JPS6333937Y2 - - Google Patents

Info

Publication number
JPS6333937Y2
JPS6333937Y2 JP10897380U JP10897380U JPS6333937Y2 JP S6333937 Y2 JPS6333937 Y2 JP S6333937Y2 JP 10897380 U JP10897380 U JP 10897380U JP 10897380 U JP10897380 U JP 10897380U JP S6333937 Y2 JPS6333937 Y2 JP S6333937Y2
Authority
JP
Japan
Prior art keywords
air
raw material
combustion
calciner
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10897380U
Other languages
Japanese (ja)
Other versions
JPS5734541U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10897380U priority Critical patent/JPS6333937Y2/ja
Publication of JPS5734541U publication Critical patent/JPS5734541U/ja
Application granted granted Critical
Publication of JPS6333937Y2 publication Critical patent/JPS6333937Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はセメント原料粉末予熱装置と焼成炉と
の間に配置した竪形仮焼炉に関し、仮焼炉内で
NOx(窒素酸化物)の発生を抑制しつつ供給燃料
を燃焼させ、必要に応じて焼成炉排ガス中に含ま
れるNOxを効果的に脱硝することにより、原料
予熱装置からのNOx排出量を低減させると同時
に、仮焼炉での必要燃焼空気量を減少させながら
もクリンカー冷却機からの抽気を最大限に利用す
ることにより、セメント原料粉末を効率良く仮焼
できるようにしたセメント原料粉末用竪形仮焼炉
の改良に関するものであり、特に微紛炭燃料に適
した仮焼炉構造を提供するものである。
[Detailed description of the invention] The present invention relates to a vertical calcining furnace placed between a cement raw powder preheating device and a calcining furnace.
Reduce NOx emissions from the raw material preheating device by burning the supplied fuel while suppressing the generation of NOx (nitrogen oxides), and effectively denitrifying NOx contained in the combustion furnace exhaust gas as necessary. At the same time, the vertical shape for cement raw powder enables efficient calcining of raw cement powder by maximizing the use of air extracted from the clinker cooler while reducing the amount of combustion air required in the calciner. This invention relates to improvements in calciners, and in particular provides a calciner structure suitable for pulverized coal fuel.

近代的セメント焼成装置は、原料予熱装置と焼
成炉との間に、独立した熱源を有する仮焼炉を配
置して構成される。第1図は、セメント原料粉末
を予熱・仮焼・焼成・冷却する工程を示す線図的
系統図で、図中の実線矢印は熱風の流れ、破線矢
印は原料粉末の流れを示す。尚、装置の概要は、
原料予熱装置1、仮焼炉2、ロータリーキルン等
の焼成炉3及びクリンカー冷却機4から成り、原
料投入シユート5から供給されたセメント原料粉
末は第1〜第4の各サイクロンC1〜C4を順次降
下し、他方焼成炉3及び仮焼炉2からの高温排ガ
スは誘引通風機7aにより吸引されて原料予熱装
置1内を上昇するから、ダクト8内及びサイクロ
ンC1〜C4内にて原料粉末と高温ガスとの熱交換
が繰返される。予熱された原料粉末は第4サイク
ロンC4からシユートを通して仮焼炉2へ導入さ
れる。他方クリンカー冷却機4から導入される高
温の燃焼用2次空気と、燃料供給装置としてのバ
ーナ6aから燃焼用1次空気と共に供給される燃
料によつて仮焼炉2内で燃焼が起り、その燃焼熱
と焼成炉排ガスのもつ熱を受けることにより原料
粉末が仮焼される。仮焼された原料粉末は燃焼ガ
スと共に仮焼炉2から最下段のサイクロンC5
入つて分離されたのち、シユートを通して焼成炉
3に入り、焼成炉3の下端側に設置したバーナ6
bから供給される燃料の燃焼熱により焼成炉3内
で必要な熱処理を受けてクリンカーになつたの
ち、冷却機4で冷却される。尚、クリンカー冷却
用の空気は押込送風機10によつて供給され、ク
リンカーと熱交換を行なつて昇温した空気の一部
は、上述の如く仮焼炉2及び焼成炉3に分配導入
されるが、余剰の空気は誘引通風機7bにより集
塵機9を通して排出される。そして、クリンカー
冷却機4及び集塵機9からのクリンカーはコンベ
ヤ11によつて次工程へ搬出される。
Modern cement calcining equipment is constructed by disposing a calcining furnace with an independent heat source between a raw material preheating device and a calcining furnace. FIG. 1 is a diagrammatic system diagram showing the steps of preheating, calcining, firing, and cooling cement raw material powder, and the solid arrows in the figure indicate the flow of hot air, and the dashed arrows indicate the flow of the raw material powder. The outline of the device is as follows.
It consists of a raw material preheating device 1, a calcining furnace 2, a calcining furnace 3 such as a rotary kiln, and a clinker cooler 4, and the cement raw material powder supplied from the raw material input chute 5 passes through each of the first to fourth cyclones C1 to C4. On the other hand, the high-temperature exhaust gas from the firing furnace 3 and the calcining furnace 2 is sucked by the induced draft fan 7a and rises inside the raw material preheating device 1 , so that the raw material is Heat exchange between the powder and the hot gas is repeated. The preheated raw material powder is introduced into the calciner 2 from the fourth cyclone C4 through the chute. On the other hand, combustion occurs in the calciner 2 by the high temperature secondary combustion air introduced from the clinker cooler 4 and the fuel supplied together with the primary combustion air from the burner 6a serving as a fuel supply device. The raw material powder is calcined by receiving the heat of combustion and the heat of the furnace exhaust gas. The calcined raw material powder enters the lowermost cyclone C5 from the calciner 2 together with the combustion gas and is separated, then enters the calciner 3 through a chute and enters the burner 6 installed at the lower end of the calciner 3.
The clinker undergoes necessary heat treatment in the kiln 3 by the combustion heat of the fuel supplied from b, and is then cooled in the cooler 4. Note that air for cooling the clinker is supplied by the forced blower 10, and a part of the air whose temperature has been raised by exchanging heat with the clinker is distributed and introduced into the calcining furnace 2 and the firing furnace 3 as described above. However, excess air is discharged through the dust collector 9 by the induced draft fan 7b. Then, the clinker from the clinker cooler 4 and the dust collector 9 is transported to the next process by a conveyor 11.

