JPS6333762B2 - - Google Patents

Info

Publication number
JPS6333762B2
JPS6333762B2 JP974882A JP974882A JPS6333762B2 JP S6333762 B2 JPS6333762 B2 JP S6333762B2 JP 974882 A JP974882 A JP 974882A JP 974882 A JP974882 A JP 974882A JP S6333762 B2 JPS6333762 B2 JP S6333762B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
polymerization
graft
monomer
vinyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP974882A
Other languages
Japanese (ja)
Other versions
JPS58127717A (en
Inventor
Koji Azuma
Tooru Yokota
Takeji Yanagisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP974882A priority Critical patent/JPS58127717A/en
Publication of JPS58127717A publication Critical patent/JPS58127717A/en
Publication of JPS6333762B2 publication Critical patent/JPS6333762B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は改質塩化ビニル系グラフト共重合䜓の
補造方法、特には成圢加工性がよく、倖芳の぀や
消し効果にすぐれか぀圧瞮氞久歪、耐クリヌプ性
の改良された軟質成圢品を䞎える改質塩化ビニル
系グラフト共重合䜓の提䟛を目的ずするものであ
る。 近幎、塩化ビニル系暹脂の軟質成圢品に぀いお
は、このものに高玚感を持たせるために぀や消し
の倖芳を付䞎するこずが行われおおり、特に自動
車郚品、電線などに関しこの぀や消し効果の芁望
が高くな぀おいる。 埓来、倖芳぀や消しの軟質塩化ビニル系暹脂成
圢品を埗る方法ずしお、成圢枩床を通垞の堎合よ
りも䜎くしお成圢するこずにより成圢品に぀や消
し効果を䞎える詊みが行われおいるが、このよう
に成圢枩床を䞋げるず、成圢時の混緎が充分に行
われないために成圢品は機械的匷床等の特性に劣
るものずな぀おしたう䞍利が生じる。 なお、䞀般の塩化ビニル系暹脂に぀いお成圢枩
床を䞋げるこずなく通垞採甚されおいる成圢枩床
で成圢を行぀た堎合には぀や消しの倖芳をも぀た
成圢品を埗るこずができない。 他方、塩化ビニル重量䜓に高重合床の塩化ビニ
ル暹脂をブレンドするずか、あるいは塩化ビニル
の重合時に架橋剀を添加しお重するなどの手段に
より、芋かけの重合床を高くさせた塩化ビニル系
暹脂を䜜り、これを成圢甚暹脂ずしお䜿甚するこ
ずにより぀や消し成圢品を埗る詊みが行われおい
る。しかし、このような芋かけ重合床の高い暹脂
は䞀般の塩化ビニル暹脂に比べお加工性が極端に
悪く、このためこのような暹脂の成圢に圓぀おは
特殊な加工機械を䜿甚するずかあるいは特殊な技
術を䜿甚する必芁が生じ、期埅されるべき物性を
備えた成圢品を埗るこずが困難であるずいう䞍利
がある。 たた、䞀般の塩化ビニル系暹脂は加工性の良さ
をも぀おいるが、反面圧瞮氞久歪や耐クリヌプ性
に劣る欠点がある。これを改良する方法ずしお、
塩化ビニル重合䜓に高重合床の塩化ビニル暹脂を
ブレンドするかあるいは塩化ビニルの重合時に架
橋剀を添加しお重合するなどの手段により、芋か
け重合床の高いものを埗る方法が行われおいる
が、このような芋かけ重合床の高い塩化ビニル系
暹脂は、前蚘したように加工性が極端に悪くなる
こずから、その応甚分野、䜿甚範囲に制限が生
じ、期埅できる物性効果も小さいずいう欠点があ
る。なお、高重合床の塩化ビニル暹脂はそれを補
造するのに通垞のものを埗る堎合に比べお䜎い重
合枩床で重合させる必芁があるため、重合開始剀
の遞択、生産蚭備等に特殊な条件が必芁ずな぀お
補造が容易でないずいう䞍利がある。 本発明者らは埓来のかかる䞍利欠点を解決し、
成圢加工性がよく、぀や消し効果にすぐれか぀圧
瞮氞久歪にすぐれた成圢品を埗るべく鋭意研究の
結果本発明を完成したもので、これは塩化ビニル
単量䜓ず、䞀般匏 匏䞭のR1およびR2は䞀䟡炭化氎玠基、は
敎数で瀺されるカヌボネヌト化合物ずの共重合
䜓に、アクリル酞゚ステル、メタクリル酞゚ステ
ル、スチレン系単量䜓、アクリロニトリルより遞
択される少なくずも皮もしくはこれら単量䜓の
少なくずも皮ず分子䞭に個以䞊の䞍飜和結
合を持぀重合性化合物ずの混合物をグラフト重合
させるこずを特城ずする改質塩化ビニル系グラフ
ト共重合䜓の補造方法に関するものである。 この本発明によれば、前蚘したような䞍利欠点
がなく、加工性が良奜でか぀倖芳の぀や消し効果
にすぐれた成圢品を埗るこずができ、同時にたた
圧瞮氞久歪で代衚される耐倉圢性も倧きく改良さ
れるずいう利点が䞎えられる。 以䞋さらに詳现に説明するず、本発明の方法に
おいお䜿甚されるグラフト重合の幹ポリマヌずさ
れるべき共重合䜓は塩化ビニル単量䜓ず前蚘䞀般
匏で瀺したカヌボネヌト化合物ずの共重合䜓ずさ
れるのであるが、このカヌボネヌト化合物は幹ポ
リマヌずなる共重合䜓に適床の架橋結合を導入し
これによ぀お目的ずする぀や消し効果、および圧
瞮氞久歪、耐クリヌプ性の改良を図るために䜿甚
されるものであるので、これは塩化ビニル単量䜓
に察しお0.1〜重量の範囲で䜿甚するこずが
望たしく、重量よりも倚く䜿甚するずカヌボ
ネヌト化合物の連鎖移動性が匷くあらわれ、生成
重合䜓が重合床の小さいものずなり、架橋の床合
も小さくなる。䞀方0.1重量よりも少ないず架
橋結合導入による前蚘効果を期埅するこずができ
ないほか、埌述するグラフト重合がうたく進行し
なくなる。 このような目的で䜿甚される該カヌボネヌト化
合物の具䜓的䟋瀺ずしおは、メチルアリルパヌオ
キシカヌボネヌト、゚チル――メチル――ブ
テニルパヌオキシカヌボネヌト、タヌシダリヌブ
チル――メチル――ブテニルパヌオキシカヌ
ボネヌト、タヌシダリヌブチル――゚チル―
―ブテニルパヌオキシカヌボネヌト、む゜プロピ
ル――ブテニルパヌオキシカヌボネヌト、メチ
ル――メチル――プロペニルパヌオキシカヌ
ボネヌト、プロピル――゚チル――ペンテニ
ルパヌオキシカヌボネヌト、タヌシダリヌブチル
アリルパヌオキシカヌボネヌト、゚チル――゚
チル――ブテニルパヌオキシカヌボネヌト、ネ
オデシルアリルパヌオキシカヌボネヌトなどがあ
げられる。これらは皮類に限られず、皮以䞊
を同時に䜿甚しおもよい。 なお、塩化ビニル暹脂本来の特城を倱わしめな
い範囲であれば、前蚘カヌボネヌト化合物ず共に
他のコモノマヌを䜿甚しおもよく、これには酢酞
ビニル、カプロン酞ビニル、ラりリン酞ビニル、
ステアリン酞ビニル等のビニル゚ステル類、゚チ
レン、プロピレン、む゜ブチレン等のオレフむン
類、む゜ブチルビニル゚ヌテル、オクチルビニル
゚ヌテル、ドデシルビニル゚ヌテル、プニルビ
ニル゚ヌテル等のアルキルビニル゚ヌテル類、塩
化ビニリデン、フツ化ビニル、塩化プロピレン、
臭化ビニル等のハロゲン化オレフむン類、゚チル
アクリレヌト、―ブチルアクリレヌト、―ブ
チルメタクリレヌト、―゚チルヘキシルアクリ
レヌト、―゚チルヘキシルメタクリレヌト、ス
テアリルメタクリレヌト等のアクリル酞およびメ
タクリル酞゚ステル類、アクリル酞、メタクリル
酞、クロトン酞、アクリロニトリル、無氎マレむ
ン酞、無氎むタコン酞等のアクリル系誘導䜓等が
䟋瀺される。これらは皮類に限られず、皮以
䞊を同時に䜿甚しおもよい。 塩化ビニル単量䜓に䞊蚘したカヌボネヌト化合
物を共重合させる方法ずしおは、懞濁重合法、溶
液重合法、塊状重合法等いずれの方法でもよい
が、䞀般には懞濁重合法によるのが工業的、経枈
的に有利である。重合枩床は30〜65℃の範囲ずす
るこずが望たしい。なお、該カヌボネヌト化合物
の添加方法ずしおは、皮々の方法を採甚するこず
ができ特に限定されるものではないが、奜たしく
ぱマルゞペンたたは溶液ずしお加える方がよ
い。たた重合系ぞの添加時期に぀いおも圓初から
添加配合する堎合に限られず、重合反応を開始さ
せた埌に数回に分けおあるいは連続的に添加する
などいずれの方法によ぀おもよい。 䞊蚘重合を懞濁重合法で実斜する堎合に䜿甚さ
