JPS6333645A - Optical liquid detector - Google Patents

Optical liquid detector

Info

Publication number
JPS6333645A
JPS6333645A JP17851186A JP17851186A JPS6333645A JP S6333645 A JPS6333645 A JP S6333645A JP 17851186 A JP17851186 A JP 17851186A JP 17851186 A JP17851186 A JP 17851186A JP S6333645 A JPS6333645 A JP S6333645A
Authority
JP
Japan
Prior art keywords
light
angle
liquid
detected
detection surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17851186A
Other languages
Japanese (ja)
Inventor
Takashi Sugihara
孝志 杉原
Shuhei Tsuchimoto
修平 土本
Masanori Watanabe
昌規 渡辺
Masaya Hijikigawa
正也 枅川
Masataka Ito
政隆 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP17851186A priority Critical patent/JPS6333645A/en
Publication of JPS6333645A publication Critical patent/JPS6333645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To detect the attaching of water drops or the like selectively at a high accuracy, by making two luminous fluxes, large and small, incident on a transparent medium such as glass at an critical angle in the interface between an object to be detected such as water drop and the medium from the opposite side of a surface to be detected. CONSTITUTION:In a transparent medium 1 such as front glass of an automobile, light emitting elements 21 and 22 and light receiving elements 31 and 32 are arranged at a fixed angle on the opposite side of a surface 1a intended to detect the attaching of water drops. The elements 21 and 22 are so arranged as to receive incident lights therefrom through a prism 4 at different angles. That is, one element is set at such an angle that incident light is not totally reflected on the interface when water drops attach to the surface 1a being inspected but done so when they do not and the other element is set at such an angle that total reflection conditions thereof will not break with the attaching of water. The light, which has repeated the total reflection in the medium 1 is received by the elements 31 and 32 through a prism 5 and a lens 6 and thus, the attaching of water drops is detected from the attenuation of the one element only.

Description

【発明の詳細な説明】 く技術分野〉 未発明は呆(雨)滴等の液体を選択性良ぐ高精度に検知
する光学式センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an optical sensor that detects liquid such as raindrops with good selectivity and high accuracy.

〈従来技術とその問題点〉 液体検知あるいは液体識別センサは、特に自動車におい
て降雨を検知しワイパーあるいはパワーウィンドウやサ
ンルーフ等を自動的に動作させるといった様な場合や一
般家庭での屋内からの降雨認識等に有用であり、従来よ
り結露センサあるいは圧電素子を用いたセンサ等が知ら
れている。前者は結露センサ表面への水の付着による素
子電極間の急激な電気抵抗の変化により、また後者は自
動車の走行中に圧電素子≦こ水滴が衝突した時の圧電効
果にこよって生ずる起電力により、夫々雨滴を検出する
ものである。しかしながらいずれの場合もセンサは雨滴
を検出するために自動車外あるいは屋外に設置されるこ
とになり、センサの置かれる環境条件はかなり厳しいも
のとなる。例えばセンサ素子に対して導電性のホコリ等
の付着あるいは泥はね、小石の衝突等センサにとって誤
動作を生じる要因が非常に多く捷た自然条件の変動によ
りセンサ寿命も著しく影響を受ける。そのため、第4図
に示した様に自動車のフロントガラス(41)外側面に
雨滴(43)が付着しt際の2木の電極(42)間の静
電容量変化をもって検出するものが提唱されている。こ
れはセンサの構成部品を自動車内部に配置しであるため
、外部環境の影響を受は番こくい構成であるが、充分な
検出出力?得る念めには電極〔42〕間隔を小さくする
必要があり、従って雨滴の検出面積はかなり小さなもの
となるかあるいは大Iの雨滴の付着が必要となり検出感
度の点で問題がある。さらに、雨滴以外の液体が付着し
念際も出力に変化を生じ液体識別能にも劣る。そこで、
自動車のフロントガラス等全検出面として、光学的手法
を駆使することによって水(雨)滴全検出するセンサを
考えることができる。
<Prior art and its problems> Liquid detection or liquid identification sensors are particularly useful for detecting rain in automobiles and automatically operating wipers, power windows, sunroofs, etc., and for detecting rain from indoors in ordinary homes. Dew condensation sensors, sensors using piezoelectric elements, and the like are conventionally known. The former is due to a sudden change in electrical resistance between the element electrodes due to water adhering to the surface of the dew condensation sensor, and the latter is due to the electromotive force generated due to the piezoelectric effect when water droplets collide with the piezoelectric element while the car is running. , respectively, to detect raindrops. However, in either case, the sensor is installed outside the vehicle or outdoors in order to detect raindrops, and the environmental conditions in which the sensor is placed are quite severe. For example, there are many factors that can cause sensor malfunctions, such as adhesion of conductive dust or mud to the sensor element, collision of small stones, etc., and the sensor life is significantly affected by fluctuations in natural conditions. Therefore, as shown in Fig. 4, a method has been proposed that detects the change in capacitance between two electrodes (42) when raindrops (43) adhere to the outer surface of a windshield (41) of a car. ing. Since the sensor components are placed inside the car, this configuration is not susceptible to the effects of the external environment, but does it have sufficient detection output? In order to achieve this, it is necessary to reduce the spacing between the electrodes [42], and therefore the area for detecting raindrops becomes quite small, or it is necessary for large I raindrops to adhere, which poses a problem in terms of detection sensitivity. Furthermore, if liquid other than raindrops adheres to the sensor, the output may change, resulting in poor liquid discrimination ability. Therefore,
It is possible to consider a sensor that detects all water (rain) droplets by making full use of optical methods as a whole detection surface such as a windshield of a car.