第2図は第1図における仮焼炉付近の構成をよ
り詳細に示す概念図で、これらの図により仮焼炉
の構造及び機能を燃料として微粉炭を使用した場
合につき説明すると下記の通りである。
Figure 2 is a conceptual diagram showing the structure near the calciner in Figure 1 in more detail. Using these diagrams, the structure and function of the calciner when pulverized coal is used as fuel is explained as follows. be.

即ち、堅型仮焼炉2は本構成例では円筒状で絞
り部2cを境にして互いに連通した下方の燃焼室
2aと上方の混合室2bとで構成され、燃焼室2
aの下端は下方に向けて漸次断面を縮少し、開口
2dにより接続ハウジング12を介して焼成炉3
に接続されている。又燃焼室2aの下部側壁に
は、冷却機4からの燃焼用2次空気を案内する抽
気ダクト13が開口・接続され、さらに適宜位置
には、原料予熱装置1の下から2段目のサイクロ
ンC4からの予熱原料投入シユート14、及び1
次空気と共に微紛炭が吹込まれるバーナ6aが取
付けられる。更に混合室2bの燃焼ガス出口2e
は原料予熱装置1の最下段サイクロンC5に接続
されている。これらの装置を用いるに当つて、焼
成炉3においては、バーナ6bから燃料を供給し
て焼成炉3内に形成する燃焼雰囲気が非常に高温
であるため、燃焼空気中の窒素と酸素が結合して
所謂サーマルNOxを大量に発生する。これらの
NOxは焼成炉排ガス中に含まれたままで仮焼炉
2の下部開口2dから燃焼室2a内に上昇・流入
する。他方燃焼室2aには、下から2段目のサイ
クロンC4から投入シユート14を介して予熱原
料が供給され又、燃料としての微粉炭がバーナ6
aを通して供給されており、これら原料粉末及び
微粉炭は燃焼室2a内にて混合・撹拌され噴流層
を形成している。
That is, in this configuration example, the rigid calcining furnace 2 has a cylindrical shape and is composed of a lower combustion chamber 2a and an upper mixing chamber 2b, which communicate with each other with a constriction part 2c as a boundary.
The lower end of a gradually reduces its cross section downward, and is connected to the firing furnace 3 through the connection housing 12 through the opening 2d.
It is connected to the. Further, a bleed air duct 13 for guiding secondary combustion air from the cooler 4 is opened and connected to the lower side wall of the combustion chamber 2a, and a cyclone in the second stage from the bottom of the raw material preheating device 1 is installed at an appropriate position. Preheating material input chute 14 from C 4 , and 1
A burner 6a is installed into which pulverized coal is blown together with air. Furthermore, the combustion gas outlet 2e of the mixing chamber 2b
is connected to the lowest stage cyclone C5 of the raw material preheating device 1. When using these devices, in the firing furnace 3, fuel is supplied from the burner 6b and the combustion atmosphere formed in the firing furnace 3 is at a very high temperature, so nitrogen and oxygen in the combustion air combine. This generates a large amount of so-called thermal NOx. these
NOx rises and flows into the combustion chamber 2a from the lower opening 2d of the calciner 2 while remaining contained in the calciner exhaust gas. On the other hand, preheating raw material is supplied to the combustion chamber 2a from the second stage cyclone C4 from the bottom via the input chute 14, and pulverized coal as fuel is supplied to the burner 6.
The raw material powder and pulverized coal are mixed and stirred in the combustion chamber 2a to form a spouted bed.