れる懞濁安定剀、重合開始剀等は、通垞塩化ビニ
ル単量䜓の重合に䜿甚されおいるものでよく、䟋
えば懞濁安定剀ずしおは完党けん化もしくは郚分
けん化のポリビニルアルコヌル、メチルセルロヌ
ス、゚チルセルロヌス、ヒドロキシ゚チルセルロ
ヌス、ヒドロキシプロピルセルロヌス、ヒドロキ
シプロピルメチルセルロヌス、カルボキシメチル
セルロヌス、ポリビニルピロリドン、無氎マレむ
ン酞―酢酞ビニル共重合䜓等の合成高分子物、デ
ンプン、れラチン等の倩然高分子物質などが䟋瀺
されるしこれらは皮に限られず皮以䞊䜵甚
しおもよい、たた重合開始剀ずしおはデカノむ
ルパヌオキサむド、ラりロむルパヌオキサむド、
ベンゟむルパヌオキサむド、ゞむ゜プロピル
パヌオキシゞカヌボネヌト、ゞ―゚チルヘキ
シルパヌオキシゞカヌボネヌト、アセチルシク
ロヘキシルスルホニルパヌオキサむド等のゞアシ
ルパヌオキサむド類、タヌシダリヌブチルパヌオ
キシピバレヌト、タヌシダリヌブチルパヌオキシ
ネオデカネヌト等のパヌオキシ゚ステル類の有機
過酞化物、およびαα′―アゟビスむ゜ブチロニ
トリル、αα′―アゟビス――ゞメチルバ
レロニトリル、αα′アゟビス――メトキシ―
―ゞメチルバレロニトリル等のアゟ化合物
が䟋瀺されるこれらは皮類に限られず皮以
䞊䜵甚しおもよい。 本発明の方法は、以䞊述べた幹ポリマヌずなる
べき共重合䜓に、アクリル酞゚ステル、メタクリ
ル酞゚ステル、スチレン系単量䜓、アクリロニト
リルより遞ばれる単量䜓の少なくずも皮ず分
子䞭に個以䞊の䞍飜和結合を持぀重合性化合物
ずの混合物をグラフト重合させるこずにより目的
ずする塩化ビニル系グラフト共重合䜓を埗るので
あるが、この堎合に䜿甚される䞊蚘単量䜓ずしお
はアクリル酞゚チル、アクリル酞む゜ブチル、ア
クリル酞―ヘキシル、アクリル酞―゚チルヘ
キシル、アクリル酞ラりリル、アクリル酞ステア
リル等のアクリル酞゚ステル、メタクリル酞゚チ
ル、メタクリル酞ブチル、メタクリル酞―゚チ
ルヘキシル、メタクリル酞ラりリル、メタクリル
酞ステアリル等のメタクリル酞゚ステル、スチレ
ン、メチルスチレン、α―メチルスチレン、ゞク
ロロスチレン等のスチレン系単量䜓およびアクリ
ロニトリル等が䟋瀺される。 䞀方重合性化合物の具䜓的䟋瀺ずしおはゞアリ
ルフタレヌト、ゞアリルむ゜フタレヌト、ゞアリ
ルテレフタレヌト等のフタル酞のゞアリル゚ステ
ル類、ゞアリルマレヌト、ゞアリルテレフタレヌ
ト等のフタル酞のゞアリル゚ステル、ゞアリルマ
レヌト、ゞアリルフマレヌト、ゞアリルむタコネ
ヌト、ゞビニルむタコネヌト、ゞビニルフマレヌ
ト等の゚チレン性䞍飜和二塩基酞のゞアリルおよ
びゞビニル゚ステル、ゞアリルアゞペヌト、ゞビ
ニルアゞペヌト、ゞアリルアれレヌト、ゞアリル
セバケヌト等の飜和二塩基酞のゞアリルおよびゞ
ビニル゚ステル類、ゞアリル゚ヌテル、トリアリ
ルシアヌレヌト、トリアリルむ゜シアヌレヌト、
トリアリルトリメリテヌトおよび゚チレングリコ
ヌルゞビニル゚ヌテル、―ブタンゞオヌルゞビ
ニル゚ヌテル、オクタデカンゞビニル゚ヌテル等
のゞビニル゚ヌテル類、アクリル酞ビニル、メタ
クリル酞ビニル、アクリル酞アリル、メタクリル
酞アリル等のアクリル酞およびメタクリル酞のビ
ニルおよびアリル゚ステル類、゚チレングリコヌ
ルゞメタクリレヌト、ゞ゚チレングリコヌルゞメ
タクリレヌト、トリ゚チレングリコヌルゞアクリ
レヌト、ポリ゚チレングリコヌルゞアクリレヌト
等の倚䟡アルコヌルのゞアクリルおよびゞメタク
リル゚ステル類、トリメチロヌルプロパントリメ
タクリレヌト、トリメチロヌル゚タントリメタレ
ヌト、トリメチロヌルプロパントリアクリレヌ
ト、トリメチロヌル゚タントリアクリレヌト、テ
トラメチロヌルメタントリアクリレヌト等の倚䟡
アルコヌルのトリアクリルおよびトリメタクリル
゚ステル類、ビスメタクリロむルオキシ゚チレン
フタレヌト、―トリアクリロむルヘキ
サハむドロトリアゞンおよび―ブタゞ゚ン
ホモポリマヌ等の䞍飜和結合含有䜎分子量ポリマ
ヌなどがあげられる。なお、これらは皮類に限
られず、皮以䞊を同時に䜿甚しおもよい。 前蚘単量䜓成分ず重合性化合物ずの䜵甚割合
は、重合性化合物が単量䜓成分量の〜40重量
盞圓量であるこずが必芁ずされる。以䞋では
架橋効果が小さく、40以䞊では架橋が進みす
ぎ、架橋過倚ずな぀お加工が困難になる。 このような単量䜓ず重合性化合物ずの混合物を
グラフト重合させるこずにより、埗られるグラフ
ト共重合䜓は軟質配合でのゲル化性が改良され、
さらにゲル分の分散性も改良され、加工性、物性
ずもに向䞊し、目的ずするすぐれた぀や消し成圢
品を容易に埗るこずができるずいう利点が䞎えら
れる。このグラフト重合を行わないず、ゲル分量
架橋結合導入量の倚少の倉化により、ゲル化
性、ゲル分の分散性ずもに䞍安定になり、成圢品
衚面はナシ地になりやすい。 グラフト重合を行わせる方法は、埓来公知の方
法によればよく、䟋えば懞濁重合法によ぀お前蚘
共重合䜓幹ポリマヌを補造し、その重合終了
埌のスラリヌ系にグラフトさせるべき成分の所定
量および重合開始剀を仕蟌んで重合枩床おおむね
70〜100℃でグラフト重合させるこずにより目的
ずするグラフト共重合䜓が埗られる。幹ポリマヌ
に察するグラフト成分の割合は幹ポリマヌの100
重量郚に察し、グラフト成分〜100重量郚奜
たしくは10〜100重量郚ずするこずが望たしく、
このグラフト成分が重量郚以䞋では䞊蚘した加
工性改良等の効果が充分に埗られず、たた100重
量郚以䞊では埗られるグラフト共重合䜓が塩化ビ
ニル暹脂本来の特性を倱い、たた加工時に滑性が
高すぎるため混緎できないこずもあるずいう䞍利
が生じる。 本発明の方法により埗られる塩化ビニル系グラ
フト共重合䜓は、䞀般の塩化ビニル暹脂ずほが同
様の加工性を有し、圧瞮氞久歪、耐クリヌプ性の
改良および倖芳の぀や消し効果にすぐれた軟質圢
成品を䞎えるずいう特長を有するのであるが、こ
のような軟質圢成品を埗るに圓぀お䜿甚される可
塑剀ずしおは、ゞブチルフタレヌト、ゞオクチル
フタレヌト、ブチルベンゞルフタレヌト等の芳銙
族倚塩基酞のアルキル゚ステル、ゞオクチルアゞ
ペヌト、ゞオクチルアれレヌト、ゞオクチルセバ
ケヌト等の脂肪族倚塩基酞のアルキル゚ステル、
トリクレゞルホスプヌト等のリン酞アルキル゚
ステル等が䟋瀺される。なお、䞉塩基性硫酞鉛等
の鉛系安定剀、ゞブチルすずマレヌト等のすず系
安定剀、ステアリン酞亜鉛、ステアリン酞カルシ
りム等の金属石けんで䟋瀺される熱安定剀、カヌ
ボンブラツク、炭酞カルシりム、酞化チタン、タ
ルク、アスベスト、氎酞化アルミニりム、氎酞化
マグネシりム等で䟋瀺される充填剀、カラヌカヌ
ボンブラツク、クロムむ゚ロヌ、酞化チタン、フ
タロシアニングリヌン等で䟋瀺される顔料、その
他垯電防止剀、無滎剀、玫倖線吞収剀等を加える
こずは任意である。 以䞊述べたずおり、本発明による改質塩化ビニ
ル系グラフト共重合䜓は、成圢加工にあた぀お、
埓来の塩化ビニル暹脂ず同じ工皋でブレンド、混
緎および成圢が可胜であり、ペレツト状もしくは
パりダヌ状のいずれの圢䜓で䟛絊しおもよい。た
た成圢加工の条件も埓来の塩化ビニル暹脂ず倉わ
るずころがなく、前蚘したすぐれた成圢品を容易
に埗るこずができる。 ぀ぎに具䜓的実斜䟋をあげる。 実斜䟋 内容積50のステンレス補重合噚に、䞋蚘の成
分を仕蟌み、50℃で10時間重合反応を行わせた。 箔 æ°Ž 30Kg 塩化ビニル単量䜓 Kg カヌボネヌト化合物 Kg 合蚈15Kg 郚分ケン化ポリビニルアルコヌル 20 ゞ――゚チルヘキシルパヌオキシカヌボネヌト
7.5 カヌボネヌト化合物の皮類、およびの
各量は衚䞭に蚘茉 ぀ぎに、䞊蚘重合によ぀お埗られた共重合䜓ス
ラリヌの所定量に、グラフト単量䜓および重合性
化合物を䞋蚘の割合で加え、80℃で時間グラフ
ト重合反応させた。 共重合䜓スラリヌ 固型分ずしお12Kg グラフト単量䜓 Kg 重合性化合物 郚 グラフト単量䜓および重合性化合物の皮類、
の各量は衚䞭に蚘茉、ただし重合性化合物
の郚はグラフト単量䜓100重量郚圓りの郚数で
ある。 䞊蚘のようにしおグラフト重合させた埌、氎掗
し、脱氎也燥したずころ、それぞれ衚に瀺すずお
りのゲル分重量を有する塩化ビニル系グラ
フト共重合䜓が埗られた。 〔共重合䜓䞭のゲル分枬定法〕 è©Šæ–™1.00を100mlのテトラヒドロフラン
THFに投入し、THF沞点にお60分間振ずう
溶解し䞍溶解分を遠心分離し、その也燥重量から
算出した。 䞊蚘のようにしお補造した塩化ビニル系グラフ
ト共重合䜓100重量郚に、ゞオクチルフタレヌト
80重量郚、ステアリン酞カルシりム重量郚およ
び゚ポキシ化倧豆油重量郚を配合し、むンチ
