−64740においお、チタン
化合物、バナゞりム化合物、及びゞルコニりム化
合物を有機アルミニりム化合物ず反応させお埗ら
れる固䜓觊媒成分ず有機アルミニりム化合物ずを
組み合わせた觊媒系を提案した。この觊媒系は高
掻性であり、チタン化合物、バナゞりム化合物、
ゞルコニりム化合物、及びアルミニりム化合物各
成分の量比を倉えお反応させるこずにより、䞀぀
の觊媒系によ぀お埗られる重合䜓の分子量分垃を
容易に調節するこずができる等の利点を持ち、そ
れ自䜓、非垞に有甚なものである。
Therefore, the present inventors investigated a catalyst system that is advantageous for producing polymers with a wide molecular weight distribution, and as a result, in Japanese Patent Application No. 64,740/1983, the present inventors discovered that titanium compounds, vanadium compounds, and zirconium compounds were We proposed a catalyst system that combines a solid catalyst component obtained by reacting with a compound and an organoaluminum compound. This catalyst system is highly active and is capable of reacting with titanium compounds, vanadium compounds,
By reacting the zirconium compound and the aluminum compound by changing the quantitative ratio of each component, it has the advantage that the molecular weight distribution of the polymer obtained by one catalyst system can be easily adjusted. It's very useful.

本発明者等はこの觊媒系を改良すべく、曎に鋭
意怜蚎を加えた結果、有機アルミニりム化合物ず
しお、臭化有機アルミニりムを甚いお固䜓觊媒成
分を調補するず、重合時反応垯域に、氎玠を存圚
させた堎合、氎玠による分子量調節効果が非垞に
倧きくなり、さきの説明により埗られた觊媒系の
特性を䜕らそこなうこずなく、これよりも䞀局容
易に、目的の分子量の重合䜓を埗るこずができる
こずを芋出し、本発明に到達した。
In order to improve this catalyst system, the present inventors conducted further intensive studies and found that when a solid catalyst component was prepared using organoaluminum bromide as an organoaluminum compound, hydrogen was not present in the reaction zone during polymerization. In this case, the effect of controlling the molecular weight by hydrogen becomes very large, and it is possible to obtain a polymer of the desired molecular weight more easily without impairing the properties of the catalyst system obtained as explained above. Heading, we arrived at the present invention.

すなわち本発明の芁旚は、 (A) チタンの有機酞玠化化合物及びハロゲン化化
合物から遞んだチタン化合物、 (B) バナゞりムの有機酞玠化化合物及びハロゲン
化化合物から遞んだバナゞりム化合物、 (C) ゞルコニりムの有機酞玠化化合物及びハロゲ
ン化化合物から遞んだゞルコニりム化合物、 䞊びに (D) 臭化有機アルミニりム化合物 を反応させお埗られた反応混合物から固䜓觊媒成
分を分離し、これず有機アルミニりム化合物ずを
組み合わせおなる觊媒を甚いお、オレフむンを重
合するこずを特城ずするオレフむン重合䜓の補造
法に存する。
That is, the gist of the present invention is as follows: (A) a titanium compound selected from organic oxygenated compounds and halogenated compounds of titanium; (B) a vanadium compound selected from organic oxygenated compounds and halogenated compounds of vanadium; A solid catalyst component is separated from the reaction mixture obtained by reacting a zirconium compound selected from organic oxygenated compounds and halogenated compounds, and (D) an organoaluminium bromide compound, and this is combined with the organoaluminum compound. The present invention relates to a method for producing an olefin polymer, which comprises polymerizing olefin using a catalyst.

本発明を詳现に説明するに、本発明においお固
䜓觊媒成分の調補に甚いられるチタン化合物、バ
ナゞりム化合物及びゞルコニりム化合物は、各金
属の有機酞玠化化合物およびハロゲン化化合物か
ら遞ばれる。ここで蚀う金属の有機酞玠化化合物
ずは、分子あたり少くずも個の金属―酞玠―
有機基結合をこの順序でも぀化合物を意味する。
そしお分子あたり少くずも個の金属―酞玠―
有機基結合を有するものであれば、金属―酞玠―
金属型の結合を持぀瞮合化合物であ぀おもよい。
この有機基ずしおは、任意のものを遞ぶこずがで
きるが、䞀般には〜20個の炭玠原子を有するも
の、曎に奜たしくは炭化氎玠基、䟋えば、アルキ
ル基、シクロアルキル基、アリヌル基、アルキル
アリヌル基、アリヌルアルキル基等が甚いられ
る。䞀方、金属のハロゲン化化合物ずは分子圓
たり少くずも個の金属―ハロゲン結合を持぀化
合物を意味する。そしお分子圓たり少くずも
個の金属―ハロゲン結合を有するものであれば、
金属―酞玠―金属型の結合を持぀瞮合化合物であ
぀おもよい。このハロゲン原子ずしおは、フツ
玠、塩玠、臭玠、ペり玠を甚いるこずができる。
このうち臭玠を甚いるこずが最も奜たしい。そし
おこのような有機酞玠化化合物、ハロゲン化化合
物ずしおは、䞀般匏〔MeOaORbXc〕d匏䞭、
は䞊蚘有機基、は䞊蚘ハロゲン原子を衚わ
し、Meは、チタン、バナゞりム又はゞルコニり
ムである。は≊≊は≊≊
≊≊の数であり、×は各
金属の原子䟡に等しい。は≊≊の敎数で
ある。で衚わされる化合物が最も奜たしい。
To explain the present invention in detail, the titanium compound, vanadium compound and zirconium compound used in the preparation of the solid catalyst component in the present invention are selected from organic oxygenated compounds and halogenated compounds of each metal. The term “organic oxygenated metal compound” here refers to at least one metal oxygen compound per molecule.
It means a compound that has organic group bonds in this order.
and at least one metal - oxygen - per molecule.
If it has an organic group bond, metal-oxygen-
It may also be a condensation compound with metal-type bonds.
Any organic group can be selected, but it generally has 1 to 20 carbon atoms, and more preferably a hydrocarbon group, such as an alkyl group, a cycloalkyl group, an aryl group, or an alkylaryl group. group, arylalkyl group, etc. are used. On the other hand, a metal halide compound means a compound having at least one metal-halogen bond per molecule. and at least 1 per molecule
If it has metal-halogen bonds,
It may also be a condensation compound having a metal-oxygen-metal type bond. As this halogen atom, fluorine, chlorine, bromine, and iodine can be used.
Among these, it is most preferable to use bromine. Such organic oxygenated compounds and halogenated compounds have the general formula [M e O a (OR) b X c ] d (in the formula,
R represents the above organic group, X represents the above halogen atom, and M e is titanium, vanadium or zirconium. a is 0≩a≩1, b, c is 0≩b≩
5,0≩c≩5, and a×2+b+c is equal to the valence of each metal. d is an integer satisfying 1≩d≩6. ) are most preferred.