該噴流層内には抽気ダクト13より燃焼用2次
空気が供給され微粉炭が燃焼されるが、原料粉末
が介在するため燃焼温度は低く維持される。この
様な状態で燃焼空気が充分に存在すると、微粉炭
中含まれる窒素が燃焼空気中の酸素と結合して所
謂フユーエルNOxが大量に発生する。これらの
焼成炉3及び仮焼炉2で発生したNOxは排ガス
と共に原料予熱装置から排出され、大気を汚染す
ることになる。この様なNOxの排出量を減少さ
せるために、第3図に示すように冷却機4からの
抽気ダクト13を垂直方向に分岐してダクト13
aにより混合室2bの下部側壁に開口・接続し、
燃焼室2aでの微粉炭の燃焼に際しては酸素不足
の状態を形成して還元性ガス雰囲気とし、微粉炭
に含まれる窒素に起因するNOxの発生を抑制す
ると同時に、燃焼室下端より上昇・流入する焼成
炉排ガス中に含まれるNOxを分解・脱硝し、引
続き絞り部2cを通して混合室2bに導入し、分
岐ダクト13aを通して吸引される燃焼用追加空
気と混合させ、還元性ガス中に含まれる可燃成分
を完全燃焼させたのち最下段サイクロンC5に排
出する方法が提案されている。しかし、これらの
従来技術において分岐ダクト13aから供給する
燃焼用の追加空気は、上昇する還元性ガスとほぼ
等速吸引状態で混合室2bに流入し、僅かに還元
性ガスが絞り部2cを通過する際に混合室2b内
に発生する乱流により撹拌・混合されるだけであ
るため、前記還元性ガスと追加空気との混合効果
は非常に小さい。そこで混合室2b内で還元性ガ
ス中の可燃成分を完全燃焼させようとすれば、多
量の過剰空気を導入する必要が生じて装置の熱性
能を低下させるだけでなく、還元性ガスの燃焼に
当り過剰の酸素にもとづき二次的にNOxが発生
するといる問題もある。逆に過剰空気を少なくす
ると還元性ガス中の可燃成分が後続のサイクロン
内でも燃焼を継続し、サイクロンの下部において
原料の閉塞事故が発生するなどの操業上の問題を
伴なう。更に、分岐ダクト13aの断面積は仮焼
炉本体2のそれよりも配置的に遥かに小さくせざ
るを得ないため、分岐ダクト13aを通して混合
室2bに導入する燃焼用の追加空気量を確保する
ためには、分岐後の抽気ダクト13に風量調節ダ
ンパー15を設置して通過空気に抵抗を与える必
要があり、排ガス誘引通風機7aの駆動動力を増
大させている。
Secondary air for combustion is supplied to the spouted bed through the extraction duct 13 to combust the pulverized coal, but the combustion temperature is kept low due to the presence of raw material powder. If there is sufficient combustion air in this state, the nitrogen contained in the pulverized coal will combine with the oxygen in the combustion air to generate a large amount of so-called fuel NOx. The NOx generated in the calciner 3 and the calciner 2 is discharged from the raw material preheating device together with the exhaust gas, polluting the air. In order to reduce the amount of NOx discharged, the extraction duct 13 from the cooler 4 is vertically branched off into duct 13 as shown in FIG.
a opens and connects to the lower side wall of the mixing chamber 2b,
A method has been proposed in which, when pulverized coal is burned in the combustion chamber 2a, a state of oxygen deficiency is created to create a reducing gas atmosphere, suppressing the generation of NOx due to nitrogen contained in the pulverized coal, while at the same time decomposing and denitrifying NOx contained in the calciner exhaust gas rising and flowing in from the lower end of the combustion chamber, and then introducing the resulting mixture into the mixing chamber 2b through the narrowed section 2c, mixing it with additional combustion air sucked in through the branch duct 13a, completely combusting the combustible components contained in the reducing gas, and then discharging it into the lowest cyclone C 5. However, in these conventional techniques, the additional combustion air supplied from the branch duct 13a flows into the mixing chamber 2b in a state of almost constant speed sucking in with the rising reducing gas, and is only stirred and mixed by turbulence generated in the mixing chamber 2b when the reducing gas passes through the narrowed section 2c, so the mixing effect of the reducing gas and the additional air is very small. Therefore, if it is attempted to completely combust the combustible components in the reducing gas in the mixing chamber 2b, it becomes necessary to introduce a large amount of excess air, which not only reduces the thermal performance of the device, but also generates secondary NOx due to excess oxygen during the combustion of the reducing gas. Conversely, if the amount of excess air is reduced, the combustible components in the reducing gas continue to burn in the following cyclone, which causes operational problems such as the occurrence of a material blockage accident at the bottom of the cyclone. Furthermore, since the cross-sectional area of the branch duct 13a must be much smaller than that of the calciner main body 2 in terms of layout, in order to ensure the amount of additional air for combustion introduced into the mixing chamber 2b through the branch duct 13a, it is necessary to provide resistance to the passing air by installing an air flow control damper 15 in the extraction duct 13 after the branch, which increases the driving power of the exhaust gas induction fan 7a.

