JPS6333789B2 - - Google Patents

Info

Publication number
JPS6333789B2
JPS6333789B2 JP58131671A JP13167183A JPS6333789B2 JP S6333789 B2 JPS6333789 B2 JP S6333789B2 JP 58131671 A JP58131671 A JP 58131671A JP 13167183 A JP13167183 A JP 13167183A JP S6333789 B2 JPS6333789 B2 JP S6333789B2
Authority
JP
Japan
Prior art keywords
rubber
glycidyl
copolymer
formula
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58131671A
Other languages
Japanese (ja)
Other versions
JPS6023412A (en
Inventor
Yasumi Shimizu
Yukinari Fuminomori
Tetsuya Nakada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Osaka Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Soda Co Ltd filed Critical Osaka Soda Co Ltd
Priority to JP13167183A priority Critical patent/JPS6023412A/en
Publication of JPS6023412A publication Critical patent/JPS6023412A/en
Publication of JPS6333789B2 publication Critical patent/JPS6333789B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は新芏な耐油性ゎム組成物に関する。埓
来代衚的な耐油性ゎムずしおアクリルニトリル―
ブタゞ゚ン共重合䜓ゎム、゚ピクロルヒドリン系
ゎム、アクリルゎム等があり、䜿甚環境に応じお
䜿い分けられおいる。しかし近幎では燃料油、最
滑油の成分が倉化しおきおいるので皮々の問題点
が生じおきおいる。たずえば燃料油においおは芳
銙族炭化氎玠含有量が増加し、たた最滑油におい
おは各皮添加剀の皮類や量が増倧しおいるので、
これらに接觊あるいは浞挬されるゎム類は物性の
䜎䞋あるいは添加物の䜜甚による劣化を来さぬよ
うできるだけ耐性を向䞊させる必芁が生じおい
る。䞀方空気䞭における酞化によ぀お劣化した
油、いわゆる酞敗油等による劣化珟象も耐油ゎム
補品の倧きな問題である。 この皮の問題の察策ずしおは倚くの堎合北玠ゎ
ムがその優れた性胜により代替品ずしお䜿甚され
おいるが、このゎムは非垞に高䟡である䞊に耐寒
性が著しく劣るずいう欠点を持぀おいる。䞀般に
ゎムは耐油性の向䞊に぀れお耐寒性の䜎䞋するの
が通垞であり、高床の耐油性ず耐寒性ずを兌備し
たゎムずしおぱピクロルヒドリン―゚チレンオ
キシド共重合䜓ゎム類が知られおいるが、反面こ
のゎムは䞊蚘の油䞭の各皮添加剀あるいは酞敗油
による劣化を受けやすい。このように゚ピクロル
ヒドリン系ゎムはその分子構造䞊、ポリ゚ヌテル
䞻鎖の酞化分解酞化劣化や塩玠の存圚により
最滑油添加剀の圱響を受けやすく、たた金属に察
する腐食の可胜性が問題ずなる。 他にニトリルゎムは䞍飜和結合の存圚に起因し
お耐オゟン性が悪く老化時に脆化し易い。さらに
耐油性ず耐寒性ずのバランスが悪い。 たたアクリルゎムは耐最滑油性に優れるが、燃
料油に察しお著しく耐性に乏しく耐寒性も非垞に
劣぀おいる。 このような状況から高床の耐油性ず耐寒性ずを
兌備するずずもに、䞊蚘のような添加剀、酞敗油
等に察する耐性が改善された安䟡なゎムの出珟が
望たれおいる。 本発明者らはこれらの条件を満すべく鋭意研究
の結果本発明に到達したもので、すなわち本発明
の䞻鎖構造が䞋蚘の匏で衚わされる構造単
䜍10モル以䞊ず匏で衚わされる構造単䜍
およびもしくは匏で衚わされる構造単䜍
モル以䞊ずよりなり、80℃0.1のモノク
ロロベンれン溶液䞭で枬定した還元粘床が0.8以
䞊である共重合䜓、および該共重合䜓に察する加
硫甚薬剀を含むこずを特城ずする耐油性ゎム組成
物である。 䜆し、匏䞭は炭玠数〜の飜和ア
ルキル基を衚わす。 䜆し、匏䞭はアリルオキシ基、アク
リロキシ基、メタクリロキシ基又は゜ルボキシ基
を衚わす。 䜆し、匏䞭は塩玠原子、臭玠原子又
はクロロアセトキシ基を衚わす。 本発明の共重合䜓においお、䞊蚘匏で衚
わされる構造単䜍を圢成するモノマヌは䞋蚘䞀般
匏 䜆し、は炭玠数〜の飜和アルキル基を
衚わす で衚わされる飜和脂肪族カルボン酞のグリシゞル
゚ステルであり、具䜓的には、グリシゞルアセテ
ヌト、グリシゞルプロピオネヌト、グリシゞルブ
チレヌト等の皮たたは皮以䞊であり特にグリ
シゞルアセテヌト、グリシゞルプロピオネヌトが
奜たしい。 本発明の共重合䜓においお、䞊蚘匏で衚
わされる構造単䜍を圢成するモノマヌは、䞋蚘䞀
般匏 䜆し、はアリルオキシ基、アクリロキシ
基、メタクリロキシ基、又は゜ルボキシ基を衚わ
す で衚わされる゚チレン性䞍飜和基含有゚ポキシド
であり、具䜓的には、アリルグリシゞル゚ヌテ
ル、アクリル酞グリシゞル、メタクリル酞グリシ
ゞル及び゜ルビン酞グリシゞルから遞ばれる。 本発明の共重合䜓においお、䞊蚘匏で衚
わされる構造単䜍を圢成するモノマヌは、䞋蚘䞀
般匏 䜆し、は塩玠原子、臭玠原子又はクロロア
セトキシ基を衚わす で衚わされるハロゲン含有゚ポキシドであり、具
䜓的には、゚ピクロルヒドリン、゚ピブロムヒド
リン及びモノクロル酢酞グリシゞルから遞ばれ
る。 本発明においお䜿甚される各皮共重合䜓の具䜓
䟋を瀺すず䞋蚘の劂くである。 グリシゞルアセテヌト―アリルグリシゞル゚ヌ
テル共重合䜓 グリシゞルプロピオネヌト―アリルグリシゞル
゚ヌテル共重合䜓 グリシゞルブチレヌト―アリルグリシゞル゚ヌ
テル共重合䜓 グリシゞルアセテヌト―アクリル酞グリシゞル
共重合䜓 グリシゞルアセテヌト―メタクリル酞グリシゞ
ル共重合䜓 グリシゞルアセテヌト―モノクロル酞グリシゞ
ル共重合䜓 グリシゞルアセテヌト―゚ピハロヒドリン共重
合䜓 グリシゞルプロピオネヌト―゚ピハロヒドリン
共重合䜓 グリシゞルブチレヌト―゚ピハロヒドリン共重
合䜓 グリシゞルアセテヌト―゚ピハロヒドリン―ア
リルグリシゞル゚ヌテル共重合䜓 グリシゞルアセテヌト―゚ピハロヒドリン―ア
クリル酞グリシゞル共重合䜓 グリシゞルアセテヌト―゚ピハロヒドリン―メ
タクリル酞グリシゞル共重合䜓 グリシゞルアセテヌト―゚ピハロヒドリン―゜
ルビン酞グリシゞル共重合䜓 グリシゞルアセテヌト―グリシゞルプロピオネ
ヌト―アリルグリシゞル゚ヌテル共重合䜓 グリシゞルアセテヌト―グリシゞルプロピオネ
ヌト―アクリル酞グリシゞル共重合䜓 グリシゞルアセテヌト―グリシゞルプロピオネ
ヌト―メタクリル酞グリシゞル共重合䜓 グリシゞルアセテヌト―グリシゞルプロピオネ
ヌト―゜ルビン酞グリシゞル共重合䜓 グリシゞルアセテヌト―グリシゞルプロピオネ
ヌト―モノクロル酞グリシゞル共重合䜓 グリシゞルアセテヌト―グリシゞルプロピオネ