ロヌルにお160℃でロヌル巻付埌10分混緎した。
この際ロヌル巻付時間秒およびロヌルに巻付
いおいるシヌト面ロヌルシヌトの状態を芳察
した。 〔ロヌル巻付時間秒の枬定〕 混合物をロヌルに投入しおから混合物が芋かけ
䞊ロヌル面でゲル化した状態ずなるたでの時間
秒をストツプりオツチにお枬定した。 ぀ぎに、䞊蚘配合にさらにカヌボンブラツク
0.2重量郚を加えたものを20mmφ抌出機でシヌト
状に抌出成圢し、このシヌト抌出成圢品の衚
面状態を芳察した。 他方、前蚘ロヌルシヌトを185℃予熱分、30
Kgcm2加圧分でプレス成圢したものに぀いお圧
瞮氞久歪を枬定した。 〔圧瞮氞久歪の枬定〕 JIS  6301に基づき、70℃×22時間、25圧
瞮の条件で枬定した。 結果はそれぞれ衚に瀺すずおりであ぀た。これ
らの結果から明らかなように、本発明による堎合
は成圢加工性、぀や消し状態、圧瞮氞久歪が良奜
であり、特にグラフト重合の際に重合性化合物を
䜵甚するず、加工性、぀や消し状態、圧瞮氞久歪
が䞀段ず良奜になる。 〔衚䞭で甚いた略蚘号〕  カヌボネヌト化合物 BAPC―ブチルアリルパヌオキシカヌボネ
ヌト DAPCネオデシルアリルパヌオキシカヌボネ
ヌト BEPC―ブチル――゚チルブチニルパヌ
オキシカヌボネヌト  グラフト単量䜓 AEHアクリル酞―゚チルヘキシル MSTα―メチルスチレン STスチレン MABメタクリル酞ブチル  重合性化合物 DAPゞアリルフタレヌト DAMゞアリルマレヌト BHP―ブタゞ゚ンホモポリマヌ DAIゞアリルむタコネヌト PEAポリ゚チレングリコヌルゞアクリレヌ
ト MABメタクリル酞ビニル。
The present invention relates to a method for producing a modified vinyl chloride-based graft copolymer, in particular a modified chloride-based graft copolymer that provides a soft molded product with good moldability, excellent matte appearance, and improved compression set and creep resistance. The purpose of this invention is to provide a vinyl-based graft copolymer. In recent years, soft molded products made of vinyl chloride resin have been given a matte appearance to give them a sense of luxury, and there is a high demand for this matte effect especially for automobile parts, electric wires, etc. It's summery. Conventionally, as a method of obtaining soft vinyl chloride resin molded products with a matte appearance, attempts have been made to give the molded product a matte effect by molding at a lower molding temperature than usual. If the molding temperature is lowered, kneading during molding will not be carried out sufficiently, resulting in a disadvantage that the molded product will have inferior properties such as mechanical strength. Note that when molding is carried out at the molding temperature normally employed for general vinyl chloride resins without lowering the molding temperature, a molded product with a matte appearance cannot be obtained. On the other hand, vinyl chloride resins have a high apparent degree of polymerization by blending vinyl chloride resin with a high degree of polymerization into heavy vinyl chloride, or by adding a crosslinking agent during polymerization of vinyl chloride. Attempts have been made to obtain matte molded products by making and using this as a molding resin. However, such resins with a high apparent degree of polymerization have extremely poor processability compared to general vinyl chloride resins, and for this reason, molding of such resins requires the use of special processing machines or special processing methods. The disadvantage is that it is difficult to obtain molded articles with the expected physical properties. In addition, although general vinyl chloride resins have good processability, they have the disadvantage of poor compression set and creep resistance. As a way to improve this,
There are methods to obtain products with a high apparent degree of polymerization by blending vinyl chloride resin with a vinyl chloride polymer or by adding a crosslinking agent during polymerization of vinyl chloride. As mentioned above, vinyl chloride resins with a high apparent degree of polymerization have the disadvantage that their processability is extremely poor, which limits their application fields and scope of use, and the expected physical property effects are also small. . In addition, in order to manufacture vinyl chloride resin with a high degree of polymerization, it is necessary to polymerize it at a lower polymerization temperature than when obtaining ordinary resin, so special conditions such as selection of polymerization initiator and production equipment are required. It has the disadvantage that it is necessary and not easy to manufacture. The present inventors solved the conventional disadvantages,