尚、抽気導入口の上方に配置したバーナ6aと
は別個に、仮焼炉下端の焼成炉排ガス導入口2d
と抽気導入口との間に燃料供給装置6cを追加設
置して、微粉炭燃料の一部又は重油等の液体燃料
を当該燃料供給装置6cより上昇する焼成炉排ガ
ス中へ供給することにより還元性ガス雰囲気を形
成し、焼成炉排ガス中に含有するNOxの分解・
脱硝を行うことができる。
In addition, separately from the burner 6a arranged above the bleed air inlet, the calcination furnace exhaust gas inlet 2d at the lower end of the calcination furnace is installed.
A fuel supply device 6c is additionally installed between the pulverized coal fuel and the bleed air inlet, and a part of the pulverized coal fuel or a liquid fuel such as heavy oil is supplied into the firing furnace exhaust gas rising from the fuel supply device 6c to improve reducing properties. Forms a gas atmosphere and decomposes and decomposes NOx contained in the firing furnace exhaust gas.
Denitrification can be performed.

本出願入は、前述の事情に鑑み仮焼炉内を上昇
する還元性ガスと燃焼用追加空気との混合効果を
著しく向上でき、併せてNOx発生の抑制を容易
に調節出来る方法及びその装置を発明して別途特
願昭55−5952号として特許出願している。その具
体的手段は、絞り部2c付近の仮焼炉円周複数個
所より仮焼炉内を上昇する還元性ガス流に対して
交差する方向へ押込送風機によつて燃焼用追加空
気を送入するものであり、これにより還元性ガス
と燃焼用追加空気との混合効果が向上し、従つて
過剰空気を減少することができ、併せて押込送風
機の速度制御又はダンパー開度の操作により燃焼
用2次空気と追加空気との量的比率を調整するこ
とができ従つてNOxの発生を容易に制御し、常
に安定して低く抑制するという目的を達成するこ
とが出来たが、押込送風機の耐熱・耐摩耗の面よ
り燃焼用追加空気として比較的低温の清浄空気を
使用する必要があるため、冷却機からの高温空気
の利用率が若干低下し、押込送風機駆動のために
余分の動力を要するという新たな問題を付随し
た。
In view of the above-mentioned circumstances, we have proposed a method and device that can significantly improve the mixing effect of the reducing gas rising in the calciner and the additional air for combustion, and also that can easily control the suppression of NOx generation. He invented it and filed a separate patent application as Japanese Patent Application No. 55-5952. The specific means is to use a forced air blower to feed additional air for combustion from multiple points around the circumference of the calciner near the constriction part 2c in a direction that intersects the reducing gas flow rising inside the calciner. This improves the mixing effect of the reducing gas and the additional air for combustion, thereby reducing excess air.At the same time, controlling the speed of the forced blower or manipulating the damper opening can improve the mixing effect of the reducing gas and additional combustion air. It was possible to adjust the quantitative ratio of secondary air and additional air, thus easily controlling the generation of NOx, and achieving the goal of always keeping it at a stable low level.However, the heat resistance and Because it is necessary to use relatively low-temperature clean air as additional air for combustion due to wear resistance, the utilization rate of high-temperature air from the cooler decreases slightly, and extra power is required to drive the forced air blower. Accompanied by new problems.