すなわち、第5図に示す様にフロントガラス(51)に
対しその内側から光源光を入射し、その入射光を常には
フロントガラス(51)内で全反射伝搬し最終端で受光
素子(52)に入射する様に設定しておき、フロントガ
ラス(51)の外側面多こ雨滴が付着した時に空気と雨
滴との屈折率の差により前記全反射条件が崩れ入射光が
受光素子(52)は受光されないといった光学的構成の
センサが考えられている。これは検出面がフロントガラ
ス(51)でありセンサ全構成する光学部品を全てフロ
ントガラス〔51〕の内側すなわち車内Gこ配置するこ
とができ、ホコリ、泥はね等によるセンサ寿命への影響
が低減されるとともに耐環境性薔こ優れたセンサとする
ことができる。しかし、全反射条件によって検知しよう
とする検出部に雨滴以外の液体、例えば自動車ワックス
等のオイルの付着にても全反射条件が乱され、雨滴の場
合と同様な出力変化を示し、さらlこは、受光素子に対
して発光素子から発せられた以外の太陽光等番こよる外
乱光の入射も想され、計測の高精度化、検出液体の識別
等に大きな問題全有している。
That is, as shown in Fig. 5, the light source light is incident on the windshield (51) from the inside, and the incident light is always propagated by total reflection within the windshield (51) and reaches the light receiving element (52) at the final end. When many raindrops adhere to the outer surface of the windshield (51), the total internal reflection condition is broken due to the difference in the refractive index between the air and the raindrops, and the incident light passes through the light receiving element (52). Sensors with optical configurations that do not receive light are being considered. The detection surface is the windshield (51), and all the optical components that make up the sensor can be placed inside the windshield [51], that is, inside the vehicle, so that the sensor life is not affected by dust, mud, etc. It is possible to obtain a sensor with excellent environmental resistance. However, if a liquid other than raindrops, such as oil such as automobile wax, adheres to the detection unit that is trying to detect under the total reflection condition, the total reflection condition will be disturbed, and the output will change in the same way as in the case of raindrops. In this case, disturbance light caused by sunlight, etc. other than that emitted from the light emitting element may be incident on the light receiving element, and this poses major problems in improving measurement precision, identifying the detected liquid, etc.

〈発明の目的〉 未発明は以上に述べた様な従来の液体検知あるいは液体
識別センサの有していた欠点全解消するためになされた
ものであり、光学的手法により液体特に水(雨)滴の選
択性に優れた検出を行うものである。
<Purpose of the invention> The invention was made in order to eliminate all the drawbacks of the conventional liquid detection or liquid identification sensors as described above. It performs detection with excellent selectivity.