ヌト―゚ピハロヒドリン共重合䜓 䞊蚘においお゚ピハロヒドリンぱピクロル
ヒドリンおよびたたぱピブロムヒドリンを衚
わす。 これら共重合䜓のコモノマヌ成分ずしおカルボ
ン酞グリシゞル゚ステルは少くずも10モル以䞊
含むものが䜿甚される。䞊蚘成分が10モル未満
であるず加硫ゎムの耐油性が䜎䞋するので奜たし
くない。たた加硫甚官胜基ずなる゚チレン性䞍飜
和基を有する゚ポキシドたたはハロゲン含有゚ポ
キシドは少くずもモル以䞊含たれるこずが必
芁である。 たずえばカルボン酞グリシゞル゚ステル―アリ
ルグリシゞル゚ヌテル共重合䜓においおは前者が
80〜99モル、埌者が20〜モルの範囲が奜た
しく、カルボン酞グリシゞル゚ステル―゚ピハロ
ヒドリン共重合䜓においおは前者が20〜95モル
、埌者が〜80モルの範囲が奜たしい。 これらの共重合物は本出願人の出願にかかわる
米囜特蚱第3773694号に開瀺される有機錫化
合物および正リン酞あるいはポリリン酞類の
アルキル゚ステルの熱瞮合生成物を觊媒ずしお各
モノマヌ成分を開環共重合するこずにより埗られ
る。重合反応は溶媒の存圚䞋あるいは䞍存圚䞋に
おいお通垞10〜80℃の枩床範囲で行われ、觊媒は
モノマヌ100に察し0.01〜1.0の範囲が適圓で
あり、反応系䞭の氎分は可胜な限り䜎くするこず
が望たしい。このようにしお埗られた共重合䜓は
80℃、0.1のモノクロロベンれン溶液䞭で枬定
した還元粘床が0.8以䞊であるゎム状のランダム
共重合䜓である。 本発明組成物はポリマヌ成分ずしお䞊蚘共重合
䜓以倖のポリマヌを含むこずができる。それらの
ポリマヌは特に制限はないが䞊蚘共重合䜓ず共通
した加硫系で加硫しうるものが奜たしい。 たずえばアリルグリシゞル゚ヌテルもしくはア
クリル酞グリシゞル、メタクリル酞グリシゞルの
ごずき゚チレン性䞍飜和基を有するモノマヌずの
共重合䜓に察しお奜たしいポリマヌずしおは、倩
然ゎム、む゜プレンゎム、ブタゞ゚ンゎム、スチ
レン―ブタゞ゚ンゎム、゚チレン―プロピレン―
ブタゞ゚ンゎム、ブチルゎム、ハロゲン化ブチル
ゎム、クロロプレンゎム、アクリルニトリル―ブ
タゞ゚ンゎム、゚ピクロルヒドリン―アリルグリ
シゞル゚ヌテル共重合䜓ゎム、゚ピクロルヒドリ
ン―゚チレンオキサむド―アリルグリシゞル゚ヌ
テル共重合䜓ゎム、䞍飜和基含有アクリルゎム等
を挙げるこずができる。 たた゚ピハロヒドリン、モノクロル酢酞グリシ
ゞルのごずきハロゲン含有モノマヌずの共重合䜓
に察しお奜たしいポリマヌずしおは、゚ピクロル
ヒドリン単独重合䜓ゎム、゚ピクロルヒドリン―
アリルグリシゞル゚ヌテル共重合䜓ゎム、゚ピク
ロルヒドリン―゚チレンオキシド共重合䜓ゎム、
゚ピクロルヒドリン―゚チレンオキシド―アリル
グリシゞル゚ヌテル共重合䜓ゎム、クロロプレン
ゎム、塩玠含有アクリルゎム、塩玠化ポリ゚チレ
ンゎム、クロルスルホン化ポリ゚チレンゎム、北
化ゎム、臭玠化ブチルゎム等を挙げるこずができ
る。 これらのポリマヌ組成を有する本発明組成物に
おいお䜿甚される加硫剀は、共重合䜓のコモノマ
ヌ成分が゚チレン性䞍飜和゚ポキシドである堎合
は公知の䞍飜和ゎムの加硫剀を甚いるこずができ
る。 このような加硫剀の䟋ずしお有機ペルオキシ
ド、硫黄、硫黄䟛䞎性化合物、硫黄化合物系促進
剀、あるいはこれらず各皮促進剀の組合せ、メル
カプトトリアゞン類等のほかいわゆる暹脂加硫甚
薬剀、いわゆるオキシム加硫甚薬剀等が挙げられ
る。有機ペルオキシドずしおはゞクミルペルオキ
シド、キナメンハむドロペルオキシド、―
ゞメチル――ゞ―第䞉ブチルペルオキ
シヘキサン、ゞ第䞉ブチルペルオキシド、ベン
ゟむルペルオキシド等が挙げられる。硫黄䟛䞎化
合物の䟋ずしおは、テトラメチルチりラムゞスル
フむド、ペンタメチレンテトラスルフむド、硫黄
化合物促進剀の䟋ずしおは―メルカプトベンゟ
チアゟヌル、ゞベンゟチアゟヌル等のチアゟヌル
類、―シクロヘキシルベンゟチアゞルスルプ
ンアミドのごずきメルカプトむミダゟリン類、ゞ
メチルチオカルバミン酞のごずきチオカルバミン
酞塩類、む゜プロピルキサントゲン酞亜鉛のごず
きキサントゲン酞塩類等が挙げられる。たた硫黄
あるいは硫黄系化合物ず組合わせお䜿甚する促進
剀の䟋ずしおはゞプニルグアニゞンのごずきグ
アニゞン類、ヘキサメチレンテトラミンのごずき
アミン類等がある。たたメルカプトトリアゞン類
の䟋ずしおは、たずえばゞブチルアミノ―
―ゞメルカプトトリアゞンを挙げるこずができ
る。暹脂加硫甚薬剀ずしおはアルキルプノヌル
ホルムアルデヒド暹脂類、オキシム加硫甚薬剀ず
しおは―キノンゞオキシム、pp′―ゞベンゞル
キノンゞオキシム等を挙げるこずができる。 たた本発明組成物における共重合䜓のコモノマ
ヌ成分がハロゲン含有゚ポキシドである堎合の加
硫剀ずしおはポリアミン類、チオりレア類、メル
カプトトリアゞン類、ポリプノヌル類等が挙げ
られる。ポリアミン類加硫剀の具䜓䟋ずしおはヘ
キサメチレンゞアミンカヌバメヌト、チオりレア
類の具䜓䟋ずしおぱチレンチオりレア、ゞブチ
ルチオりレア、たたメルカプトトリアゞン類の具
䜓䟋ずしおはトリメルカプトトリアゞン、ゞブチ
ルアミノ――トリアゞン等が挙げられる。 䞊蚘のごずき官胜基を有しないゎム類たずえば
゚チレン―プロピレンゎム、シリコンゎム等を混
合する堎合はたずえば有機ペルオキシドによる加
硫法を採甚しお適切にブレンドするこずができ
る。 これらの加硫剀は圓該分野の既知の技術に埓぀
お適宜加硫助剀ず組合わせお䜿甚される。本発明
組成物に配合されるこれら加硫剀、加硫助剀はポ
リマヌ成分に察しお0.01〜20重量、通垞0.1〜
15重量の範囲で䜿甚される。これらの量のポリ
マヌの組成、薬剀の皮類、成型品の目的等によ぀
お任意に定められる。 さらに本発明組成物は加工䞊必芁なあるいは実
甚䞊の諞物性の調敎に必芁な各皮の補匷剀、充填
剀、可塑剀、加工助剀、安定剀、老化防止剀、顔
料、難燃剀等を任意に配合できる。たた本発明組
成物の補造加工においおも圓該技術分野で行われ
おいる各皮の加工手段を利甚できる。 本発明組成物は以䞊述べたように通垞の加硫剀
により容易に加硫されるずずもに、埗られた加硫
物は次のような特色を有する。 各皮オむル類に察し、きわめお良奜な耐油性
を有するずずもに耐寒性、耐熱性を兌備しゎム
ずしおの性胜バランスが優れおいる。 酞敗油に察しおも優れた耐性を有する。 埓来のハロゲン含有ゎムに比范し金属に察す
る腐蝕性が改善される。 北玠ゎムに比范しお察最滑油性、耐゚ンゞン
オむル性は匹敵し、さらに耐寒性が著しく改善
され、か぀経枈的に安䟡な利点を有する。 以䞋実斜䟋、比范䟋により本発明組成物の効果
を説明する。なお衚䞭の配合は重量郚である。 実斜䟋〜14、比范䟋〜 第衚に瀺す各配合物をロヌル枩床60℃のむ
ンチロヌルで混緎を行い、160℃で20分間加圧成
型し、埗られた加硫物の物性詊隓を行぀た。その
結果を第衚に瀺す。
The present invention relates to a novel oil-resistant rubber composition. Acrylic nitrile is a typical oil-resistant rubber.