本考案は従来技術のもつ上記問題点を解消し、
過剰空気量を減少させながらも仮焼炉内での実質
的な完全燃焼が達成でき、NOxの発生を常に低
く容易に制御でき、同時に効率良くセメント原料
粉末を仮焼できる炉構造を提供しようとするもの
である。
The present invention solves the above problems of the conventional technology,
We aim to provide a furnace structure that can achieve virtually complete combustion in the calciner while reducing the amount of excess air, easily control NOx generation at a constant low level, and at the same time efficiently calcining cement raw material powder. It is something to do.

しかして、本考案の特徴とするところは、仮焼
炉側壁のほぼ同一平面上で、クリンカー冷却機か
らの抽気ダクトを複数開口させ、これら開口の内
少くとも一つの開口部の上方位置で平面視による
抽気ダクトの巾内の位置には燃料供給装置を設け
て初期燃焼空気を導入し、又少くとも他の一つの
開口付近には燃料供給装置を設けず単に追加燃焼
空気を導入するようにした点にある。
Therefore, the feature of the present invention is that a plurality of air bleed ducts from the clinker cooler are opened on almost the same plane of the side wall of the calciner, and at least one of these openings is opened in a plane above the opening. A fuel supply device is installed at a position within the width of the bleed duct to introduce initial combustion air, and a fuel supply device is not installed near at least one other opening to simply introduce additional combustion air. That's the point.

以下、図面に基いて本考案を説明する。 The present invention will be explained below based on the drawings.

第4図は本考案の一実施例を示す横断面図、第
5図および第6図は本考案の他の実施例を示す横
断面図である。尚、これらの図面において同一符
号で示されるものは同一物を示す。
FIG. 4 is a cross-sectional view showing one embodiment of the present invention, and FIGS. 5 and 6 are cross-sectional views showing other embodiments of the present invention. Note that in these drawings, the same reference numerals indicate the same parts.

第4図について説明すると、抽気ダクト13が
2つに分岐されて仮焼炉2の側壁に開口するが、
この際一方の抽気ダクト13aの仮焼炉2の側壁
に対する開口部断面積が、他方の抽気ダクト13
bのそれより大きく成るように形成されており、
両抽気ダクト13a,13bは相対向して仮焼炉
2の側壁に接続されている。また抽気ダクト13
aの上方位置にある仮焼炉2の側壁で平面視によ
る抽気ダクト13aの巾内の位置には燃料供給装
置としてのバーナ6aが取付けられており、更に
抽気ダクト13の分岐部には風量分配ダンパ15
aが配設されている。上記のように仮焼炉2に側
壁で平面視による抽気ダクト13aの巾内の位置
に燃料供給装置を設けることにより、この燃料供
給装置から供給される燃料と、抽気ダクト13a
から供給される燃焼用空気により低い空気比の下
で初期段階の燃焼が進行する。
Explaining FIG. 4, the bleed duct 13 is branched into two and opens at the side wall of the calciner 2.
At this time, the opening cross-sectional area of one bleed duct 13a with respect to the side wall of the calciner 2 is different from that of the other bleed duct 13a.
It is formed to be larger than that of b,
Both bleed ducts 13a and 13b are connected to the side wall of the calciner 2 facing each other. Also, the bleed air duct 13
A burner 6a as a fuel supply device is installed at a position within the width of the bleed air duct 13a in plan view on the side wall of the calciner 2 located above a. Damper 15
a is arranged. As described above, by providing the fuel supply device in the side wall of the calciner 2 at a position within the width of the bleed duct 13a in plan view, the fuel supplied from this fuel supply device and the bleed duct 13a
The initial stage of combustion proceeds at a low air ratio due to the combustion air supplied from the combustion chamber.

上記構成をとることにより、全体的には供給燃
料の燃焼に充分な空気量を供給するも、一部の空
気は近傍にバーナ6aを備えない抽気ダクト13
bより仮焼炉2内に導入されるので、仮焼炉内で
の燃焼初期段階においては酸素不足の状態の下に
燃料の分解及び部分的な燃焼反応が進行し、従つ
て局部的な還元性ガス雰囲気が形成される。
By adopting the above configuration, although a sufficient amount of air is supplied as a whole for combustion of the supplied fuel, some of the air is supplied to the bleed air duct 13 which is not equipped with a burner 6a nearby.
Since the fuel is introduced into the calciner 2 from b, decomposition of the fuel and partial combustion reaction proceed under oxygen-deficient conditions in the initial stage of combustion in the calciner, resulting in local reduction. A toxic gas atmosphere is formed.

