JPS6333953B2 - - Google Patents

Info

Publication number
JPS6333953B2
JPS6333953B2 JP18711483A JP18711483A JPS6333953B2 JP S6333953 B2 JPS6333953 B2 JP S6333953B2 JP 18711483 A JP18711483 A JP 18711483A JP 18711483 A JP18711483 A JP 18711483A JP S6333953 B2 JPS6333953 B2 JP S6333953B2
Authority
JP
Japan
Prior art keywords
filling member
cooling
peripheral walls
combustor
peripheral wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18711483A
Other languages
Japanese (ja)
Other versions
JPS6082281A (en
Inventor
Kunio Hisamoto
Satoru Terasaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP18711483A priority Critical patent/JPS6082281A/en
Publication of JPS6082281A publication Critical patent/JPS6082281A/en
Publication of JPS6333953B2 publication Critical patent/JPS6333953B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】 本発明は、ガスタービンエンジンの燃焼器の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a combustor for a gas turbine engine.

一般に、ガスタービンエンジンの燃焼器の有効
な冷却手段として、例えば第1,2図に示すもの
が知られている。このものにおいて、1は燃焼器
の2重構造の内筒で、該内筒1は、内周壁2と外
周壁3の間に、多数の冷却ピン4を接合介設させ
たものにより形成され、内筒1の内部で燃焼ガス
を保炎するようになつている。外周壁3の外面に
そつて矢印のように流れる冷却空気は、その一部
が矢印で示すように、外周壁3に設けた多数の空
気流入孔3a、及び、内周壁2に設けた多数の流
入孔2aを通つて内周壁2の内方、即ち内筒1内
に流入し、内周壁2の内面にそつて流れ、フイル
ム冷却を行うだけでなく、上記外周壁3の空気流
入孔3aから両周壁2,3間の空間に形成された
冷却空気通路5に流入する際に、内周壁2の外面
との衝突によつて、矢印で示すように、インピン
ジ冷却を行うとともに、冷却ピン4の表面で伝熱
冷却を行うようになつており、これにより、内筒
1の冷却効果を高めている。
Generally, as an effective cooling means for a combustor of a gas turbine engine, the means shown in FIGS. 1 and 2, for example, are known. In this, 1 is a double-structured inner cylinder of the combustor, and the inner cylinder 1 is formed by interposing a large number of cooling pins 4 between an inner peripheral wall 2 and an outer peripheral wall 3, The combustion gas is flame-stabilized inside the inner cylinder 1. Some of the cooling air flowing along the outer surface of the outer peripheral wall 3 as shown by the arrows flows through a large number of air inflow holes 3a provided in the outer peripheral wall 3 and a large number of air inflow holes 3a provided in the inner peripheral wall 2, as shown by the arrows. The air flows inside the inner circumferential wall 2, that is, into the inner cylinder 1 through the inflow hole 2a, flows along the inner surface of the inner circumferential wall 2, and not only cools the film, but also flows from the air inflow hole 3a of the outer circumferential wall 3. When the air flows into the cooling air passage 5 formed in the space between the two peripheral walls 2 and 3, impingement cooling is performed as shown by the arrow by the collision with the outer surface of the inner peripheral wall 2, and the cooling pin 4 is cooled. Heat transfer cooling is performed on the surface, thereby increasing the cooling effect of the inner cylinder 1.

ところがこのように形成された内筒1は、内外
周壁2,3間に、冷却ピン4を介設した状態で
内、外周壁2,3を所定の形状に成形加工して製
造するものであるため、成形に伴う変形などによ
り、一体構造では成形加工することができず、所
定の形状に成形加工した内外周壁間に、多数の冷
却ピンを介設するという煩雑な工法が要求され
た。
However, the inner cylinder 1 formed in this manner is manufactured by molding the inner and outer peripheral walls 2 and 3 into a predetermined shape with a cooling pin 4 interposed between the inner and outer peripheral walls 2 and 3. Therefore, due to deformation caused by molding, it was not possible to mold a single-piece structure, and a complicated construction method was required in which a large number of cooling pins were interposed between the inner and outer circumferential walls that had been molded into a predetermined shape.

本発明は、このような実情に鑑みなされたもの
で、簡単な而も合理的手段によつて従来技術の問
題点を解消せしめ、成形に際し変形の伴わない燃
焼器の製造方法を提供せんとするものである。
The present invention has been made in view of these circumstances, and aims to solve the problems of the prior art by simple yet rational means, and to provide a method for manufacturing a combustor that does not involve deformation during molding. It is something.