There are butadiene copolymer rubbers, epichlorohydrin rubbers, acrylic rubbers, etc., and they are used depending on the usage environment. However, in recent years, various problems have arisen as the components of fuel oil and lubricating oil have changed. For example, the aromatic hydrocarbon content of fuel oil is increasing, and the types and amounts of various additives are increasing in lubricating oil.
It has become necessary to improve the resistance of rubbers that come into contact with or be immersed in these materials as much as possible so as not to cause deterioration in physical properties or deterioration due to the effects of additives. On the other hand, deterioration caused by oil degraded by oxidation in the air, so-called rancid oil, is also a major problem for oil-resistant rubber products. As a countermeasure for this type of problem, fluororubber is often used as a substitute due to its excellent performance, but this rubber has the drawbacks of being very expensive and having significantly poor cold resistance. Generally speaking, as oil resistance improves, cold resistance of rubber decreases, and epichlorohydrin-ethylene oxide copolymer rubbers are known as rubbers that have both high oil resistance and cold resistance. Rubber is susceptible to deterioration due to various additives in the oil or rancid oil. As described above, due to its molecular structure, epichlorohydrin rubber is susceptible to the effects of lubricating oil additives due to oxidative decomposition (oxidative deterioration) of the polyether main chain and the presence of chlorine, and the possibility of corrosion to metals poses a problem. In addition, nitrile rubber has poor ozone resistance due to the presence of unsaturated bonds and is susceptible to embrittlement during aging. Furthermore, the balance between oil resistance and cold resistance is poor. Furthermore, although acrylic rubber has excellent lubricating oil resistance, it has extremely poor resistance to fuel oil and very poor cold resistance. Under these circumstances, there is a desire for an inexpensive rubber that has both high oil resistance and cold resistance, and has improved resistance to the above-mentioned additives, rancid oil, and the like. The present inventors have arrived at the present invention as a result of intensive research to satisfy these conditions, that is, the main chain structure of the present invention is composed of 10 mol% or more of structural units represented by the following formula () and the formula (). A copolymer consisting of 1 mol% or more of the structural unit represented by and/or the structural unit represented by the formula () and having a reduced viscosity of 0.8 or more when measured in a 0.1% monochlorobenzene solution at 80°C, and An oil-resistant rubber composition characterized by containing a vulcanizing agent for a copolymer. (However, in the formula (), R represents a saturated alkyl group having 1 to 4 carbon atoms). (However, in the formula (), Y represents an allyloxy group, an acryloxy group, a methacryloxy group, or a sorboxy group). (However, in the formula (), X represents a chlorine atom, a bromine atom, or a chloroacetoxy group). In the copolymer of the present invention, the monomer forming the structural unit represented by the above formula () has the following general