上記燃焼形態をとるため、仮焼炉内での燃料中
窒素にもとづくフユーエルNOxの発生は僅かと
なる。
Since the above-mentioned combustion mode is adopted, the generation of fuel NOx due to nitrogen in the fuel in the calciner is small.

前記還元性ガスは仮焼炉の上方に流れるにつ
れ、抽気ダクト13bより導入する追加の燃焼空
気と次第に混合・撹拌され、燃焼反応を実質的に
完了したのち仮焼炉から排出される。
As the reducing gas flows upward through the calciner, it is gradually mixed and stirred with additional combustion air introduced from the bleed air duct 13b, and is discharged from the calciner after substantially completing the combustion reaction.

この際、追加の燃焼用空気が燃料の初期燃焼段
階で抽気ダクト13aから導入する燃焼用空気と
混合・合流すると、仮焼炉内でのフユーエル
NOx発生量が増加するため、追加燃焼空気は初
期燃焼空気導入開口より一定間隔離れた位置より
導入される。
At this time, when the additional combustion air mixes and joins with the combustion air introduced from the extraction duct 13a during the initial combustion stage of the fuel, the fuel in the calciner increases.
Since the amount of NOx generated increases, additional combustion air is introduced from a position a certain distance away from the initial combustion air introduction opening.

この際、抽気ダクト13aからの燃焼空気量が
減少すれば燃焼性が低下し、逆にこの空気量が増
加すればNOx発生量が増加する傾向にあるため、
各抽気ダクトからの燃焼空気導入量は抽気ダクト
13の分岐部に設置した風量分配ダンパー15a
により最適に調節される。これにより運転条件が
変動してもNOx発生量を容易に制御することが
でき、常に安定して低く抑制することが可能とな
る。さらに、これらの制御に際し、抽気ダクト1
3aと抽気ダクト13bとで燃焼用2次空気の通
過抵抗には殆んど差がないため、各抽気ダクトか
らの2次空気の導入比率を余分な圧損を伴うこと
なく調節することができる。更に、燃焼用追加空
気は仮焼炉の下部近くから導入されるため、仮焼
炉からの排出までの滞留時間が充分長く、必要に
応じて仮焼炉内に絞り部2c(第2,3図参照)
を設けることにより絞り部での増速及び減速によ
る拡散効果にもとづき追加空気と還元性ガスとの
充分な混合が達成され、従つて少ない過剰空気で
も実質的な完全燃焼が行われる。
At this time, if the amount of combustion air from the bleed air duct 13a decreases, the combustibility will decrease, and conversely, if the amount of air increases, the amount of NOx generated will tend to increase.
The amount of combustion air introduced from each bleed duct is determined by an air volume distribution damper 15a installed at a branch of the bleed duct 13.
Optimally adjusted by This makes it possible to easily control the amount of NOx generated even when operating conditions change, making it possible to always keep it stable and low. Furthermore, when controlling these, the extraction duct 1
Since there is almost no difference in the passage resistance of the combustion secondary air between the bleed air duct 13a and the bleed air duct 13b, the introduction ratio of the secondary air from each air bleed duct can be adjusted without causing any extra pressure loss. Furthermore, since the additional air for combustion is introduced from near the bottom of the calciner, its residence time is sufficiently long until it is discharged from the calciner. (see figure)
By providing this, sufficient mixing of the additional air and the reducing gas is achieved based on the diffusion effect due to speed increase and deceleration in the throttle section, and therefore, substantially complete combustion is achieved even with a small amount of excess air.

経験的知見によれば、切期燃焼空気は追加燃焼
空気より多くする事が必要であり、夫々の開口の
相対的位置関係にもよるが、2:1前後が適当で
ある。
According to empirical knowledge, it is necessary to make the cut-off combustion air larger than the additional combustion air, and a ratio of about 2:1 is appropriate, depending on the relative positional relationship of the respective openings.