装置(センサ)の構成は、検出面を有するガラス、高分
子樹脂あるいはプリズム等の透明媒体において検出面の
反対側から異なる入射角度にて2末の光束を透明媒体憂
こ入射し、2光束のりちl光束を透明媒体の検出面に付
着する水滴等の被検出物と透明媒体の界面における臨界
角以上に設定し他方をその臨界角よりも小さい角度に設
定すること番こより検出面に水滴が付着し念際の2光束
夫々の透明媒体と水滴との界面における反射特性すなわ
ち受光素子にて検出したディジタル的な反射光強変変化
を比較することにより水滴を検知し、水「屈折率n−1
,33)と水より屈折率の大きい液体との高精度な識別
を可能とじ一又、実際に動作する際、外乱光として影”
Jt−及ぼす太陽光等についても装置の光学部品パッケ
ージ時に遮弊板を設けること及び透明媒体の検出面から
入射し受光素子へ到達の予想される一部の光に関しても
受光素子の前面番こレンズを配置することにより、受光
素子部外にその外乱光を集光することができ、検出2光
束【こおいても夫々の受光素子上に精度良く集光可能と
する。
The configuration of the device (sensor) is that two light beams are incident on a transparent medium such as glass, polymer resin, or a prism that has a detection surface at different incident angles from the opposite side of the detection surface, and the two light beams are combined. First, set the luminous flux above the critical angle at the interface between the transparent medium and the object to be detected, such as water droplets adhering to the detection surface of the transparent medium, and set the other beam at an angle smaller than the critical angle. A water droplet is detected by comparing the reflection characteristics at the interface between the transparent medium and the water droplet, that is, the digital reflected light intensity change detected by the light receiving element, and the refractive index n- 1
, 33) and liquids with a higher refractive index than water.In addition, during actual operation, shadows are generated as ambient light.
Jt-For sunlight, etc., it is necessary to provide a shielding plate when packaging the optical components of the device, and for some of the light that is expected to enter from the detection surface of the transparent medium and reach the photodetector, use a front cover lens of the photodetector. By arranging this, the disturbance light can be focused outside the light-receiving element, and the two detected light beams can be focused on each light-receiving element with high precision.

さらに、受光素子前面に発光素子の発光波長帯域の光の
みを透過する光学フィルターを装荷すれば、外乱光のパ
ワーレベルを大幅に低減でき上記レンズとの併用により
外乱光の影響はほとんど無視しうるものとなり、良好な
る出力が得られる。
Furthermore, by loading an optical filter in front of the light-receiving element that transmits only light in the emission wavelength band of the light-emitting element, the power level of ambient light can be significantly reduced, and when used in combination with the above lens, the effect of ambient light can be almost ignored. and a good output can be obtained.

又、センサを構成する光源、受光素子、プリズム等を検
出面の反対側に配置できることから車のフロントガラス
の外側を検出面とした場合、車内にセンサ全設置するこ
とができ、耐環境性に優れた構成とすることができる。
In addition, since the light source, light receiving element, prism, etc. that make up the sensor can be placed on the opposite side of the detection surface, if the outside of the car windshield is used as the detection surface, the entire sensor can be installed inside the car, which improves environmental resistance. An excellent configuration can be achieved.

さらには、透明媒体内を検出光束が全反射を繰り返しな
がら多重反射にて伝搬を行なう様に光源と受光素子を設
けであるため透明媒体の検出面における検出面積の拡大
全図ることができ、微小の水滴にても高感度番こ検知が
行なわれ、またセンサの構成が単純であり安価なセンサ
とすることが可能で実用上極めて有益な構成となる。こ
の、様に大発明は上記幾多の利点を有する光学式液体検
出センサを提供することを目的とするものである。
Furthermore, since the light source and light receiving element are installed so that the detection light beam propagates through multiple reflections while repeating total reflection within the transparent medium, the detection area on the detection surface of the transparent medium can be fully expanded, and the High-sensitivity detection can be performed even with water droplets, and the sensor structure is simple and can be made at low cost, making it an extremely useful structure in practice. The object of this great invention is to provide an optical liquid detection sensor having many of the advantages mentioned above.

〈実施例〉 第1図は本発明の一実施例を示す光学式液体検出装置(
以降センサと称す)の構成図である。透明媒体(1)の
検出面(la〕に対して反対の内面(IT)に発光素子
(21)、(22)、受光素子(31)、(32)’i
一定角度にて配設し、さらに光源である発光素子(21
)、(22)d・らの出射光は透明媒体の内面(lb)
に光学的に接M(結合)されたプリズム(4)にてそれ
ぞれ異なる角度で透明媒体(1)中に導入される。透明
媒体(1)中を図示する如く全反射にて伝搬した入射光
は同様に内面(lb)iこ光学的に接着されたプリズム
(5) ’i介して透明媒体(1)より導出され受光素
子(31)、(32)に入射される。さらに、遮弊板(
7)とレンズ(6)が上記光学部品と治具(8)により
一部パッケージされ、夫々の受光素子(11)、(32
)における検出光強度は電気信号として出力され一周知
の比較回路(コンパレータ)において比較することによ
り水(雨)滴等の有無が検知される構成となっている。
<Example> Figure 1 shows an optical liquid detection device (
FIG. 2 is a configuration diagram of a sensor (hereinafter referred to as a sensor). Light-emitting elements (21), (22) and light-receiving elements (31), (32)'i are arranged on the inner surface (IT) opposite to the detection surface (la) of the transparent medium (1).
A light emitting element (21
), (22) d, etc. are emitted from the inner surface (lb) of the transparent medium.
are introduced into the transparent medium (1) at different angles through prisms (4) that are optically coupled to M (coupled). As shown in the figure, the incident light propagated through the transparent medium (1) by total reflection is similarly led out of the transparent medium (1) through the prism (5) optically bonded to the inner surface (lb) and is received. The light is incident on the elements (31) and (32). In addition, a shielding plate (
7) and lens (6) are partially packaged with the above optical components and jig (8), and the respective light receiving elements (11) and (32
) is output as an electrical signal and compared in a well-known comparison circuit (comparator) to detect the presence or absence of water (rain) drops, etc.