しかしお、チタン化合物ずしおは、䞀般匏
〔TiOa1OR1b1X1c1〕d1匏䞭、a1b1c1は
≩a1≊≊b1≊≊c1≊でa1×b1
c1ずなるような数であり、d1は≊d1≊
の敎数である。R1は炭玠数〜20のアルキル基、
シクロアルキル基、アリヌル基、アルキルアリヌ
ル基又はアリヌルアルキル基を衚わす。X1はハ
ロゲン原子を衚わす。で衚わされる四䟡のチタ
ン化合物が奜たしいが、このうち、䞀般匏Ti
OR2a2X4-a2匏䞭、a2は≊a2≊である数、
R2X2は䞊蚘R1X1に同じ。で衚わされる四
䟡のチタン化合物がずくに奜たしい。ハロゲン原
子ずしおは臭玠が最も奜たしい。これらの化合物
ずしおは、アルコキサむド䟋えばTiOC2H54
Ti――C4H94プノキサむド䟋えばTi
OC6H54オキシアルコキサむド䟋えばTiO
OC2H52瞮合アルコキサむド䟋えばTi2O
――C3H76テトラハラむド䟋えばTiCl4
TiBr4オキシハラむド䟋えばTiOBr2、及びハ
ロゲン化アルコキサむド䟋えばTiOC2H52Br2
Ti――C4H93Br等が挙げられる。これら
の化合物ず皮々のルむス塩基ずの錯䜓、䟋えば
TiBr4・ブチル゚ヌテル、TiBr3―
nC4H9・゚チルアセテヌト等を甚いおもよい。
いく぀かの異なる有機基たたはハロゲン原子を含
む化合物を䜿甚するこずも、たたいく぀かの異な
぀たチタン化合物を甚いるこずもできる。
Therefore, a titanium compound has the general formula [TiO a1 (OR 1 ) b 1 X 1 c 1 ] d 1 (wherein a 1 , b 1 , c 1 are 0
≩a 1 ≩1, 0≩b 1 ≩4, 0≩c 1 ≩4 and a 1 ×2 + b 1
+c 1 = 4, and d 1 is 1≩d 1 ≩6
is an integer. R 1 is an alkyl group having 1 to 20 carbon atoms,
Represents a cycloalkyl group, aryl group, alkylaryl group or arylalkyl group. X 1 represents a halogen atom. ) is preferable, but among these, tetravalent titanium compounds represented by the general formula Ti
(OR 2 ) a 2 X 4-a2 (where a 2 is a number satisfying 0≩a 2 ≩4,
R 2 and X 2 are the same as R 1 and X 1 above. ) is particularly preferred. Bromine is the most preferred halogen atom. These compounds include alkoxides such as Ti(OC 2 H 5 ) 4 ,
Ti(O-n-C 4 H 9 ) 4 ; Phenoxide e.g. Ti
(OC 6 H 5 ) 4 ; oxyalkoxide e.g. TiO
(OC 2 H 5 ) 2 ; condensed alkoxides such as Ti 2 O(O
-i-C 3 H 7 ) 6 ; Tetrahalide such as TiCl 4 ,
TiBr 4 ; oxyhalides such as TiOBr 2 and halogenated alkoxides such as Ti(OC 2 H 5 ) 2 Br 2 ,
Examples include Ti(O-n-C 4 H 9 ) 3 Br. Complexes of these compounds with various Lewis bases, e.g.
TiBr 4.2 (butyl ether), TiBr 3 (O-
nC 4 H 9 )・ethyl acetate, etc. may also be used.
Compounds containing several different organic groups or halogen atoms can also be used, as well as several different titanium compounds.

バナゞりム化合物ずしおは、䞀般匏〔VOa3
OR3b3X3c3〕d3匏䞭、a3b3c3はそれぞれ
≊a3≊≊b3≊≊c3≊で、a3×
b3c3がバナゞりムの原子䟡ず等しくなるよう
な数であり、a3は≊d3≊の敎数である。R3
X3はR1X1に同じ。で衚わされる䟡或いは
䟡のバナゞりム化合物が奜たしいが、このう
ち、䞀般匏VOOR4a4X4 3-a4匏䞭、a4は≊
a4≊の数、R4X4はR1X1に同じ。で衚わ
される䟡のバナゞりム化合物、及び䞀般匏
OR4b4X4 4-b4匏䞭、b4は≊b4≊の数、
R4X4は䞊蚘に同じ。で衚わされる䟡のバナ
ゞりム化合物がずくに奜たしい。ハロゲン原子ず
しおは臭玠が最も奜たしい。これらの化合物ずし
おは、オキシアルコキサむド䟋えばVO―
―C4H93VOOC2H53オキシクロラむド䟋
えばVOCl3VOBr3オキシプノキサむド䟋
えばVOOC6H53オキシアルコキシクロラむ
ド䟋えばVOOC2H52BrVO――
C4H92BrVO――C4H9Br2テトラハ
ラむド䟋えば、VBr4等があげられる。VBr4・
ブチル゚ヌテル等の皮々のルむス塩基ずの錯
䜓を甚いおもよい。いく぀かの異なる有機基たた
はハロゲン原子を含む化合物を䜿甚するこずも、
たたいく぀かの異な぀たバナゞりム化合物を甚い
るこずもできる。
As a vanadium compound, the general formula [VO a3
( OR 3 ) b 3 _ _ _ _ _ 3 ×2
+b 3 +c 3 is a number equal to the valence of vanadium, and a 3 is an integer satisfying 1≩d 3 ≩6. R3 ,
X 3 is the same as R 1 and X 1 . ) A tetravalent or pentavalent vanadium compound represented by the formula VO(OR 4 ) a 4 X 4 3-a4 (wherein a 4 is 0≩
The number a 4 ≩ 3, R 4 and X 4 are the same as R 1 and X 1 . ), and a pentavalent vanadium compound represented by the general formula V
( OR 4 ) b 4
R 4 and X 4 are the same as above. ) is particularly preferred. Bromine is the most preferred halogen atom. These compounds include oxyalkoxides such as VO(O-n
-C 4 H 9 ) 3 , VO(OC 2 H 5 ) 3 ; Oxychloride e.g. VOCl 3 , VOBr 3 ; Oxyphenoxide e.g. VO(OC 6 H 5 ) 3 ; Oxyalkoxychloride e.g. VO(OC 2 H 5 ) 2 Br, VO(O-n-
C 4 H 9 ) 2 Br, VO(O—n—C 4 H 9 )Br 2 ; Tetrahalide, for example, VBr 4 and the like. VBr 4・2
Complexes with various Lewis bases such as (butyl ether) may also be used. It is also possible to use compounds containing several different organic groups or halogen atoms,
It is also possible to use several different vanadium compounds.