The present invention was completed as a result of intensive research to obtain a molded product with good molding processability, excellent matte effect, and excellent compression set. (In the formula, R 1 and R 2 are monovalent hydrocarbon groups, n is an integer.) A copolymer with a carbonate compound represented by or a mixture of at least one of these monomers and a polymerizable compound having two or more unsaturated bonds in one molecule. The present invention relates to a method for manufacturing a combination. According to the present invention, it is possible to obtain a molded product that does not have the above-mentioned disadvantages, has good workability, and has an excellent matte appearance, and at the same time has good deformation resistance as represented by compression set. The advantage is that it is greatly improved. To explain in more detail below, the copolymer to be used as the backbone polymer for graft polymerization used in the method of the present invention is a copolymer of vinyl chloride monomer and a carbonate compound represented by the above general formula. However, this carbonate compound is used to introduce a suitable amount of crosslinking into the copolymer that becomes the backbone polymer, thereby achieving the desired matting effect and improving compression set and creep resistance. Therefore, it is desirable to use it in the range of 0.1 to 5% by weight based on the vinyl chloride monomer. If it is used in an amount exceeding 5% by weight, chain transfer properties of the carbonate compound will appear strongly, and the resulting polymer will has a small degree of polymerization, and the degree of crosslinking also becomes small. On the other hand, if it is less than 0.1% by weight, the above-mentioned effects due to the introduction of crosslinking bonds cannot be expected, and the graft polymerization described below will not proceed smoothly. Specific examples of the carbonate compound used for this purpose include methylallyl peroxycarbonate, ethyl-3-methyl-3-butenyl peroxycarbonate, and tert-butyl-3-methyl-3-butenyl. Peroxycarbonate, tert-butyl-3-ethyl-3
-Butenyl peroxycarbonate, isopropyl-3-butenyl peroxycarbonate, methyl-2-methyl-2-propenyl peroxycarbonate, propyl-4-ethyl-4-pentenyl peroxycarbonate, tert-butylallyl peroxycarbonate , ethyl-3-ethyl-3-butenyl peroxycarbonate, neodecylallyl peroxycarbonate, and the like. These are not limited to one type, and two or more types may be used simultaneously. Note that other comonomers may be used together with the carbonate compound as long as the original characteristics of the vinyl chloride resin are not lost, and these include vinyl acetate, vinyl caproate, vinyl laurate,
Vinyl esters such as vinyl stearate, olefins such as ethylene, propylene, and isobutylene, alkyl vinyl ethers such as isobutyl vinyl ether, octyl vinyl ether, dodecyl vinyl ether, and phenyl vinyl ether, vinylidene chloride, vinyl fluoride, propylene chloride,
Halogenated olefins such as vinyl bromide, acrylic acid and methacrylic acid esters such as ethyl acrylate, n-butyl acrylate, n-butyl methacrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, acrylic acid, methacrylic acid , crotonic acid, acrylonitrile, maleic anhydride, itaconic anhydride, and other acrylic derivatives. These are not limited to one type, and two or more types may be used simultaneously. As a method for copolymerizing the vinyl chloride monomer with the above-mentioned carbonate compound, any method such as suspension polymerization method, solution polymerization method, or bulk polymerization method may be used, but suspension polymerization method is generally used industrially. Economically