次に、上述のセンサ構成における水滴検知原理並びにセ
ンサ構成の詳細について説明する。透明媒体(1)には
屈折率n=1.47のパイレックスガラス(以下、単に
ガラスと称す)を用い光源の発光素子(、21) 、 
(22)の夫々からの出射ビームがプリズム(4)を透
過した後ガラス(1)に対して入射角θ1=50°、θ
2=70°となる様に発光素子(21)、(22)の角
度設定を行う。
Next, the principle of detecting water droplets in the above-described sensor configuration and the details of the sensor configuration will be explained. The transparent medium (1) is made of Pyrex glass (hereinafter simply referred to as glass) with a refractive index of n=1.47, and the light emitting element (21) of the light source is used.
After the emitted beam from each of (22) passes through the prism (4), the incident angle θ1=50°, θ
The angles of the light emitting elements (21) and (22) are set so that 2=70°.

この2つの入射角を決定する番こ当ってはガラス(1)
に空気あるいは水が付着しているときの全反射条件を考
慮して導くことができる。すなわちガラスlの屈折率n
a=1.47に対し、空気nA=1.00−水nw=1
.33であり、よって空気。
The best place to decide these two angles of incidence is glass (1)
It can be derived by considering the total internal reflection conditions when air or water is attached to the surface. That is, the refractive index n of glass l
For a=1.47, air nA=1.00-water nw=1
.. 33, therefore air.

水が夫々ガラスに付着している場合の臨界角Bh、Ow
はスネルの法則により以下の1直として求まる。
Critical angles Bh and Ow when water is attached to glass respectively
is determined by Snell's law as the following straight line.

s 1nJ2ffA1    s inow    1
.33sin90°  1,47   5in90° 
  1.47” 15A−42,9° 、 jlw =
 64.8゜従って、ガラス(1)の検出面に何も付着
していない状態ではガラス(1)に対して光源から42
.9°以上の入射角で入射し之先は全てガラス(1)内
で全反射全綴り返しながら伝搬して行き一方、ガラス(
1)の検出面に水滴が付着するとその水滴の付着した面
では全反射角はガラス(、1)と水の夫々の屈折率で決
定されるため、前述した様に入射角が64.8°以上の
ものは全反射にてガラス(1)内を伝搬して行くが、入
射角が42.9°≦fli(入射角)<64.8°のも
のは全てガラス(1)内をほとんど伝搬できなくなる。
s 1nJ2ffA1 s inow 1
.. 33sin90° 1,47 5in90°
1.47” 15A-42,9°, jlw=
64.8° Therefore, when there is nothing attached to the detection surface of the glass (1), the distance from the light source to the glass (1) is 42°.
.. Everything that enters the glass (1) at an incident angle of 9 degrees or more is totally reflected and propagates in the opposite direction, while the glass (1)
When a water droplet adheres to the detection surface in 1), the angle of total reflection on the surface to which the water droplet adheres is determined by the respective refractive indexes of glass (1) and water, so as mentioned above, the angle of incidence is 64.8°. The above objects propagate within the glass (1) by total internal reflection, but most of the objects whose incident angle is 42.9°≦fli (incident angle) <64.8° propagate within the glass (1). become unable.

そこで、このセンサ構成では2光源の夫々からの出射光
のガラス(1)に対する入射角を、一方は水の付Miこ
てガラス(1)内の全反射条件に影!を受ける角度(4
2,9°≦θl<64.8°)、他方は水の付着にても
ガラス(1)内の全反射条件に影響を受けない角度(θ
2≧64.8°)に設定するとともに、水の付着時に異
なる入射角度で入射した2光束の光強度を比較すること
(こより水の釘無を識別可能とするものである。それ故
にθ1=50゜、θ2=70°としている。
Therefore, in this sensor configuration, the incident angle of the emitted light from each of the two light sources on the glass (1) is determined based on the total reflection condition in the water trowel glass (1). angle of receiving (4
2.9°≦θl<64.8°), and the other is an angle (θ
2≧64.8°), and by comparing the light intensities of two light beams incident at different angles of incidence when water is attached (this makes it possible to identify whether there is a nail in the water. Therefore, θ1= 50°, and θ2=70°.