formula: (However, R represents a saturated alkyl group having 1 to 4 carbon atoms.) It is a glycidyl ester of a saturated aliphatic carboxylic acid represented by One species or two or more species are particularly preferred, and glycidyl acetate and glycidyl propionate are particularly preferred. In the copolymer of the present invention, the monomer forming the structural unit represented by the above formula () has the following general formula: (However, Y represents an allyloxy group, an acryloxy group, a methacryloxy group, or a sorboxy group.) It is an ethylenically unsaturated group-containing epoxide represented by: Selected from glycidyl sorbate. In the copolymer of the present invention, the monomer forming the structural unit represented by the above formula () has the following general formula: (However, X represents a chlorine atom, a bromine atom, or a chloroacetoxy group.) It is a halogen-containing epoxide represented by the following formula, and is specifically selected from epichlorohydrin, epibromohydrin, and glycidyl monochloroacetate. Specific examples of various copolymers used in the present invention are as follows. Glycidyl acetate-allyl glycidyl ether copolymer Glycidyl propionate-allyl glycidyl ether copolymer Glycidyl butyrate-allyl glycidyl ether copolymer Glycidyl acetate-glycidyl acrylate copolymer Glycidyl acetate-glycidyl methacrylate copolymer Glycidyl acetate -Glycidyl monochlorate copolymer Glycidyl acetate-epihalohydrin copolymer Glycidyl propionate-epihalohydrin copolymer Glycidyl butyrate-epihalohydrin copolymer Glycidyl acetate-epihalohydrin-allyl glycidyl ether copolymer Glycidyl acetate-epihalohydrin-glycidyl acrylate Copolymer Glycidyl acetate-epihalohydrin-glycidyl methacrylate copolymer Glycidyl acetate-epihalohydrin-glycidyl sorbate copolymer Glycidyl acetate-glycidyl propionate-allyl glycidyl ether copolymer Glycidyl acetate-glycidyl propionate-glycidyl acrylate Copolymer Glycidyl acetate-glycidyl propionate-glycidyl methacrylate copolymer Glycidyl acetate-glycidyl propionate-glycidyl sorbate copolymer Glycidyl acetate-glycidyl propionate-glycidyl monochlorate copolymer Glycidyl acetate-glycidyl methacrylate copolymer Pionate-epihalohydrin copolymer (in the above epihalohydrin represents epichlorohydrin and/or epibromohydrin). These copolymers contain at least 10 mol% or more of carboxylic acid glycidyl ester as a comonomer component. If the content of the above components is less than 10 mol%, the oil resistance of the vulcanized rubber decreases, which is not preferable. Further, it is necessary that at least 1 mol % or more of an epoxide having an ethylenically unsaturated group or a halogen-containing epoxide serving as a vulcanizing functional group is contained. For example, in carboxylic acid glycidyl ester-allyl glycidyl ether copolymer, the former is