ゞルコニりム化合物ずしおは䞀般匏〔ZrOa5
OR5b5X5c5〕d5匏䞭、a5b5c5は≊a5≩
≊b5≊≊c5≊でa5×b5c5
ずなるような数であり、d5は≊d5≊の敎数
である。R5X5はR1X1に同じ。で衚わされ
る四䟡のゞルコニりム化合物が奜たしいが、䞀般
匏ZrOR6a6X6 4-a6匏䞭、a6は≊a6≊であ
る数、R6X6はR1X1に同じである。で衚わ
される四䟡のゞルコニりム化合物がずくに奜たし
い。ハロゲン原子ずしおは臭玠が最も奜たしい。
これらの化合物ずしおは、アルコキサむド䟋えば
Zr――C4H94ZrOC2H54プノキサ
むド䟋えばZrOC6H54アルコキシクロラむド
䟋えばZr――C4H93BrZr――
C4H92Br2テトラハラむド䟋えばZrCl4
ZrBr4オキシハロゲン化物䟋えばZrOBr2この
化合物は通垞ZrOBr2・8H2Oの圢で甚いられる。
等が挙げられる。ZrBr4・゚チルアセテヌト
等の皮々のルむス塩基ずの錯䜓を甚いおもよい。
いく぀かの異なる有機基たたはハロゲン原子を含
む化合物を䜿甚するこずも、たたいく぀かの異な
぀たゞルコニりム化合物を䜿甚するこずもでき
る。
Zirconium compounds have the general formula [ZrO a5
( OR 5 ) b 5 _ _ _
1, 0≩b 5 ≩4, 0≩c 5 ≩4 and a 5 ×2 + b 5 + c 5 =
4, and d 5 is an integer satisfying 1≩d 5 ≩6. R 5 and X 5 are the same as R 1 and X 1 . ) A tetravalent zirconium compound represented by the general formula Zr ( OR 6 ) a 6 A tetravalent zirconium compound represented by R 1 and X 1 is particularly preferred. Bromine is the most preferred halogen atom.
These compounds include alkoxides such as
Zr(O-n-C 4 H 9 ) 4 , Zr(OC 2 H 5 ) 4 ; Phenoxides such as Zr(OC 6 H 5 ) 4 ; Alkoxychlorides such as Zr(O-n-C 4 H 9 ) 3 Br, Zr(O-n-
C 4 H 9 ) 2 Br 2 ; Tetrahalide e.g. ZrCl 4 ,
ZrBr 4 ; oxyhalide such as ZrOBr 2 (this compound is usually used in the form of ZrOBr 2.8H 2 O).
etc. ZrBr 4・2 (ethyl acetate)
You may use the complex with various Lewis bases, such as.
It is also possible to use several different organic groups or compounds containing halogen atoms, as well as several different zirconium compounds.

しかしお、本発明における固䜓觊媒成分は、前
述のチタン化合物、バナゞりム化合物及びゞルコ
ニりム化合物ず、臭化有機アルミニりム化合物ず
を反応させるこずにより埗られる。このような臭
化有機アルミニりム化合物ずしおは、䞀般匏
AlR7 oBr3-o匏䞭、R7は炭玠数〜20、奜たしく
は〜の炭化氎玠基であり、はの
数である。で衚わされるアルミニりム化合物を
䜿甚するこずが奜たしい。曎に、R7はアルキル
基、シクロアルキル基、アリヌル基、アリヌルア
ルキル基及びアルキルアリヌル基から遞ぶのが奜
たしい。これらの化合物ずしおは、AlCH3
Br2AlC2H5Br2Al―C4H9Br2Al
―C8H17Br2AlC2H52BrAl
C2H52BrCH31.5AlBr1.5C2H51.5AlBr1.5
等が挙げられる。いく぀かの異なる臭化有機アル
ミニりム化合物を䜿甚するこずも、いく぀かの異
なる有機基を含む臭化有機アルミニりム化合物を
䜿甚するこずもできる。たた、臭化有機アルミニ
りム化合物ず臭玠を含たない有機アルミニりム化
合物ずを䜵甚するこずも、䞉臭化アルミニりムず
臭化有機アルミニりム化合物ずを䜵甚するこずも
できる。これらのうち、AlC2H5Br2Al
CH3Br2等の二臭化有機アルミニりムの䜿甚
が奜たしい。
Thus, the solid catalyst component in the present invention can be obtained by reacting the aforementioned titanium compound, vanadium compound, and zirconium compound with an organoaluminium bromide compound. Such organic aluminum bromide compounds have the general formula
An aluminum compound represented by AlR 7 o Br 3-o (wherein R 7 is a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, and n is a number of 0<n<3) It is preferable to use Furthermore, R 7 is preferably selected from an alkyl group, a cycloalkyl group, an aryl group, an arylalkyl group and an alkylaryl group. These compounds include Al( CH3 )
Br 2 , Al (C 2 H 5 ) Br 2 , Al (i-C 4 H 9 ) Br 2 , Al
(n- C8H17 ) Br2 ,Al ( C2H5 ) 2Br , Al
(C 2 H 5 ) 2 Br, (CH 3 ) 1.5 AlBr 1.5 , (C 2 H 5 ) 1.5 AlBr 1.5
etc. Several different organoaluminum bromide compounds can be used, and organoaluminum bromide compounds containing several different organic groups can be used. Further, an organoaluminum bromide compound and an organoaluminum compound not containing bromine may be used together, or aluminum tribromide and an organoaluminum bromide compound may be used together. Among these, Al(C 2 H 5 ) Br 2 , Al
Preference is given to using organoaluminium dibromides such as ( CH3 ) Br2 .

反応は各成分を任意の順序で添加混合し、反応
させればよい。䟋えば、チタン化合物、バナゞり
ム化合物及びゞルコニりム化合物を混合し、埗ら
れた混合物もしくは反応物に臭化有機アルミニり
ム化合物を添加しお反応させる。詳述するず、た
ず、チタン化合物、バナゞりム化合物及びゞルコ
ニりム化合物を添加混合する。この堎合、各化合
物の添加順序は任意に遞ぶこずができる。混合
埌、各化合物の間で反応を生起させおもよい。添
加の際の枩床条件は特に限定されず、℃〜200
℃、通垞は垞枩でよく、圧力条件も特に限定され
ず通垞、垞圧でよい。混合は皀釈剀の存圚䞋たた
は䞍存圚䞋いずれにおいおも行い埗るが、混合物
は液状スラリヌ状態でもよいであるこずが奜
たしい。この為、化合物自䜓が混合条件䞋で液状
でない堎合、或いは液状化合物の量が䞍十分な堎
合は、皀釈剀を加えるこずが奜たしい。皀釈剀ず
しおは、通垞の䞍掻性炭化氎玠溶媒は党お䜿甚可
胜であるが、炭玠数〜20個のアルカン類、シク
ロアルカン類および芳銙族炭化氎玠類の䜿甚が奜
たしい。これらの化合物ずしおは、ヘキサン、ヘ
プタン、シクロヘキサン、ベンれン、トル゚ン、
キシレン等が挙げられる。たた、極性溶媒を䜿甚
するこずもできる。これらの溶媒ずしおは、たず
えば、゚チレンゞクロリド、炭玠数〜のアル
コヌル類、カルボン酞゚ステル類、゚ヌテル類、
ピリゞン等があげられる。チタン、バナゞりム、
ゞルコニりム各化合物の添加を、䞊蚘の極性溶媒
及び䞍掻性炭化氎玠溶媒の溶液ずしお行぀おもよ
い。
The reaction may be carried out by adding and mixing each component in any order and allowing the reaction to occur. For example, a titanium compound, a vanadium compound, and a zirconium compound are mixed, and an organoaluminum bromide compound is added to the resulting mixture or reactant to react. Specifically, first, a titanium compound, a vanadium compound, and a zirconium compound are added and mixed. In this case, the order of addition of each compound can be arbitrarily selected. After mixing, a reaction may occur between each compound. The temperature conditions during addition are not particularly limited, and range from 0℃ to 200℃.
℃, usually normal temperature, and the pressure conditions are not particularly limited, and usually normal pressure may be used. Although the mixing may be performed in the presence or absence of a diluent, it is preferable that the mixture is in a liquid state (it may be in a slurry state). Therefore, if the compound itself is not liquid under the mixing conditions, or if the amount of liquid compound is insufficient, it is preferable to add a diluent. As the diluent, all common inert hydrocarbon solvents can be used, but alkanes having 6 to 20 carbon atoms, cycloalkanes and aromatic hydrocarbons are preferably used. These compounds include hexane, heptane, cyclohexane, benzene, toluene,
Examples include xylene. It is also possible to use polar solvents. Examples of these solvents include ethylene dichloride, alcohols having 1 to 8 carbon atoms, carboxylic acid esters, ethers,
Examples include pyridine. titanium, vanadium,
The addition of each zirconium compound may be carried out as a solution in the above-mentioned polar solvent and inert hydrocarbon solvent.