第3図a〜eは、2重構造の内筒の製造工程を
示すものであり、以下これについて本発明の実施
例を説明する。
FIGS. 3a to 3e show the manufacturing process of a double-structured inner cylinder, and embodiments of the present invention will be described below.

実施例 1 第3図aで示す11は、酸のような溶剤に溶解
され易い軟鋼などの非耐食金属で形成された所定
の厚みを有する平板状の充填部材であり、また1
2はステンレス鋼、ハステロイX、HA188のよ
うな耐熱耐食金属からなり、かつ、充填部材11
の厚みと略同長の冷却ピンである。そしてこの充
填部材11には碁盤目状に多数の挿通孔11aが
穿設形成してあり、この各挿通孔11aに上記冷
却ピン12が夫々挿入される。また上記充填部材
11の挿通孔11aを除いた上下面には、クロム
(Cr)、もしくは、ニツケル(Ni)メツキ(図示
略)が施してあり、これにより後述するように、
充填部材11と、後述する内、外周壁との合金元
素の相互拡散を防止するとともに、充填部材11
の酸化などによる汚染を防止している。
Example 1 Reference numeral 11 shown in FIG.
2 is made of heat-resistant and corrosion-resistant metal such as stainless steel, Hastelloy X, and HA188, and the filling member 11
The cooling pin is approximately the same length as the thickness of the cooling pin. A large number of insertion holes 11a are formed in the filling member 11 in a grid pattern, and the cooling pins 12 are respectively inserted into each of the insertion holes 11a. Further, the upper and lower surfaces of the filling member 11 excluding the insertion hole 11a are plated with chromium (Cr) or nickel (Ni) (not shown), which will be described later.
In addition to preventing mutual diffusion of alloy elements between the filling member 11 and the outer peripheral wall (described later), the filling member 11
This prevents contamination due to oxidation, etc.

次にbに示すように、上述のように構成された
充填部材11の上下面に、ステンレス鋼、ハステ
ロイX、HA188のような耐熱耐食金属からなる
平板状の内周壁13と外周壁14を重ね合せる。
Next, as shown in b, on the upper and lower surfaces of the filling member 11 configured as described above, a flat inner peripheral wall 13 and an outer peripheral wall 14 made of a heat-resistant and corrosion-resistant metal such as stainless steel, Hastelloy Match.

そしてc−1のように、外周に封止板15を当
設するか、あるいは封止板15を用いないで上記
の重ね合せた状態のまゝで、外周をTIG溶接、電
子ビーム溶接またはろう付けなどによりシールす
る。たゞし、TIG溶接に外周のシールを実施する
場合は、重ね合せた部材間の残留ガス抜きを実施
する必要がある。
Then, as shown in c-1, the sealing plate 15 is attached to the outer periphery, or the outer periphery is TIG welded, electron beam welded, or soldered without using the sealing plate 15 and the above stacked state is maintained. Seal by attaching etc. However, when sealing the outer periphery during TIG welding, it is necessary to vent residual gas between the stacked members.

次に、高温高圧下、例えば、1100℃〜1300℃、
1000〜1200気圧の下で数時間処理する高温静水圧
プレスを用いたHIP(Hot Isostatic Pressing)
処理を行い、冷却ピン12と内外周壁13,14
との間、ならびに、内外周壁13,14と充填部
材11との間で拡散接合を行う。また内、外周壁
13,14と充填部材11との間の拡散接合は、
内外周壁13,14からのクロムとニツケルなど
主要合金元素の拡散、および、充填部材11から
の炭素などの拡散がメツキ層により抑制される結
果、合金元素の相互拡散および高温高圧下処理に
よる粗悪な変質層の生成が防止される。そのの
ち、数分か数時間の溶体化処理を行い、HIP処理
により析出した炭化物の固溶化および接合部の拡
散処理を行う。
Next, under high temperature and high pressure, for example, 1100℃~1300℃,
HIP (Hot Isostatic Pressing) using a high temperature isostatic press that processes for several hours under 1000 to 1200 atmospheres
After processing, the cooling pin 12 and the inner and outer peripheral walls 13, 14
Diffusion bonding is performed between the filling member 11 and the inner and outer peripheral walls 13 and 14. Furthermore, the diffusion bonding between the inner and outer peripheral walls 13 and 14 and the filling member 11 is as follows:
The plating layer suppresses the diffusion of main alloying elements such as chromium and nickel from the inner and outer peripheral walls 13 and 14, as well as the diffusion of carbon and other substances from the filling member 11. As a result, the interdiffusion of alloying elements and poor quality due to high temperature and high pressure treatment are suppressed. Generation of an altered layer is prevented. After that, a solution treatment is performed for several minutes to several hours, and the carbides precipitated by the HIP treatment are dissolved into a solid solution and the bonded portion is subjected to a diffusion treatment.