advantageous. The polymerization temperature is preferably in the range of 30 to 65°C. The method for adding the carbonate compound is not particularly limited and various methods can be employed, but it is preferable to add it as an emulsion or a solution. Furthermore, the timing of addition to the polymerization system is not limited to the case where it is added and blended from the beginning, but may be added in several portions or continuously after the polymerization reaction has started. The suspension stabilizer, polymerization initiator, etc. used when carrying out the above polymerization by the suspension polymerization method may be those normally used in the polymerization of vinyl chloride monomers. For example, as a suspension stabilizer, Fully saponified or partially saponified polyvinyl alcohol, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, polyvinylpyrrolidone, synthetic polymers such as maleic anhydride-vinyl acetate copolymer, starch, gelatin, etc. (These are not limited to one type, but two or more types may be used in combination). Examples of polymerization initiators include decanoyl peroxide, lauroyl peroxide,
Benzoyl peroxide, di(isopropyl)
Peroxydicarbonate, di(2-ethylhexyl)peroxydicarbonate, diacyl peroxides such as acetylcyclohexylsulfonyl peroxide, peroxyesters such as tert-butyl peroxypivalate, tert-butyl peroxyneodecanate, etc. organic peroxides, and α,α′-azobisisobutyronitrile, α,α′-azobis-2,4-dimethylvaleronitrile, α,α′azobis-4-methoxy-
Examples include azo compounds such as 2,4-dimethylvaleronitrile (these are not limited to one type, but two or more types may be used in combination). The method of the present invention includes adding at least one monomer selected from acrylic acid ester, methacrylic acid ester, styrene monomer, and acrylonitrile to the copolymer to be the backbone polymer described above, and adding two monomers in one molecule. The desired vinyl chloride-based graft copolymer is obtained by graft polymerizing a mixture with a polymerizable compound having more than one unsaturated bond, and the monomer used in this case is acrylic acid. Acrylic acid esters such as ethyl, isobutyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, methacrylate Examples include methacrylic acid esters such as stearyl acid, styrene monomers such as styrene, methylstyrene, α-methylstyrene, and dichlorostyrene, and acrylonitrile. On the other hand, specific examples of polymerizable compounds include diallyl esters of phthalic acid such as diallyl phthalate, diallyl isophthalate, diallyl terephthalate, diallyl esters of phthalic acid such as diallyl maleate, diallyl terephthalate, diallyl maleate, diallyl fumarate, Diallyl and divinyl esters of ethylenically unsaturated dibasic acids such as diallylitaconate, divinyl itaconate, divinyl fumarate; diallyl and divinyl esters of saturated dibasic acids such as diallyl adipate, divinyl adipate, diallyl azelate, diallyl sebacate; , diallyl ether, triallyl cyanurate, triallyl isocyanurate,
triallyl trimellitate and divinyl ethers such as ethylene glycol divinyl ether, n-butanediol divinyl ether, and octadecane divinyl ether; acrylic and methacrylic acids such as vinyl acrylate, vinyl methacrylate, allyl acrylate, and allyl methacrylate; Vinyl and allyl esters, diacrylic and dimethacrylic esters of polyhydric alcohols such as ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol diacrylate, polyethylene glycol diacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethalate , triacrylic and trimethacrylic esters of polyhydric alcohols such as trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate, bismethacryloyloxyethylene phthalate, 1,3,5-triacryloylhexahydrotriazine, and Examples include low molecular weight polymers containing unsaturated bonds such as 1,2-butadiene homopolymer. Note that these are not limited to one type, and two or more types may be used simultaneously. The combined ratio of the monomer component and the polymerizable compound is such that the polymerizable compound is 1 to 40% by weight of the monomer component amount.