次いで䞊蚘のようにしお埗られたチタン化合
物、バナゞりム化合物及びゞルコニりム化合物の
混合物もしくは反応物を臭化有機アルミニりム化
合物ず反応させお、固䜓觊媒成分を調補する。臭
化有機アルミニりム化合物ずの反応は、䞊蚘のよ
うにしお埗られた混合物もしくは反応物が皀釈剀
の䞍存圚䞋で十分液状であ぀おも、䞍掻性溶媒の
存圚䞋で行うこずが奜たしい。䞍掻性溶媒ずしお
はさきに皀釈剀ずしお䟋瀺したものの䞭で䞍掻性
炭化氎玠溶媒が通垞甚いられる。混合の際に極性
溶媒を甚いた堎合、この極性溶媒は、臭化有機ア
ルミニりム化合物ずの反応に先立぀お、枛圧留去
その他の方法により陀去しおも良いし、陀去せず
にそのたた臭化有機アルミニりム化合物ずの反応
を行な぀おも良い。
Next, the mixture or reactant of the titanium compound, vanadium compound, and zirconium compound obtained as described above is reacted with an organoaluminium bromide compound to prepare a solid catalyst component. The reaction with the organoaluminum bromide compound is preferably carried out in the presence of an inert solvent, even if the mixture or reactant obtained as described above is sufficiently liquid in the absence of a diluent. Among the inert solvents exemplified above as diluents, inert hydrocarbon solvents are usually used. When a polar solvent is used during mixing, this polar solvent may be removed by distillation under reduced pressure or other methods prior to the reaction with the organoaluminium bromide compound, or the polar solvent may be removed as it is without being removed. A reaction with an aluminum compound may also be performed.

臭化有機アルミニりム化合物ずの反応は、䞍掻
性溶媒を加えたチタン化合物、バナゞりム化合物
及びゞルコニりム化合物の混合物もしくは反応物
に臭化有機アルミニりム化合物を添加し、奜たし
くは垞枩〜200℃曎に奜たしくは50〜150℃の枩床
で反応させればよく、䞍掻性溶媒に䞍掻性の固䜓
が埗られるので固䜓を分離し䞍掻性溶媒で掗浄す
る。
In the reaction with an organoaluminium bromide compound, the organoaluminium bromide compound is added to a mixture or reactant of a titanium compound, a vanadium compound, and a zirconium compound to which an inert solvent has been added, preferably at room temperature to 200°C, more preferably at 50°C to The reaction can be carried out at a temperature of 150°C, and since an inert solid is obtained in an inert solvent, the solid is separated and washed with an inert solvent.

第の方法ずしおは、バナゞりム化合物、ゞル
コニりム化合物を添加混合したのち、䞍掻性溶媒
の存圚䞋臭化有機アルミニりム化合物を加え反応
をおこな぀たのち或いは匕き぀づきチタン化合物
を加え反応をおこなう。反応条件は前述の方法に
準じる。
In the second method, after adding and mixing a vanadium compound and a zirconium compound, an organoaluminum bromide compound is added in the presence of an inert solvent to carry out the reaction, or subsequently a titanium compound is added to carry out the reaction. The reaction conditions were according to the method described above.

各化合物の䜿甚量は、チタン化合物、バナゞり
ム化合物及びゞルコニりム化合物䞭の各金属のグ
ラム圓量で衚わされた総和ず、チタン化合物、
バナゞりム化合物、ゞルコニりム化合物及び臭化
有機アルミニりム化合物䞭の各ハロゲン原子のグ
ラム圓量で衚わされた総和の比、即ち
が、0.6奜たしくはずなるよ
うに遞ぶこずが奜たしい。ここでグラム圓量は、
グラム圓量元玠のグラム原子元玠の原子䟡で
定矩される量である。0.6であるず、分
子量分垃の広い重合䜓を補造するこずがずくに容
易ずなる利点がある。の倀の䞊限に぀いお
は、特に制限はないが、通垞10皋床たでで十分で
ある。なお、で衚わされるハロゲン原子の䜿甚
量に臭玠のほかに他のハロゲンの䜿甚量が含たれ
る堎合には、臭玠ず他のハロゲンずの比、即ち、
息玠他のハロゲンモル比を10以䞊にするこ
ずが奜たしい。たた、グラム原子で衚わされたチ
タン、バナゞりム及びゞルコニりムの各金属の䜿
甚量に぀いおは、曎に䞋蚘の匏を満足するように
遞ぶこずが奜たしい。即ち 0.1×ZrTi10 0.01ZrTi
100曎に奜たしくは0.2ZrTi0.05Zr
Ti10匏䞭、Ti及びZrはそれぞれ
各化合物䞭のチタン、バナゞりム及びゞルコニり
ム原子の量をグラム原子で衚瀺したものである。
ZrTiの倀が䞊蚘範囲内の堎合は、この觊媒系
によ぀お分子量分垃の広い重合䜓を補造するこず
がずくに容易ずなり、ZrTiの倀が䞊蚘
範囲内の堎合は、觊媒系の重合掻性がずくに高く
なる利点がある。
The amount of each compound to be used is the total sum t expressed in gram equivalents of each metal in the titanium compound, vanadium compound, and zirconium compound, and the amount of the titanium compound,
The ratio of the sum u expressed in gram equivalents of each halogen atom in the vanadium compound, zirconium compound, and organoaluminum bromide compound, that is, u/t
However, it is preferable to select such that u/t>0.6, preferably u/t>1. Here, the gram equivalent is
Gram equivalent = amount defined as gram atom of element/valence of element. When u/t>0.6, there is an advantage that it is particularly easy to produce a polymer with a wide molecular weight distribution. There is no particular restriction on the upper limit of the value of u/t, but a value up to about 10 is usually sufficient. In addition, when the usage amount of halogen atoms represented by u includes the usage amount of other halogens in addition to bromine, the ratio of bromine to other halogens, that is,
It is preferable that the molar ratio of hydrogen to other halogens is 10 or more. Further, it is preferable that the amount of each metal, titanium, vanadium, and zirconium, expressed in gram atoms, be selected so as to satisfy the following formula. That is, 0.1×<Zr/Ti<10, 0.01<(Zr+Ti)/V<
100 More preferably 0.2<Zr/Ti<8, 0.05<(Zr
+Ti)/V<10 (In the formula, Ti, V and Zr are the amounts of titanium, vanadium and zirconium atoms in each compound, respectively, expressed in gram atoms.)
When the value of Zr/Ti is within the above range, this catalyst system makes it particularly easy to produce polymers with a wide molecular weight distribution, and when the value of (Zr+Ti)/V is within the above range, the catalyst system This has the advantage that the polymerization activity of the system is particularly high.