次いでdのように、外周シール部を切断除去
し、内周壁13および外周壁14に冷却空気の流
入孔16,17を穿設する。そののち、eに示す
ような所定の形状に成形加工する。この成形加工
は、上記空気流入孔16,17の加工前に実施し
てもよい。この様に両周壁13,14と冷却ピン
12は充填部材11によつて支持されているた
め、部分的に歪な変形が生じたり、クラツクその
他の成形上の不具合は発生しない。また、周壁1
3,14、冷却ピン12および充填部材11は一
体結合しているため、成形作業は、平板の通常の
成形加工と同じ要領でよく、成形作業が容易であ
る。
Next, as shown in d, the outer peripheral seal portion is cut and removed, and cooling air inflow holes 16 and 17 are bored in the inner peripheral wall 13 and the outer peripheral wall 14. Thereafter, it is molded into a predetermined shape as shown in e. This forming process may be performed before forming the air inflow holes 16 and 17. Since both peripheral walls 13, 14 and the cooling pin 12 are supported by the filling member 11 in this manner, no local deformation, cracks, or other molding defects occur. Also, surrounding wall 1
3, 14, since the cooling pin 12 and the filling member 11 are integrally connected, the molding operation can be carried out in the same manner as the ordinary molding process of a flat plate, and the molding operation is easy.

次いで、第4図に示すように、上述のように成
形加工された構成部材18aと18bを溶接など
により組立て加工して内筒18を製造する。この
実施例では、構成部材18a,18bの2分割と
しているが、このように分割せずに成形加工して
もよく、実施例のものに特定されることはない。
Next, as shown in FIG. 4, the inner cylinder 18 is manufactured by assembling the structural members 18a and 18b formed as described above by welding or the like. In this embodiment, the component members 18a and 18b are divided into two parts, but they may be molded without being divided in this way, and are not limited to the embodiment.

最後に、溶液中、例えば40〜90℃の硝酸溶液中
に上記内筒18を浸漬して充填部材11を溶解除
去し、第5図に示すように、内外周壁13,14
間に冷却ピン12を介して、冷却空気通路19を
有する内筒18を完成させる。
Finally, the inner cylinder 18 is immersed in a solution, for example, a nitric acid solution at a temperature of 40 to 90°C to dissolve and remove the filling member 11, and as shown in FIG.
An inner cylinder 18 having a cooling air passage 19 is completed through a cooling pin 12 in between.

実施例 2 上記実施例1におけるbにおいて、内周壁13
および外周壁14と、充填部材11および冷却ピ
ン12の間に、NiCo−Cr−Mo−Fo−B、Ni−
Cr−B Ni−Si−B、Ni−Cr−F2−Si−B形の
アモルフアスろう材20をインサートした状態で
重合し(c−2参照)、拡散ろう付け接合を行い、
あとは、d,eのように処理する。
Example 2 In b in Example 1 above, the inner peripheral wall 13
and NiCo-Cr-Mo-Fo-B, Ni-
Cr-B Ni-Si-B, Ni-Cr-F 2 -Si-B type amorphous brazing material 20 is inserted and polymerized (see c-2), and diffusion brazing is performed.
The rest is processed as in d and e.