The latter is preferably in the range of 80 to 99 mol%, and the latter in the range of 20 to 1 mol%. In the carboxylic acid glycidyl ester-epihalohydrin copolymer, the former is preferably in the range of 20 to 95 mol%, and the latter is in the range of 5 to 80 mol%. These copolymers are prepared using a thermal condensation product of a) an organotin compound and b) an alkyl ester of orthophosphoric acid or polyphosphoric acids as a catalyst, which is disclosed in U.S. Pat. No. 3,773,694 filed by the present applicant. It can be obtained by ring-opening copolymerization. The polymerization reaction is usually carried out at a temperature range of 10 to 80°C in the presence or absence of a solvent, the appropriate amount of catalyst is 0.01 to 1.0 g per 100 g of monomer, and the moisture in the reaction system is kept as low as possible. It is desirable to keep it low. The copolymer thus obtained is
It is a rubbery random copolymer with a reduced viscosity of 0.8 or more when measured in a 0.1% monochlorobenzene solution at 80°C. The composition of the present invention can contain polymers other than the above copolymers as polymer components. There are no particular restrictions on these polymers, but those that can be vulcanized using the same vulcanization system as the above-mentioned copolymers are preferred. For example, preferred polymers for copolymers with monomers having ethylenically unsaturated groups such as allyl glycidyl ether, glycidyl acrylate, and glycidyl methacrylate include natural rubber, isoprene rubber, butadiene rubber, styrene-butadiene rubber, and ethylene rubber. -propylene-
Examples include butadiene rubber, butyl rubber, halogenated butyl rubber, chloroprene rubber, acrylonitrile-butadiene rubber, epichlorohydrin-allyl glycidyl ether copolymer rubber, epichlorohydrin-ethylene oxide-allyl glycidyl ether copolymer rubber, unsaturated group-containing acrylic rubber, etc. be able to. Preferred polymers for copolymers with halogen-containing monomers such as epihalohydrin and glycidyl monochloroacetate include epichlorohydrin homopolymer rubber, epichlorohydrin-
Allyl glycidyl ether copolymer rubber, epichlorohydrin-ethylene oxide copolymer rubber,
Examples include epichlorohydrin-ethylene oxide-allyl glycidyl ether copolymer rubber, chloroprene rubber, chlorine-containing acrylic rubber, chlorinated polyethylene rubber, chlorosulfonated polyethylene rubber, fluorinated rubber, and brominated butyl rubber. As the vulcanizing agent used in the composition of the present invention having these polymer compositions, when the comonomer component of the copolymer is an ethylenically unsaturated epoxide, a known vulcanizing agent for unsaturated rubber can be used. Examples of such vulcanizing agents include organic peroxides, sulfur, sulfur donating compounds, sulfur compound accelerators, combinations of these and various accelerators, mercaptotriazines, so-called resin vulcanizing agents, and oxime vulcanizing agents. Examples include sulfur chemicals. Examples of organic peroxides include dicumyl peroxide, kyumene hydroperoxide, 2,5-
Examples include dimethyl-2,5-di-(tert-butylperoxy)hexane, di-tert-butyl peroxide, benzoyl peroxide, and the like. Examples of sulfur donor compounds include tetramethylthiuram disulfide and pentamethylene tetrasulfide. Examples of sulfur compound promoters include thiazoles such as 2-mercaptobenzothiazole and dibenzothiazole, and 2-cyclohexylbenzothiazyl sulfide. Examples include mercaptoimidazolines such as phenamide, thiocarbamates such as dimethylthiocarbamic acid, and xanthates such as zinc isopropylxanthate. Examples of accelerators used in combination with sulfur or sulfur-based compounds include guanidines such as diphenylguanidine and amines such as hexamethylenetetramine. Examples of mercaptotriazines include dibutylamino-3,5