A significant amount is required. If it is less than 1%, the crosslinking effect will be small, and if it is more than 40%, crosslinking will proceed too much, resulting in excessive crosslinking and making processing difficult. By graft-polymerizing a mixture of such a monomer and a polymerizable compound, the resulting graft copolymer has improved gelling properties in soft formulations,
Further, the dispersibility of the gel content is improved, both processability and physical properties are improved, and the desired advantage is that the desired excellent matte molded product can be easily obtained. If this graft polymerization is not carried out, both the gelation property and the dispersibility of the gel content will become unstable due to a slight change in the gel content (the amount of crosslinking introduced), and the surface of the molded product will likely become pear-like. The graft polymerization may be carried out by a conventionally known method. For example, the copolymer (stem polymer) is produced by a suspension polymerization method, and after the polymerization is completed, the components to be grafted are added to the slurry system. After adding the specified amount and polymerization initiator, the polymerization temperature is approximately
The desired graft copolymer can be obtained by graft polymerization at 70 to 100°C. The ratio of the graft component to the backbone polymer is 100% of the backbone polymer.
It is desirable that the amount of the graft component be 1 to 100 parts by weight (preferably 10 to 100 parts by weight) based on the weight of the graft component.
If the amount of this graft component is less than 1 part by weight, the above-mentioned effects such as improving processability cannot be sufficiently obtained, and if it is more than 100 parts by weight, the graft copolymer obtained will lose the properties inherent to vinyl chloride resin, and it will become slippery during processing. This has the disadvantage that it may not be possible to knead it because of its too high properties. The vinyl chloride-based graft copolymer obtained by the method of the present invention has almost the same processability as general vinyl chloride resin, and has a soft formability with excellent compression set, improved creep resistance, and a matte appearance. Plasticizers used to obtain such soft molded products include alkyl esters of aromatic polybasic acids such as dibutyl phthalate, dioctyl phthalate, and butylbenzyl phthalate; Alkyl esters of aliphatic polybasic acids such as dioctyl adipate, dioctyl azelate, dioctyl sebacate,
Examples include phosphoric acid alkyl esters such as tricresyl phosphate. In addition, lead-based stabilizers such as tribasic lead sulfate, tin-based stabilizers such as dibutyltin malate, heat stabilizers exemplified by metal soaps such as zinc stearate and calcium stearate, carbon black, calcium carbonate, and titanium oxide. , fillers such as talc, asbestos, aluminum hydroxide, magnesium hydroxide, pigments such as color carbon black, chrome yellow, titanium oxide, phthalocyanine green, etc., other antistatic agents, dropless agents, and ultraviolet absorbers. Adding agents etc. is optional. As described above, the modified vinyl chloride graft copolymer according to the present invention can be molded by