次に共觊媒ずしお甚いられる有機アルミニりム
化合物ずしおは、䟋えば䞀般匏AlR8 kX8 3-k匏
䞭、R8はアルキル基、アリヌル基又はシクロア
ルキル基を、X8はハロゲン原子を瀺し、は
〜の数を瀺す。で衚わされる化合物が挙げら
れる。具䜓的にはトリ゚チルアルミニりム、トリ
――プロピルアルミニりム、トリむ゜ブチルア
ルミニりムなどのトリアルキルアルミニりムが奜
たしい。
Next, as the organoaluminum compound used as a cocatalyst, for example, the general formula AlR 8 k X 8 3-k (wherein R 8 represents an alkyl group, aryl group or cycloalkyl group, k is 1
- indicates the number of 3. ) can be mentioned. Specifically, trialkylaluminum such as triethylaluminum, tri-n-propylaluminum, and triisobutylaluminum is preferred.

炭化氎玠䞍溶性固䜓ず有機アルミニりム化合物
の䜿甚割合は、通垞AlTiZrの原子
比で0.1〜100、奜たしくは〜20の範囲内で䜿甚
される。
The proportion of the hydrocarbon-insoluble solid and the organoaluminum compound used is usually within the range of 0.1 to 100, preferably 1 to 20, in terms of the atomic ratio of Al/(V+Ti+Zr).

かくしお調補した觊媒系を䜿甚しおオレフむン
の重合を行なうが、本発明方法においお䜿甚され
るオレフむンずしおは、゚チレン、プロピレン、
ブテン―、ペンテン―、オクテン―等のα
―オレフむンがある。たた、これらのオレフむン
を混合しお共重合させるこずもできる。なかで
も、本発明方法ぱチレン単独重合䜓たたは10重
量たで、奜たしくは重量たでの他のα―オ
レフむンを含む゚チレンの共重合䜓の補造に奜郜
合である。重合反応は、䞍掻性溶媒䞭で行なう溶
液重合或いはスラリヌ重合、たたは溶媒䞍存圚䞋
で行なう気盞重合のいずれの方法をもずりうる。
通垞は、䞍掻性溶媒の存圚䞋、オレフむンたたは
オレフむン混合物を䟛絊しながら所定の枩床、圧
力に保持するこずにより行なわれる。䞍掻性溶媒
ずしおは、ペンタン、ヘキサン、ヘプタン、オク
タン、む゜オクタン等の脂肪族炭化氎玠、シクロ
ペンタン、シクロヘキサン等の脂環族炭化氎玠、
ベンれン、トル゚ン等の芳銙族炭化氎玠等が䜿甚
される。重合反応は、通垞、垞枩〜200℃の枩床
および垞圧〜100気圧の圧力の範囲内から遞ばれ
る。
The catalyst system thus prepared is used to polymerize olefins, and the olefins used in the method of the present invention include ethylene, propylene,
α of butene-1, pentene-1, octene-1, etc.
-There is olefin. Moreover, these olefins can also be mixed and copolymerized. In particular, the process of the invention is advantageous for the production of ethylene homopolymers or copolymers of ethylene containing up to 10% by weight, preferably up to 5% by weight of other α-olefins. The polymerization reaction can be carried out by solution polymerization or slurry polymerization carried out in an inert solvent, or by gas phase polymerization carried out in the absence of a solvent.
This is usually carried out by supplying the olefin or olefin mixture and maintaining it at a predetermined temperature and pressure in the presence of an inert solvent. Examples of inert solvents include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, and isooctane; alicyclic hydrocarbons such as cyclopentane and cyclohexane;
Aromatic hydrocarbons such as benzene and toluene are used. The polymerization reaction is usually carried out at a temperature of from room temperature to 200°C and a pressure of from normal pressure to 100 atmospheres.

たた、本発明方法においお、重合反応垯域に氎
玠を存圚させた堎合、氎玠による分子量の調節効
果が非垞に倧きく、容易に目的の分子量の重合䜓
を埗るこずができる。存圚させるべき氎玠の量
は、重合条件や所望するオレフむン重合䜓の分子
量等によ぀お盞違するので、これらに応じお適宜
その導入量を調節するこずが必芁である。䟋え
ば、重合枩床70℃で、メルトむンデツクス0.3〜
0.05の重合䜓を補造する堎合には、゚チレンに察
しおよそ30〜150モルの氎玠を加えれば良い。
Further, in the method of the present invention, when hydrogen is present in the polymerization reaction zone, the effect of controlling the molecular weight by hydrogen is very large, and a polymer having a desired molecular weight can be easily obtained. The amount of hydrogen to be present varies depending on the polymerization conditions, the desired molecular weight of the olefin polymer, etc., and therefore it is necessary to adjust the amount of hydrogen introduced accordingly. For example, at a polymerization temperature of 70℃, the melt index is 0.3~
When producing a 0.05% polymer, it is sufficient to add approximately 30 to 150 mol% of hydrogen to ethylene.

以䞊のような本発明方法によれば、觊媒系が高
掻性であるずいう利点が埗られるほか、チタン化
合物、バナゞりム化合物、ゞルコニりム化合物及
び臭化有機アルミニりム化合物の各成分の量比を
倉えるこずによ぀お、埗られる重合䜓の分子量分
垃を容易に調節するこずができる利点が埗られ
る。そしお広い分子量分垃を有し、抌出成型及び
ブロヌ成型においお成型加工性がすぐれたオレフ
むン重合䜓が埗られる。たた、氎玠による分子量
調節効果が非垞に倧きくなり、さきの発明により
埗られた觊媒系の特性を䜕ら損うこずなく、これ
よりも䞀局容易に、即ちより少量の氎玠で目的の
分子量の重合䜓を埗るこずができる。
According to the method of the present invention as described above, in addition to the advantage that the catalyst system has high activity, it is possible to obtain the advantage that the catalyst system is highly active. This provides the advantage that the molecular weight distribution of the resulting polymer can be easily controlled. An olefin polymer having a wide molecular weight distribution and excellent moldability in extrusion molding and blow molding can be obtained. In addition, the effect of controlling the molecular weight by hydrogen becomes very large, and it is easier to produce a polymer of the desired molecular weight with a smaller amount of hydrogen than before, without impairing the properties of the catalyst system obtained by the previous invention. can be obtained.