- Dimercaptotriazine may be mentioned. Examples of resin vulcanizing agents include alkylphenol formaldehyde resins, and oxime vulcanizing agents include p-quinone dioxime and pp'-dibenzylquinone dioxime. Further, when the comonomer component of the copolymer in the composition of the present invention is a halogen-containing epoxide, examples of the vulcanizing agent include polyamines, thioureas, mercaptotriazines, polyphenols, and the like. Specific examples of polyamine vulcanizing agents include hexamethylene diamine carbamate, specific examples of thioureas include ethylene thiourea, dibutylthiourea, and specific examples of mercaptotriazines include trimercaptotriazine, dibutylamino-3,5-triazine, etc. can be mentioned. When mixing rubbers that do not have the above-mentioned functional groups, such as ethylene-propylene rubber, silicone rubber, etc., a vulcanization method using an organic peroxide can be employed for appropriate blending. These vulcanizing agents are used in combination with vulcanization aids as appropriate according to known techniques in the art. These vulcanizing agents and vulcanization aids blended into the composition of the present invention are 0.01 to 20% by weight, usually 0.1 to 20% by weight, based on the polymer components.
Used in a range of 15% by weight. These amounts are arbitrarily determined depending on the composition of the polymer, the type of drug, the purpose of the molded product, etc. Furthermore, the composition of the present invention may optionally contain various reinforcing agents, fillers, plasticizers, processing aids, stabilizers, anti-aging agents, pigments, flame retardants, etc. necessary for processing or for adjusting various physical properties in practical use. Can be combined with Furthermore, various processing methods used in the technical field can be used in the production and processing of the composition of the present invention. As described above, the composition of the present invention can be easily vulcanized using a common vulcanizing agent, and the resulting vulcanizate has the following characteristics. It has extremely good oil resistance against various oils, as well as cold and heat resistance, giving it an excellent balance of performance as a rubber. It also has excellent resistance to rancid oils. Corrosion to metals is improved compared to conventional halogen-containing rubbers. Compared to fluororubber, it has comparable lubricating oil resistance and engine oil resistance, has significantly improved cold resistance, and is economically inexpensive. The effects of the composition of the present invention will be explained below using Examples and Comparative Examples. The formulations in the table are parts by weight. Examples 1 to 14, Comparative Examples 1 to 6 Each compound shown in Table 1 was kneaded with a 6-inch roll at a roll temperature of 60°C, and then pressure-molded at 160°C for 20 minutes. Physical property tests were conducted. The results are shown in Table 2.