このように本発明によれば、2重もしくは多重
構造の燃焼器用の内筒を容易に製造することがで
き、しかも中空材の成形加工による歪な変形やク
ラツクなどの発生が完全に阻止し得られるなど、
優れた特徴を有するものである。
As described above, according to the present invention, it is possible to easily manufacture an inner cylinder for a combustor having a double or multiple structure, and it is also possible to completely prevent distortions and cracks from occurring due to the forming process of a hollow material. For example,
It has excellent characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は燃焼器の一例を示す斜視図、第2図は
同上一部の断面図、第3図a,b,c−1,c−
2,d,eは本発明の製造工程を示す説明図、第
4図は組立て状態の斜視図、第5図は完成品の斜
視図である。 11……充填部材、11a……挿通孔、12…
…冷却ピン、13……内周壁、14……外周壁、
15……封止板、16,17……冷却空気流入
孔、18……内筒、18a,18b……構成部
材、19……冷却空気通路、20……アモルフア
スろう材。
Fig. 1 is a perspective view showing an example of a combustor, Fig. 2 is a sectional view of a part of the same, Fig. 3 is a, b, c-1, c-
2, d, and e are explanatory views showing the manufacturing process of the present invention, FIG. 4 is a perspective view of an assembled state, and FIG. 5 is a perspective view of a completed product. 11...filling member, 11a...insertion hole, 12...
...Cooling pin, 13...Inner peripheral wall, 14...Outer peripheral wall,
15... Sealing plate, 16, 17... Cooling air inflow hole, 18... Inner cylinder, 18a, 18b... Component, 19... Cooling air passage, 20... Amorphous brazing filler metal.

Claims (1)

【特許請求の範囲】 1 耐熱耐食金属からなる複数の周壁の間に、耐
熱耐食金属からなる多数の冷却ピンを介設して、
上記周壁の間に冷却空気通路を形成して、外部か
ら一方の周壁を介して導入された冷却空気が、前
記冷却空気通路を介して排出される燃焼器の製造
に当り、上記冷却ピンの挿入孔を有し、かつ、複
数の周壁の間の空間を埋める平板状の充填部材を
非耐食金属にて形成するとともに、上記各挿入孔
に、上記充填部材の厚みと略同長の冷却ピンを
夫々挿入したのち、上記平板状の周壁を充填部材
の上下面に重ね合せて、冷却ピンと周壁と充填部
材とを、高温静水圧などの手段を用いて拡散接合
して燃焼器構成素材を得、該構成素材を所定の形
状に成形加工したのち、上記充填部材を溶解除去
することを特徴とするガスタービン用燃焼器の製
造方法。 2 耐熱耐食金属からなる複数の周壁の間に、耐
熱耐食金属からなる多数の冷却ピンを介設して、
上記周壁の間に冷却空気通路を形成して、外部か
ら一方の周壁を介して導入された冷却空気が、前
記冷却空気通路を介して排出される燃焼器の製造
に当り、上記冷却ピンの挿入孔を有し、かつ、複
数の周壁の空間を埋める平板状の充填部材を非耐
食金属にて形成するとともに、上記各挿入孔に、
上記充填部材の厚みと略同長の冷却ピンを夫々挿
入したのち、低融点の拡散合金元素を含有したろ
う材を周壁と冷却ピンの間の接合部にインサート
した状態で、平板状の周壁を充填部材の上下面に
重ね合せて、冷却ピン、周壁、拡散合金元素と充
填部材とを、高温静水圧などの手段を用いて拡散
ろう付接合して燃焼器構成素材を得、該構成素材
を所定の形状に成形加工したのち、上記充填部材
を溶解除去することを特徴とするガスタービン用
燃焼器の製造方法。
[Claims] 1. A large number of cooling pins made of heat-resistant and corrosion-resistant metal are interposed between a plurality of peripheral walls made of heat-resistant and corrosion-resistant metal,
In manufacturing a combustor in which a cooling air passage is formed between the peripheral walls and cooling air introduced from the outside through one of the peripheral walls is discharged through the cooling air passage, the cooling pin is inserted. A flat filling member having holes and filling the spaces between the plurality of peripheral walls is formed from a non-corrosion resistant metal, and cooling pins having approximately the same length as the thickness of the filling member are provided in each of the insertion holes. After inserting each, the flat peripheral wall is superimposed on the upper and lower surfaces of the filling member, and the cooling pin, the peripheral wall, and the filling member are diffusion bonded using means such as high temperature hydrostatic pressure to obtain a combustor constituent material, A method of manufacturing a combustor for a gas turbine, characterized in that the filling member is melted and removed after the constituent material is molded into a predetermined shape. 2 A large number of cooling pins made of heat-resistant and corrosion-resistant metal are interposed between a plurality of peripheral walls made of heat-resistant and corrosion-resistant metal,
In manufacturing a combustor in which a cooling air passage is formed between the peripheral walls and cooling air introduced from the outside through one of the peripheral walls is discharged through the cooling air passage, the cooling pin is inserted. A flat filling member having holes and filling the spaces of the plurality of peripheral walls is formed of a non-corrosion resistant metal, and each insertion hole is filled with
After inserting the cooling pins with approximately the same length as the thickness of the filling member, insert the brazing material containing a low melting point diffusion alloy element into the joint between the peripheral wall and the cooling pins, and then insert the flat peripheral wall. The cooling pin, the peripheral wall, the diffusion alloy element, and the filling member are stacked on the upper and lower surfaces of the filling member, and are bonded by diffusion brazing using means such as high temperature hydrostatic pressure to obtain a combustor constituent material, and the constituent material is A method for manufacturing a combustor for a gas turbine, characterized in that the filling member is melted and removed after being molded into a predetermined shape.
JP18711483A 1983-10-07 1983-10-07 Production of combustor for gas turbine Granted JPS6082281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18711483A JPS6082281A (en) 1983-10-07 1983-10-07 Production of combustor for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18711483A JPS6082281A (en) 1983-10-07 1983-10-07 Production of combustor for gas turbine