次に本発明を実斜䟋によ぀お曎に詳しく説明す
るが、本発明はその芁旚を超えない限り、以䞋の
実斜䟋に限定されるものではない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

実斜䟋䞭、觊媒の重合掻性は、ポリ
マヌ・觊媒hrKgcm2オレフむン
圧で衚わした。たた、メルトむンデツクスは、
ASTM・・1238・57Tに基づき190℃で2.16Kg
荷重で枬定しMIで衚わした。曎に分子量分垃の
尺床ずしおの流出量比以䞋FRず略すは溶融
粘床の剪断応力䟝存性を瀺す倀で、ASTM・
・1238・57Tに準じ、剪断応力106dynecm2及
び105dynecm2においお枬定したメルトむンデツ
クスの比をも぀お衚わされ、FRが倧であれば分
子量分垃は広く、小であれば狭いずされおいる。
In the examples, the polymerization activity K of the catalyst was expressed as K=(g polymer)/(g·catalyst) (hr) (Kg/cm 2 olefin pressure). In addition, the melt index is
2.16Kg at 190℃ based on ASTM・D・1238・57T
It was measured by load and expressed in MI. Furthermore, the flow rate ratio (hereinafter abbreviated as FR), which is a measure of molecular weight distribution, is a value that indicates the dependence of melt viscosity on shear stress, and is a value specified by ASTM.
According to D・1238・57T, it is expressed as the ratio of melt index measured at shear stress of 10 6 dyne/cm 2 and 10 5 dyne/cm 2 , and the larger the FR, the broader the molecular weight distribution, and the smaller the molecular weight distribution. If so, it is considered narrow.

実斜䟋 〜 (1) 觊媒の補造 第衚に衚瀺した割合で、チタニりムテトラノ
ルマルブトキサむド、バナゞルトリノルマルブト
キサむド、ノルマルヘキサンに溶解した、ゞルコ
ニりムテトラノルマルブトキサむドノルマルヘ
キサン10mlに察しゞルコニりムテトラノルマルブ
トキサむド10mmolの割合で溶解、及びノルマ
ルヘキサンを混合し、均䞀溶液ずした。次いで60
℃にお第衚に衚瀺した量の゚チルアルミニりム
ゞブロマむドを3.5molのノルマルヘキサン
溶液の圢で滎䞋し、65℃で時間撹拌した。生成
した沈柱をノルマルヘキサンで掗浄埌、也燥しお
觊媒粉末を埗た。
Examples 1 to 5 (1) Production of catalyst Zirconium tetra-normal butoxide (10 ml of normal hexane) was dissolved in titanium tetra-normal butoxide, vanadyl tri-normal butoxide, and normal hexane in the proportions shown in Table 1. (dissolved at a ratio of 10 mmol of zirconium tetra-normal butoxide) and normal hexane to form a homogeneous solution. then 60
Ethylaluminum dibromide in the amount shown in Table 1 was added dropwise at 65° C. in the form of a 3.5 mol/n-hexane solution, and the mixture was stirred at 65° C. for 1 hour. The generated precipitate was washed with n-hexane and dried to obtain a catalyst powder.

第衚䞭、Ti――Bu4、VO――
Bu3、Zr――Bu4は各々チタニりムテトラ
ノルマルブトキサむド、バナゞルトリノルマルブ
トキサむド、ゞルコニりムテトラノルマルブトキ
サむドを、EtAlBr2ぱチルアルミニりムゞブロ
マむドを衚わす。
In Table 1, Ti(O-n-Bu) 4 , VO(O-n-
Bu) 3 and Zr(O-n-Bu) 4 represent titanium tetra-normal butoxide, vanadyl tri-normal butoxide, and zirconium tetra-normal butoxide, respectively, and EtAlBr 2 represents ethylaluminum dibromide.

(2) ゚チレンの重合 オヌトクレヌブに―ヘキサン500c.c.を取
り䞊蚘觊媒粉末20mgを仕蟌んだ。70℃に昇枩埌、
第衚に瀺した所定圧たで氎玠を導入し、トリむ
゜ブチルアルミニりム0.4mmolを゚チレンず共に
導入し、党圧を15Kgcm3にした。゚チレン導入ず
共に゚チレンの吞収が芋られるが、党圧を15Kg
cm2に保぀よう゚チレンを远加導入し、時間埌に
゚タノヌル圧入により重合を停止した。埗られた
結果を第衚に瀺した。
(2) Polymerization of ethylene 1. 500 c.c. of n-hexane was placed in an autoclave and 20 mg of the above catalyst powder was charged therein. After raising the temperature to 70℃,
Hydrogen was introduced to the predetermined pressure shown in Table 1, and 0.4 mmol of triisobutylaluminum was introduced together with ethylene to bring the total pressure to 15 Kg/cm 3 . Ethylene absorption is seen as ethylene is introduced, but when the total pressure is reduced to 15 kg/
Ethylene was additionally introduced to maintain the temperature at cm 2 , and 1 hour later, the polymerization was stopped by pressurizing ethanol. The results obtained are shown in Table 1.

衚䞭、ノルマルヘキサンの量は、ゞルコニりム
テトラブトキサむド溶液䞭のノルマルヘキサン、
及び別途加えたノルマルヘキサンの合蚈量であ
る。
In the table, the amount of normal hexane in the zirconium tetrabutoxide solution,
and the total amount of normal hexane added separately.

実斜䟋  ゞルコニりム化合物ずしお、垂販のノルマルブ
タノヌルを14〜16重量含むゞルコニりムノルマ
ルブチラヌトを䜿い、各化合物の䜿甚量を第衚
に瀺した量ずした以倖は実斜䟋ず党く同様にし
お觊媒粉末を埗た。
Example 6 The same procedure as in Example 1 was carried out, except that commercially available zirconium normal butyrate containing 14 to 16% by weight of normal butanol was used as the zirconium compound, and the amounts of each compound used were as shown in Table 1. A catalyst powder was obtained.

この觊媒粉末20mgを甚いお氎玠を6.1Kgcm2た
で導入した以倖は実斜䟋ず党く同様にしお゚チ
レンの重合を行な぀た。結果を第衚に瀺した。
Ethylene polymerization was carried out in exactly the same manner as in Example 1, except that 20 mg of this catalyst powder was used and hydrogen was introduced up to 6.1 Kg/cm 2 . The results are shown in Table 1.

実斜䟋 〜 皮々のチタン、バナゞりム、ゞルコニりム化合
物及びノルマルヘキサンを第衚に瀺したような
割合で混合した。
Examples 7-9 Various titanium, vanadium, zirconium compounds and n-hexane were mixed in the proportions shown in Table 1.

実斜䟋では、混合ず同時に発熱及び色調
の倉化が起り各化合物の間で反応が起こ぀おいる
こずが芳察された。
In Examples 8 and 9, it was observed that heat generation and a change in color tone occurred simultaneously with mixing, indicating that a reaction was occurring between the respective compounds.

混合埌60℃で30分間撹拌した埌、60℃で第衚
に瀺したアルミニりム化合物を3.5molのノ
ルマルヘキサン溶液の圢で滎䞋し、65℃で時間
撹拌した。生成した沈柱をノルマルヘキサンで掗
浄埌、也燥しお觊媒粉末を埗た。
After mixing, the mixture was stirred at 60°C for 30 minutes, and then the aluminum compound shown in Table 1 was added dropwise at 60°C in the form of a 3.5 mol/n-hexane solution, and the mixture was stirred at 65°C for 1 hour. The generated precipitate was washed with n-hexane and dried to obtain a catalyst powder.