【衚】【table】

【衚】【table】

【衚】【table】

【衚】【table】

【衚】 以䞊の詊隓結果より本発明加硫組成物はNBR
比范䟋、゚ピクロルヒドリン―゚チレンオキ
シド―アリルグリシゞル゚ヌテル共重合䜓ゎム
比范䟋、゚ピクロルヒドリン―゚チレンオキ
シド共重合䜓ゎム比范䟋、゚ピクロルヒド
リンゎム比范䟋、アクリルゎム比范䟋
に比范し耐油性に優れおおり、耐寒性、耐熱性ず
のバランスの良いこずが刀る。フツ玠ゎム比范
䟋は他の諞性質は優れおいるが耐寒性が劣぀
おいる。たた実斜䟋ず比范䟋ずの察
照により本発明品をニトリルゎムや゚ピクロルヒ
ドリン系ゎムに混合するず、これらの耐油性が改
善されるこずが刀る。 腐食詊隓 実斜䟋〜11、比范䟋の各加硫物を
枚の金属板に挟み、盞察湿床100、50℃の雰
囲気で120時間静眮埌、取り出し、ゎム片跡の金
属板の腐食床を䞋蚘のようなクラスで評䟡した。
その結果を第衚に瀺す。䜆し鋌板はJIS G314
SPCC、アルミ板はJIS H4000A505 2pを䜿
甚した。
[Table] From the above test results, the vulcanized composition of the present invention is NBR
(Comparative example 1), epichlorohydrin-ethylene oxide-allyl glycidyl ether copolymer rubber (comparative example 2), epichlorohydrin-ethylene oxide copolymer rubber (comparative example 3), epichlorohydrin rubber (comparative example 4), acrylic rubber (comparative example 5) )
It has superior oil resistance compared to , and it can be seen that it has a good balance between cold resistance and heat resistance. Fluororubber (Comparative Example 6) is excellent in other properties, but poor in cold resistance. Further, a comparison between Examples 6 and 7 and Comparative Examples 1 and 2 shows that when the products of the present invention are mixed with nitrile rubber or epichlorohydrin rubber, the oil resistance of these rubbers is improved. Corrosion test Each of the vulcanizates of Examples 1, 8 to 11 and Comparative Examples 3 and 4 was sandwiched between two metal plates and left to stand in an atmosphere of 100% relative humidity and 50°C for 120 hours, then taken out and rubber pieces The degree of corrosion of the metal plate left behind was evaluated using the following classes.
The results are shown in Table 3. However, the steel plate is JIS G314
(SPCC), and the aluminum plate used was JIS H4000 (A505 2p).

【衚】【table】

【衚】 本発明加硫組成物ぱピクロルヒドリン系ゎム
に比べお耐金属腐蝕性が著しく改善されおいる。
[Table] The vulcanized composition of the present invention has significantly improved metal corrosion resistance compared to epichlorohydrin rubber.