次に、第5図について説明すると、抽気ダクト
13を2つに分岐させた抽気ダクト13′が更に
分岐され、図示のような抽気ダクト13a′と13
b′とが夫々仮焼炉2の両側に一対配設されてい
る。この場合も前記実施例と同様に、抽気ダクト
13a′の開口部断面積は、抽気ダクト13b′のそ
れより大きく形成されており、抽気ダクト13
a′の上方位置で平面視による抽気ダクト13a′の
巾内の位置にはバーナ6aが、また抽気ダクト1
3b′には風量分配ダンパー15bが取付けられて
いる。尚、このような構成をとつても第4図図示
のものと同様の作用が期待できるのでその説明は
省略する。
Next, referring to FIG. 5, the air bleed duct 13', which is the air bleed duct 13 branched into two, is further branched into two air bleed ducts 13a' and 13' as shown in the figure.
b' are arranged in pairs on both sides of the calcining furnace 2, respectively. In this case as well, the cross-sectional area of the opening of the air bleed duct 13a' is larger than that of the air bleed duct 13b', as in the previous embodiment.
The burner 6a is located above a' and within the width of the bleed duct 13a' in plan view, and the bleed duct 1
An air volume distribution damper 15b is attached to 3b'. It should be noted that even with such a configuration, the same effect as that shown in FIG. 4 can be expected, so a description thereof will be omitted.

第6図は抽気ダクト内に設置した垂直仕切壁に
より複数の開口部を形成する実施例を示し、抽気
ダクト13が2つの仕切壁16により3つの開口
部13a″,13b″に分割され、両端の開口部13
a″の上方位置で平面視による開口部13a″の巾内
の位置には夫々燃料供給装置6aが配置され、中
央の開口部には燃料供給装置は配設されておら
ず、仕切壁の上流側には風量分配ダンパー15c
が取付けられている。この様な構成による作用・
効果についても第4図と同様である。本考案は燃
料として窒素を含有する固体燃料、液体燃料、気
体燃料の何れにも効果があり、又燃料供給装置と
してバーナ以外に例えば微粉炭投入シユートなど
その形態に制限されない。
FIG. 6 shows an embodiment in which a plurality of openings are formed by a vertical partition wall installed in an air bleed duct. opening 13
A fuel supply device 6a is disposed at a position above the opening 13a'' and within the width of the opening 13a'' in plan view, and no fuel supply device is disposed at the central opening, and the Air volume distribution damper 15c on the side
is installed. Effects due to this kind of configuration
The effect is also the same as in FIG. The present invention is effective for any solid fuel, liquid fuel, or gaseous fuel containing nitrogen as a fuel, and the fuel supply device is not limited to a form other than a burner, such as a pulverized coal input chute.

以上のように本考案によれば、以下のような効
果が期待できる。
As described above, according to the present invention, the following effects can be expected.

(A) NOxの発生を常に低く維持でき、且つその
制御が容易である。
(A) NOx generation can always be kept low and can be easily controlled.

又、必要に応じて焼成炉排ガス中のNOxは
仮焼炉下部で脱硝することができる。
Further, NOx in the firing furnace exhaust gas can be denitrated in the lower part of the calcining furnace, if necessary.

(B) 初期燃焼空気と追加燃焼空気の径路に通気抵
抗の差が少ないので、夫々の空気量の配分に余
分な圧損を伴わず、又追加燃焼空気としてクー
ラ抽気を利用できるのでシステムの燃効率が高
い。
(B) Since there is little difference in ventilation resistance between the paths of the initial combustion air and the additional combustion air, there is no extra pressure drop in the distribution of each air amount, and cooler bleed air can be used as additional combustion air, so the fuel efficiency of the system is improved. is high.

(C) 追加燃焼空気の仮焼炉内滞留時間が長いの
で、混合が充分に行われ、少ない過剰空気で完
全燃焼の達成が可能である。
(C) Since the residence time of the additional combustion air in the calciner is long, sufficient mixing is achieved and complete combustion can be achieved with a small amount of excess air.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のセメントクリンカー製造工程を
示す線図的系統図、第2図は第1図における仮焼
炉付近の概念図、第3図は他の従来例における仮
焼炉付近の概念図、第4図は本考案の一実施例を
示す横断面図、第5図および第6図は本考案の他
の実施例を示す横断面図である。 1……原料予熱装置、2……仮焼炉、2a……
燃焼室、2b……混合室、2c……絞り部、3…
…焼成炉、4……クリンカー冷却機、6a,6
b,6c……燃料供給装置、7……誘引通風機、
13,13a,13a′,13a″,13b,13
b′,13b″……抽気ダクト、15a,15b,1
5c……風量分配ダンパ、16……仕切壁。
Figure 1 is a diagrammatic system diagram showing the conventional cement clinker manufacturing process, Figure 2 is a conceptual diagram of the vicinity of the calciner in Figure 1, and Figure 3 is a conceptual diagram of the vicinity of the calciner in another conventional example. , FIG. 4 is a cross-sectional view showing one embodiment of the present invention, and FIGS. 5 and 6 are cross-sectional views showing other embodiments of the present invention. 1... Raw material preheating device, 2... Calcining furnace, 2a...
Combustion chamber, 2b...mixing chamber, 2c...throttle section, 3...
...Kilning furnace, 4...Clinker cooler, 6a, 6
b, 6c... Fuel supply device, 7... Induced draft fan,
13, 13a, 13a', 13a'', 13b, 13
b', 13b''...Bleed air duct, 15a, 15b, 1
5c...Air volume distribution damper, 16...Partition wall.