It can be blended, kneaded and molded in the same steps as conventional vinyl chloride resins, and may be supplied in either pellet or powder form. Furthermore, the molding conditions are no different from those of conventional vinyl chloride resins, and the above-mentioned excellent molded products can be easily obtained. Next, a specific example will be given. Example The following components were charged into a stainless steel polymerization vessel with an internal volume of 50 mm, and a polymerization reaction was carried out at 50°C for 10 hours. Pure water 30Kg Vinyl chloride monomer AKg Carbonate compound BKg Total 15Kg Partially saponified polyvinyl alcohol 20g Di-2-ethylhexyl peroxycarbonate
7.5g (The type of carbonate compound and each amount of A and B are listed in the table.) Next, the graft monomer and the polymerizable compound were added to the predetermined amount of the copolymer slurry obtained by the above polymerization. They were added in the proportions shown below, and a graft polymerization reaction was carried out at 80°C for 4 hours. Copolymer slurry 12Kg as solid content Graft monomer CKg Polymerizable compound Part D (Types of graft monomer and polymerizable compound,
The amounts of C and D are listed in the table; however, part D of the polymerizable compound is the number of parts per 100 parts by weight of the graft monomer). After graft polymerization as described above, the polymers were washed with water and dehydrated and dried to obtain vinyl chloride-based graft copolymers having gel contents (% by weight) as shown in the table. [Measurement method for gel content in copolymer] 1.00 g of sample was added to 100 ml of tetrahydrofuran (THF), dissolved by shaking at the boiling point of THF for 60 minutes, undissolved content was centrifuged, and the amount was calculated from its dry weight. Dioctyl phthalate was added to 100 parts by weight of the vinyl chloride graft copolymer produced as described above.
80 parts by weight, 2 parts by weight of calcium stearate, and 5 parts by weight of epoxidized soybean oil were blended and kneaded for 10 minutes after being rolled at 160°C using a 3-inch roll.
At this time, the roll winding time (seconds) and the state of the sheet surface (rolled sheet) wound around the roll were observed. [Measurement of roll winding time (seconds)] The time (seconds) from when the mixture was put on the roll to when the mixture appeared to be gelled on the roll surface was measured using a stopwatch. Next, add carbon black to the above formulation.
The mixture to which 0.2 parts by weight was added was extruded into a sheet using a 20 mmφ extruder, and the surface condition of this sheet (extruded product) was observed. On the other hand, preheat the roll sheet to 185℃ for 7 minutes, 30 minutes.
Compression set was measured for a product that was press-formed under Kg/cm 2 pressure for 4 minutes. [Measurement of compression set] Based on JIS K 6301, measurement was carried out under the conditions of 25% compression at 70°C for 22 hours. The results were as shown in the table. As is clear from these results, the method according to the present invention has good molding processability, matte state, and compression set. Particularly, when a polymerizable compound is used in conjunction with graft polymerization, the processability, matt state, and compression set are good. Distortion becomes even better. [Abbreviations used in the table] 1 Carbonate compound BAPC: t-butyl allyl peroxycarbonate DAPC: Neodecyl allyl peroxy carbonate BEPC: t-butyl-3-ethylbutynyl peroxy carbonate 2 Graft monomer AEH: 2-Ethylhexyl acrylate MST: α-methylstyrene ST: Styrene MAB: Butyl methacrylate 3 Polymerizable compound DAP: Diallyl phthalate DAM: Diallyl maleate BHP: 1,2-butadiene homopolymer DAI: Diallyl itaconate PEA: Polyethylene glycol Diacrylate MAB: Vinyl methacrylate.