この粉末を20mg甚いお、氎玠を第衚に瀺した
圧力たで導入した以倖は実斜䟋ず党く同様にし
お、゚チレンの重合を行な぀た。結果を第衚に
瀺した。
Using 20 mg of this powder, ethylene polymerization was carried out in exactly the same manner as in Example 1, except that hydrogen was introduced to the pressure shown in Table 1. The results are shown in Table 1.

第衚䞭、TiCl4、ZrBr4は各々四塩化チタン、
四臭化ゞルコニりムを衚わす。たた、Et3Al2Br3
ぱチルアルミニりムセスキブロマむドを衚わ
す。
In Table 1, TiCl 4 and ZrBr 4 are titanium tetrachloride and
Represents zirconium tetrabromide. Also, Et 3 Al 2 Br 3
represents ethylaluminum sesquibromide.

実斜䟋 10 実斜䟋の゚チレンの重合に斌いお゚チレンを
導入及び远加する際、ブテン―を混合し、重合
反応䞭気盞のブテン―゚チレンのモル比が
0.009ずなるようにする以倖は党く同様にしお゚
チレンずブテン―ずの共重合を行぀た。埗られ
た結果を第衚に瀺したが、埗られたポリマヌ䞭
にはブテン―単䜍が0.1モル含たれた゚チレ
ン―ブテン―共重合䜓であ぀た。
Example 10 When introducing and adding ethylene in the polymerization of ethylene in Example 4, butene-1 was mixed, and the molar ratio of butene-1/ethylene in the gas phase during the polymerization reaction was
Copolymerization of ethylene and butene-1 was carried out in exactly the same manner except that the copolymerization ratio was 0.009. The obtained results are shown in Table 1, and the obtained polymer was an ethylene-butene-1 copolymer containing 0.1 mol% of butene-1 units.

比范䟋  実斜䟋においお、゚チルアルミニりムゞプロ
マむドを315ミリモル甚いる代わりに゚チルアル
ミニりムゞクロラむドを330ミリモルを甚いた以
倖は実斜䟋ず党く同様にしお、固䜓觊媒成分を
補造した。
Comparative Example 1 A solid catalyst component was produced in the same manner as in Example 1, except that 330 mmol of ethylaluminum dichloride was used instead of 315 mmol of ethylaluminum dipromide.

この觊媒を甚いお、氎玠圧を8.5Kgcm2ずした
以倖は実斜䟋ず党く同様にしお重合を行い、
MI0.10FR71のポリマヌ221を埗た。
1700であ぀た。
Using this catalyst, polymerization was carried out in the same manner as in Example 1 except that the hydrogen pressure was 8.5 Kg/cm 2 .
221 g of polymer with MI=0.10 and FR71 was obtained. K=
It was 1700.

このように、塩化有機アルミニりムを甚いた觊
媒系では、臭化有機アルミニりムを甚いた觊媒系
よりもH2による分子量調節効果が小さい。
Thus, in the catalyst system using organoaluminum chloride, the effect of controlling molecular weight by H 2 is smaller than in the catalyst system using organoaluminum bromide.

比范䟋  実斜䟋においお、゚チルアルミニりムゞブロ
マむドを385ミリモル甚いる代わりに、゚チルア
ルミニりムゞクロラむドを338ミリモル甚いた以
倖は実斜䟋ず党く同様にしお、固䜓觊媒成分を
補造した。
Comparative Example 2 A solid catalyst component was produced in the same manner as in Example 2, except that 338 mmol of ethylaluminum dichloride was used instead of 385 mmol of ethylaluminum dibromide.

この觊媒を甚いお、実斜䟋ず党く同様にしお
重合を行぀た。
Polymerization was carried out in exactly the same manner as in Example 2 using this catalyst.

その結果、埗られたポリマヌのMIは0.014ず非
垞に小さく、塩化有機アルミニりムを甚いた觊媒
系は、臭化有機アルミニりムを甚いた觊媒系より
もH2による分子量調節効果が小さい。なお、
1300、FRは枬定䞍胜であ぀た。
As a result, the MI of the obtained polymer was very small at 0.014, and the catalyst system using organoaluminium chloride had a smaller molecular weight adjustment effect by H 2 than the catalyst system using organoaluminum bromide. In addition, K
= 1300, FR was unmeasurable.

比范䟋  実斜䟋10においお、゚チルアルミニりムゞブロ
マむドの代わりに、゚チルアルミニりムゞクロラ
むドを甚いた以倖は実斜䟋10ず党く同様にしお觊
媒を補造し、氎玠を6.5Kgcm2から9.3Kgcm2ぞず
増やした以倖は実斜䟋10ず同様に重合を行い、
MI0.07FR78のポリマヌ143を埗た。
Comparative Example 3 A catalyst was produced in exactly the same manner as in Example 10, except that ethylaluminum dichloride was used instead of ethylaluminum dibromide, and the amount of hydrogen was varied from 6.5 Kg/cm 2 to 9.3 Kg/cm 2 Polymerization was carried out in the same manner as in Example 10 except that the amount was increased to
143 g of polymer with MI=0.07 and FR78 was obtained.