Claims (1)

【特蚱請求の範囲】  䞻鎖構造が䞋蚘の匏で衚わされる構造
単䜍10モル以䞊ず匏で衚わされる構造単
䜍およびもしくは匏で衚わされる構造単
䜍モル以䞊ずよりなり、80℃0.1のモノ
クロロベンれン溶液䞭で枬定した還元粘床が0.8
以䞊である共重合䜓、および該共重合䜓に察する
加硫甚薬剀を含むこずを特城ずする耐油性ゎム組
成物。 䜆し、匏䞭は炭玠数〜の飜和ア
ルキル基を衚わす。 䜆し、匏䞭はアリルオキシ基、アク
リロキシ基、メタクリロキシ基又は゜ルボキシ基
を衚わす。 䜆し、匏䞭は塩玠原子、臭玠原子又
はクロロアセトキシ基を衚わす。
[Scope of Claims] 1 The main chain structure includes 10 mol% or more of the structural units represented by the following formula (), and 1 mol% or more of the structural units represented by the formula () and/or the structural units represented by the formula (). The reduced viscosity measured in 0.1% monochlorobenzene solution at 80℃ is 0.8.
An oil-resistant rubber composition comprising the copolymer described above and a vulcanizing agent for the copolymer. (However, in the formula (), R represents a saturated alkyl group having 1 to 4 carbon atoms). (However, in the formula (), Y represents an allyloxy group, an acryloxy group, a methacryloxy group, or a sorboxy group). (However, in the formula (), X represents a chlorine atom, a bromine atom, or a chloroacetoxy group).
JP13167183A 1983-07-18 1983-07-18 Oil-resistant rubber composition Granted JPS6023412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13167183A JPS6023412A (en) 1983-07-18 1983-07-18 Oil-resistant rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13167183A JPS6023412A (en) 1983-07-18 1983-07-18 Oil-resistant rubber composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP459388A Division JPS63225627A (en) 1988-01-11 1988-01-11 Oil-resistant rubber composition

Publications (2)

Publication Number Publication Date
JPS6023412A JPS6023412A (en) 1985-02-06
JPS6333789B2 true JPS6333789B2 (en) 1988-07-06

Family

ID=15063500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13167183A Granted JPS6023412A (en) 1983-07-18 1983-07-18 Oil-resistant rubber composition

Country Status (1)

Country Link
JP (1) JPS6023412A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806105B1 (en) * 2002-03-07 2008-02-21 죌식회사 엘지읎아읎 Apparatus for display

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317527A (en) * 1987-06-19 1988-12-26 Osaka Soda Co Ltd Epoxide copolymer
JP5608956B2 (en) * 2007-09-06 2014-10-22 ダむ゜ヌ株匏䌚瀟 Polyether based multi-component copolymer and cross-linked product thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966451A (en) * 1982-09-15 1984-04-14 れオン ケミカルズ ナヌ゚ス゚ヌむンコヌポレむティド Epihalohydrine polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966451A (en) * 1982-09-15 1984-04-14 れオン ケミカルズ ナヌ゚ス゚ヌむンコヌポレむティド Epihalohydrine polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806105B1 (en) * 2002-03-07 2008-02-21 죌식회사 엘지읎아읎 Apparatus for display

Also Published As

Publication number Publication date
JPS6023412A (en) 1985-02-06

Similar Documents

Publication Publication Date Title
US4048261A (en) Vulcanizable compositions of a halogen-containing polymer and a diene-nitrile rubber having active halogen cure sites
EP0950078B1 (en) Perfluoroether-containing fluoroelastomers with good low temperature characteristics
JPH08120146A (en) Fluoroelastomer composition
US3026305A (en) Vulcanization of polymers and copolymers of epichlorohydrin
JP2002060550A (en) Halogen containg rubber composition
JP4595940B2 (en) Ethylene-alkyl acrylate copolymer rubber composition
EP2837657B1 (en) Acrylic rubber composition, and crosslinked product thereof
JPS6333789B2 (en)
US4792581A (en) Rubber composition
EP0044683B1 (en) Blends of oil-resistant elastomers and grafted epdm-terpolymers
JPS62116634A (en) Sulfur curable silicone rubber and its eleastomer blend
US20200040157A1 (en) Nanosubstance-containing composition
EP0761749A1 (en) Heat resistant butadiene/acrylonitrile-polyvinyl chloride blends
JPH034583B2 (en)
KR910006035B1 (en) Process for cross-linking halogenated polymers
KR100402518B1 (en) A chlorosulfonated ethylene-alpha-olefin copolymer composition and a joint boot using the composition
JPS59217749A (en) Fluorine-containing elastomer composition
JP4531204B2 (en) Chloroprene-based rubber composition
US4530994A (en) Rubbery solid polymer or copolymer of glycidyl carboxylate and composition thereof
JPS582321A (en) Cis-1,4-polyisoprene rubber composition giving improved strength by vulcanization
JP2622693B2 (en) Rubber mixture
JPH10245451A (en) Composition of acrylic rubber or its blend rubber
JP2891036B2 (en) Vulcanizable rubber composition
JP4285216B2 (en) Polyether copolymer and cross-linked product thereof
JP5233988B2 (en) Polyether-based multi-component copolymer, cross-linkable rubber composition containing the same, and automotive rubber parts comprising the cross-linked product