【衚】【table】

【衚】【table】

Claims (1)

【特蚱請求の範囲】  塩化ビニル単量䜓ず、䞀般匏 匏䞭のR1およびR2は䞀䟡炭化氎玠基、は
敎数で瀺されるカヌボネヌト化合物ずの共重合
䜓に、アクリル酞゚ステル、メタクリル酞゚ステ
ル、スチレン系単量䜓、アクリロニトリルより遞
ばれる単量䜓の少なくずも皮ずこの単量䜓量に
察し〜40重量盞圓量の分子䞭に個以䞊の
䞍飜和結合を持぀重合性化合物ずの混合物をグラ
フト重合させるこずを特城ずする塩化ビニル系グ
ラフト共重合䜓の補造方法。
[Claims] 1. Vinyl chloride monomer and general formula (In the formula, R 1 and R 2 are monovalent hydrocarbon groups, n is an integer) and a copolymer with a carbonate compound selected from acrylic esters, methacrylic esters, styrene monomers, and acrylonitrile. It is characterized by graft polymerizing a mixture of at least one monomer and a polymerizable compound having two or more unsaturated bonds in one molecule in an amount equivalent to 1 to 40% by weight based on the amount of the monomer. A method for producing a vinyl chloride-based graft copolymer.
JP974882A 1982-01-25 1982-01-25 Production of vinyl chloride graft copolymer Granted JPS58127717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP974882A JPS58127717A (en) 1982-01-25 1982-01-25 Production of vinyl chloride graft copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP974882A JPS58127717A (en) 1982-01-25 1982-01-25 Production of vinyl chloride graft copolymer

Publications (2)

Publication Number Publication Date
JPS58127717A JPS58127717A (en) 1983-07-29
JPS6333762B2 true JPS6333762B2 (en) 1988-07-06

Family

ID=11728919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP974882A Granted JPS58127717A (en) 1982-01-25 1982-01-25 Production of vinyl chloride graft copolymer

Country Status (1)

Country Link
JP (1) JPS58127717A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243812A (en) * 1985-04-23 1986-10-30 Nippon Oil & Fats Co Ltd Self-crosslinking acrylate ester random copolymer and fiber treating agent containing same
US4665132A (en) * 1985-06-14 1987-05-12 Nippon Oil & Fats Co., Ltd. Block copolymer
US4665131A (en) * 1985-06-14 1987-05-12 Nippon Oil And Fats Company, Ltd. Block copolymer
JPS6296507A (en) * 1985-10-24 1987-05-06 Nippon Oil & Fats Co Ltd Self-crosslinking acrylate random copolymer and fiber-treating agent comprising same

Also Published As

Publication number Publication date
JPS58127717A (en) 1983-07-29

Similar Documents

Publication Publication Date Title
JPS6144883B2 (en)
US20090143547A1 (en) Method for producing a functional vinyl halide polymer
EP0004795B2 (en) Method for producing vinyl chloride resins
HU209432B (en) Process for producing polyacryl-acid-ester/vinyl-chloride grafted polymer with large specific impact energy
EP2067795A1 (en) A method for producing a functional vinyl halide polymer
JPS6333762B2 (en)
JPS6324606B2 (en)
JP3284798B2 (en) Method for producing matte vinyl chloride polymer and method for producing the polymer composition
JPH0149728B2 (en)
US3627853A (en) Chlorination of vinyl chloride block copolymers
US5248733A (en) Process for producing matte vinyl chloride polymers
US5006623A (en) Process for preparing vinyl chloride copolymers with diacrylate of polyhydric alcohol
US11787887B2 (en) Method of producing vinyl chloride-based polymer
JPS621606B2 (en)
JP2003119341A (en) Polyvinyl chloride-based resin composition
JPS60255813A (en) Production of vinyl chloride resin
JPH0529641B2 (en)
JPS6234771B2 (en)
JPH03244613A (en) Production of vinyl chloride polymer
JPH08295784A (en) Vinyl chloride resin composition
JP2003313391A (en) Polyvinyl chloride resin composition
JPH0660224B2 (en) Method for producing vinyl chloride resin
JPH03244614A (en) Production of matte vinyl chloride polymer
JP2001106852A (en) Vinyl chloride based resin and molded product
JPH08337622A (en) Molded synthetic resin product