このように、゚チレン――ブデン共重合にお
いおも、塩化有機アルミニりムを甚いた觊媒系
は、臭化有機アルミニりムを甚いた觊媒系よりも
氎玠による分子量調節効果が小さい。
As described above, even in ethylene-1-butene copolymerization, the catalyst system using organoaluminum chloride has a smaller molecular weight adjustment effect by hydrogen than the catalyst system using organoaluminum bromide.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は、本発明の䞀態様を瀺すフロヌチダヌ
ト図である。
FIG. 1 is a flowchart showing one embodiment of the present invention.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  (A) チタンの有機酞玠化化合物及びハロゲン
化化合物から遞んだチタン化合物 (B) バナゞりムの有機酞玠化化合物及びハロゲン
化化合物から遞んだバナゞりム化合物 (C) ゞルコニりムの有機酞玠化化合物及びハロゲ
ン化化合物から遞んだゞルコニりム化合物、䞊
びに (D) 臭化有機アルミニりム化合物 を反応させお埗られた反応混合物から固䜓觊媒成
分を分離し、これず有機アルミニりム化合物ずを
組み合わせおなる觊媒を甚いお、オレフむンを重
合するこずを特城ずするオレフむン重合䜓の補造
法。  特蚱請求の範囲第項蚘茉の方法においお、
(D)の臭化有機アルミニりム化合物ずしお䞀般匏
AlR7 oBr3-o 匏䞭、R7は炭玠数〜20の炭化氎玠基であり、
はの数である。 で衚わされる化合物を甚いお反応させお埗られた
固䜓觊媒成分を䜿甚するこずを特城ずするオレフ
むン重合䜓の補造法。  特蚱請求の範囲第項又は第項に蚘茉の方
法においお、チタン化合物、バナゞりム化合物、
ゞルコニりム化合物及び臭化有機アルミニりム化
合物を匏 0.6 匏䞭、はチタン化合物、バナゞりム化合物、
ゞルコニりム化合物及び臭化有機アルミニりム化
合物䞭の各ハロゲン原子の総和をグラム圓量で衚
瀺したものであり、はチタン化合物、バナゞり
ム化合物及びゞルコニりム化合物䞭の各金属原子
の総和をグラム圓量で衚瀺したものである。 を満足する量甚いお反応させお埗た固䜓觊媒成分
を䜿甚するこずを特城ずするオレフむン重合䜓の
補造法。  特蚱請求の範囲第項ないし第項のいずれ
かに蚘茉の方法においお、チタン化合物、バナゞ
りム化合物、ゞルコニりム化合物及び臭化有機ア
ルミニりム化合物を匏 0.1ZrTi10、0.01ZrTi100 匏䞭、TiZr及びはそれぞれ各化合物䞭の
チタン、ゞルコニりム、及びバナゞりム原子の量
をグラム原子で衚瀺したものである。を満足す
る量甚いお反応させお埗た固䜓觊媒成分を䜿甚す
るこずを特城ずするオレフむン重合䜓の補造法。  特蚱請求の範囲第項ないし第項のいずれ
かに蚘茉の方法においお、チタン化合物、バナゞ
りム化合物、ゞルコニりム化合物及び臭化有機ア
ルミニりム化合物を匏 0.2ZrTi、0.05ZrTi10 匏䞭、TiZr及びはそれぞれ各化合物䞭の
チタン、ゞルコニりム、及びバナゞりム原子の量
をグラム原子で衚瀺したものである。を満足す
る量甚いお反応させお埗た固䜓觊媒成分を䜿甚す
るこずを特城ずするオレフむン重合䜓の補造法。  特蚱請求の範囲第項ないし第項のいずれ
かに蚘茉の方法においお、氎玠の存圚䞋にオレフ
むンを重合するこずを特城ずするオレフむン重合
䜓の補造法。
[Scope of Claims] 1 (A) A titanium compound selected from organic oxygenated compounds and halogenated compounds of titanium (B) A vanadium compound selected from organic oxygenated compounds and halogenated compounds of vanadium (C) Organic oxygen of zirconium A solid catalyst component is separated from the reaction mixture obtained by reacting a zirconium compound selected from halogenated compounds and halogenated compounds, and (D) an organoaluminium bromide compound, and a catalyst formed by combining this with the organoaluminum compound is prepared. 1. A method for producing an olefin polymer, comprising polymerizing an olefin using the method. 2. In the method described in claim 1,
The general formula for the organoaluminum bromide compound of (D) is
AlR 7 o Br 3-o (wherein R 7 is a hydrocarbon group having 1 to 20 carbon atoms,
n is a number satisfying 0<n<3. ) A method for producing an olefin polymer, comprising using a solid catalyst component obtained by reacting with a compound represented by: 3. In the method according to claim 1 or 2, a titanium compound, a vanadium compound,
Zirconium compounds and organoaluminium bromide compounds are represented by the formula u/t>0.6 (where u is a titanium compound, a vanadium compound,
The sum of each halogen atom in the zirconium compound and organoaluminum bromide compound is expressed in gram equivalent, and t is the sum of each metal atom in the titanium compound, vanadium compound, and zirconium compound expressed in gram equivalent. be. ) A method for producing an olefin polymer, characterized by using a solid catalyst component obtained by reacting with a satisfying amount of olefin polymer. 4. In the method according to any one of claims 1 to 3, a titanium compound, a vanadium compound, a zirconium compound, and an organoaluminum bromide compound are combined with the formula 0.1<Zr/Ti<10, 0.01<(Zr+Ti) /V<100 (In the formula, Ti, Zr, and V are the amounts of titanium, zirconium, and vanadium atoms in each compound expressed in gram atoms.) obtained by reaction using a satisfying amount. A method for producing an olefin polymer, characterized by using a solid catalyst component. 5. In the method according to any one of claims 1 to 4, a titanium compound, a vanadium compound, a zirconium compound, and an organoaluminum bromide compound are combined with the formula 0.2<Zr/Ti<8, 0.05<(Zr+Ti) /V<10 (In the formula, Ti, Zr, and V are the amounts of titanium, zirconium, and vanadium atoms in each compound expressed in gram atoms.) A method for producing an olefin polymer, characterized by using a solid catalyst component. 6. A method for producing an olefin polymer, which comprises polymerizing the olefin in the presence of hydrogen in the method according to any one of claims 1 to 5.
JP9711978A 1978-08-09 1978-08-09 Preparation of olefin polymer Granted JPS5523173A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9711978A JPS5523173A (en) 1978-08-09 1978-08-09 Preparation of olefin polymer
PCT/JP1979/000209 WO1980000347A1 (en) 1978-08-09 1979-08-08 Process for producing olefin polymer
DE7979900930T DE2965617D1 (en) 1978-08-09 1979-08-08 Process for producing olefin polymer
EP79900930A EP0019637B1 (en) 1978-08-09 1980-03-11 Process for producing olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9711978A JPS5523173A (en) 1978-08-09 1978-08-09 Preparation of olefin polymer

Publications (2)

Publication Number Publication Date
JPS5523173A JPS5523173A (en) 1980-02-19
JPS6334167B2 true JPS6334167B2 (en) 1988-07-08

Family

ID=14183673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9711978A Granted JPS5523173A (en) 1978-08-09 1978-08-09 Preparation of olefin polymer

Country Status (1)

Country Link
JP (1) JPS5523173A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210092758A (en) 2018-11-16 2021-07-26 가부시킀가읎샀 윔섞 water-in-oil composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210092758A (en) 2018-11-16 2021-07-26 가부시킀가읎샀 윔섞 water-in-oil composition

Also Published As

Publication number Publication date
JPS5523173A (en) 1980-02-19

Similar Documents

Publication Publication Date Title
EP0514594B1 (en) Catalyst composition and process for preparing polymers having multimodal molecular weight distribution
US4517345A (en) Polymerization process
EP0280352B1 (en) Process for high-temperature (co)polymerization of ethylene
US5086135A (en) Zirconium-based catalyst composition for polymerizing olefins and polymerization therewith
JPS6035005A (en) Manufacture of transition metal composition for olefin polymerization catalyst
US4226964A (en) Process for polymerizing olefin
JPH04110308A (en) Method for polymerizing alpha-olefin
US4525554A (en) Process for polymerizing olefin
US6518375B1 (en) Catalyst for the production of ethylene polymer and process for producing ethylene polymer
US4368305A (en) Process for producing olefin polymers
GB2131033A (en) Process for producing an ethylene copolymer
US6448348B1 (en) Process for polymerizing olefins with supported Ziegler-Natta catalyst systems
US4472519A (en) Polymerization catalyst system
JPS6334167B2 (en)
EP3339333A1 (en) Ziegler-natta catalyst and preparation thereof
US5852141A (en) Prepolymer for the polymerization of olefins combining a number of solid catalytic components
EP0019637B1 (en) Process for producing olefin polymer
JPS61285206A (en) Preparation of catalytic component, obtained catalytic system and synthesis of polymer
JPS6334172B2 (en)
JPS6334173B2 (en)
JPS5846205B2 (en) Olefin polymerization method
JPS5814443B2 (en) Olefin polymerization method
JPS6019767B2 (en) Ethylene polymerization method
JPH0134246B2 (en)
EP0692498A1 (en) Vanadium-containing polymerization catalyst