Publications (2)

Publication Number Publication Date
JPS6082281A JPS6082281A (en) 1985-05-10
JPS6333953B2 true JPS6333953B2 (en) 1988-07-07

Family

ID=16200346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18711483A Granted JPS6082281A (en) 1983-10-07 1983-10-07 Production of combustor for gas turbine

Country Status (1)

Country Link
JP (1) JPS6082281A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984429A (en) * 1986-11-25 1991-01-15 General Electric Company Impingement cooled liner for dry low NOx venturi combustor
US7631502B2 (en) * 2005-12-14 2009-12-15 United Technologies Corporation Local cooling hole pattern
JP4768763B2 (en) * 2008-02-07 2011-09-07 川崎重工業株式会社 Cooling structure of double wall cooled gas turbine combustor
JP5675186B2 (en) * 2010-06-23 2015-02-25 三菱重工業株式会社 Method of manufacturing joined product and method of manufacturing combustor
US10041677B2 (en) * 2015-12-17 2018-08-07 General Electric Company Combustion liner for use in a combustor assembly and method of manufacturing
DE102018217501A1 (en) * 2018-10-12 2020-04-16 Siemens Aktiengesellschaft Method for joining a modular hot gas component by means of welding and high-temperature soldering and component
CN113263299B (en) * 2021-06-21 2022-03-04 西安远航真空钎焊技术有限公司 Method for processing cylindrical section of flame tube of gas turbine

Also Published As

Publication number Publication date
JPS6082281A (en) 1985-05-10

Similar Documents

Publication Publication Date Title
US4137619A (en) Method of fabricating composite structures for water cooled gas turbine components
US4270256A (en) Manufacture of composite turbine rotors
US4096615A (en) Turbine rotor fabrication
US4587700A (en) Method for manufacturing a dual alloy cooled turbine wheel
US4152816A (en) Method of manufacturing a hybrid turbine rotor
US6753504B2 (en) Method for welding together two parts which are exposed to different temperatures, and turbomachine produced using a method of this type
RU2268387C2 (en) Method of manufacturing combustion chamber
JPS6368701A (en) Metallic hollow part with metallic assembly, particularly, turbine blade with cooling assembly
US20060137869A1 (en) Method for producing heat exchanger tubes, which consist of half-tubes or complete tubes and which are provided for recuperative exhaust gas heat exchanger
JP2007064212A (en) Method of manufacturing cooling micro-circuit of blade outside air seal and blade outside air seal
GB2066113A (en) Methods of making turbine nozzles having coolant flow tubes
US4249291A (en) Method for forming a liquid cooled airfoil for a gas turbine
JPS6333953B2 (en)
US5086968A (en) Weld repairable combustor
JP2005121023A (en) Welded rotor used for thermal machine and method of manufacturing the rotor
US6852428B2 (en) Layered heat-resistant alloy plate and method of producing the same
US7179342B2 (en) Thermally loaded component, and process for producing the component
EP1391604B1 (en) Combustion chamber structure and his manufacturing method
JPS5857276B2 (en) Electron beam welding method for dissimilar metals
JPS59206181A (en) Production of turbine nozzle diaphragm
JP3046907B2 (en) Method for manufacturing scale adhesion preventing nozzle plate cooling water passage
US12098691B2 (en) Combustor for rocket engine and method for manufacturing it
JPH06221103A (en) Steam turbine nozzle box
DE3032593A1 (en) Composite turbine rotor with radial blades
JPH01317676A (en) Method and device for manufacturing heat exchanger block