Claims (1)

【実用新案登録請求の範囲】 (1) 原料予熱装置と焼成炉との間に配置し、下端
に焼成炉排ガス導入口を、又上端付近に燃焼排
ガスと仮焼原料粉末の取出口を夫々開口させ、
側壁にクリンカー冷却機からの抽気ダクト、燃
料供給装置及び予熱されたセメント原料粉末の
投入シユートを夫々接続したセメント原料粉末
用竪形仮焼炉において、仮焼炉側壁のほぼ同一
平面上で抽気ダクトが複数開口し、少なくとも
一つの開口部の上方位置で平面視による抽気ダ
クトの巾内の位置に燃料供給装置を配設し、少
なくとも一つの開口部には燃料供給装置を配設
しないことを特徴とするセメント原料粉末用竪
形仮焼炉。 (2) 上方位置に燃料供給装置を配設した開口部の
総断面積が燃料供給装置を配設しない開口部の
総断面積よりも大きい実用新案登録請求の範囲
第1項に記載のセメント原料粉末用竪形仮焼
炉。
[Scope of Claim for Utility Model Registration] (1) Arranged between the raw material preheating device and the firing furnace, with a firing furnace exhaust gas inlet at the lower end and an outlet for combustion exhaust gas and calcining raw material powder near the upper end. let me,
In a vertical calcination furnace for cement raw material powder, in which a bleed air duct from a clinker cooler, a fuel supply device, and an input chute for preheated cement raw material powder are connected to the side wall, the bleed duct is installed on almost the same plane as the side wall of the calciner. has a plurality of openings, a fuel supply device is disposed above at least one opening and within the width of the bleed duct in plan view, and no fuel supply device is disposed in at least one opening. Vertical calcining furnace for cement raw material powder. (2) The cement raw material according to claim 1 of the utility model registration claim, in which the total cross-sectional area of the opening in which the fuel supply device is disposed in the upper position is larger than the total cross-sectional area of the opening in which the fuel supply device is not disposed. Vertical calcining furnace for powder.
JP10897380U 1980-07-30 1980-07-30 Expired JPS6333937Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10897380U JPS6333937Y2 (en) 1980-07-30 1980-07-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10897380U JPS6333937Y2 (en) 1980-07-30 1980-07-30

Publications (2)

Publication Number Publication Date
JPS5734541U JPS5734541U (en) 1982-02-23
JPS6333937Y2 true JPS6333937Y2 (en) 1988-09-08

Family

ID=29470186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10897380U Expired JPS6333937Y2 (en) 1980-07-30 1980-07-30

Country Status (1)

Country Link
JP (1) JPS6333937Y2 (en)

Also Published As

Publication number Publication date
JPS5734541U (en) 1982-02-23

Similar Documents

Publication Publication Date Title
JPS6352933B2 (en)
CN106838891A (en) Recirculating fluidized bed oxygen-enriched combustion boiler system
JPS6333937Y2 (en)
SU494872A3 (en) The method of oxidizing roasting pellets
JPS596828B2 (en) Vertical calcining furnace for cement raw material powder
JPH0347133B2 (en)
US2879052A (en) Method of and apparatus for treating calcareous materials
JPS5946904B2 (en) Vertical calcining furnace for cement raw material powder
JPH0830566B2 (en) Circulating fluidized bed boiler
CN108036309A (en) A kind of circulating fluidized bed boiler systems
KR950013959B1 (en) Method for operating a fluidized bed combustion
JPH0240004B2 (en)
JPH0143697B2 (en)
JPS5913459B2 (en) Cement firing equipment including preheating calcining equipment for cement raw materials
JPS6114098B2 (en)
KR960001002B1 (en) Device for heat treatment of cement
JPH0541580B2 (en)
JPH0152339B2 (en)
JPH0146466B2 (en)
JPH0424630B2 (en)
JPS5945625B2 (en) Combustion air blowing device for powder raw material preheating device
JP2627433B2 (en) Split calciner
JPS5855217Y2 (en) Denitrification furnace for cement kiln exhaust gas
JPS5913460B2 (en) Cement firing equipment including calcining furnace for cement raw materials
JPS5857381B2 (en) Cement firing equipment including calcining furnace for cement raw materials