センサの詳細な動作機構は以下の如くである。The detailed operating mechanism of the sensor is as follows.

ガラス検出面に水滴等の付着していない通常の場合には
2光源からの夫々の入射光はともにガラス(1)内を伝
搬し受光素子(31)、(32)に到達する。ところが
、ガラス検出面に水滴か付着すると入射角θ、のものは
水滴付M都で大きな光損失を生じ受光素子(31)へは
ほとんど入射光が到達せず、他方の入射角θ2の光束は
水滴計重と無関係に全反射を繰り返し受光素子(32)
へ入射光が到達する。ざら蛋こは、ガラス検出面にこ水
滴以外の液体例えば、車の排気に含まれる油分、カーワ
ックス、エンジンオイル、一般家庭に使用するサラダ油
等のオイルが付着した場合を考えてもこれらオイルの屈
折率は水の屈折率に比較してかなり大きくかつガラスの
屈折車番こ比較的近いtめ全反射全形成する臨界角も大
きな値(2≧〜80°)となり、オイルの付着時には入
射角θ1.θ2とも番こ付若部にて光損失音生じ受光素
子へはほとんど入射光が到達しない。従って、入射角θ
1.θ2の2光束のうち、θ□で入射した光のみが減衰
するときに水滴の付着を認識できるわけである。
In a normal case where there are no water droplets or the like attached to the glass detection surface, the respective incident lights from the two light sources propagate within the glass (1) and reach the light receiving elements (31) and (32). However, if a water droplet adheres to the glass detection surface and the incident angle is θ, there will be a large light loss in the case where the water droplet is attached, and almost no incident light will reach the light receiving element (31), and the other light beam with the incident angle θ2 will be Light-receiving element (32) that repeats total reflection regardless of the water droplet weight
The incident light reaches the If liquids other than water droplets are attached to the glass detection surface, such as oil contained in car exhaust, car wax, engine oil, and oils such as salad oil used in general households, these oils will not be present. The refractive index is considerably larger than that of water, and since the refractive index of glass is relatively close, the critical angle for total reflection is also a large value (2≧~80°), and when oil is attached, the angle of incidence increases. θ1. In the case of θ2, an optical loss sound occurs at the lower part of the index plate, and almost no incident light reaches the light receiving element. Therefore, the angle of incidence θ
1. Of the two beams of light at θ2, the attachment of water droplets can be recognized when only the light incident at θ□ is attenuated.

次に、以上の内容を実際の測定結果である第2図と表1
を用いて説明する。
Next, the above contents are shown in Figure 2 and Table 1, which are the actual measurement results.
Explain using.

〔表 1〕 表1は反射率の規格化値を示す。また第2図は第1図の
センサ構成にて横軸に光源光のガラス(1)に対する入
射角θitとり、縦軸には夫々の入射角度番こおいて水
あるηはオイル(太実施例ではエンジンオイル)付着時
の受光i子(31)。
[Table 1] Table 1 shows the normalized values of reflectance. In addition, FIG. 2 shows the sensor configuration shown in FIG. 1, with the horizontal axis representing the incident angle θit of the light source on the glass (1), and the vertical axis representing the respective incident angle numbers for water and oil (thick example). Here, the photodetector (31) when attached (engine oil).

(32)にて検出された光強度を同一の入射角度で空気
に対して受光素子に入射した光強度にノーマライズし反
射率(チ)としてとっである。この結果75)らも明ら
かな様に一前に述べ之内容すなわち入射角(θi)が4
2.9°≦θi<64.8°では水(図中の実線に相当
)の付着により大きく光損失を生じ、θi≧64.8°
では水の付着に無関係であることが確認された。さらに
、オイル(図中の破線に相当)も入射角θi≧〜80°
付近まで影響のないことが明らかとなっt。ま之、反射
率(検知光強度)の変動は急峻であり、従って、表1に
反射率を規格化して示しt機番こ2つの受光素子(31
)、(32)のうち片方のみの光強度が減衰する時すな
わち(θ1.θz)=(0,1)の場合のみ水(雨)滴
と判断してセンサを動作させることが可能となる。この
様に木実施例のセンサでは2光束を異なる入射角で用い
夫々の反射特性を比較することにより水以外の液体の付
着に対してその影響を受けることなく、高精度、高感度
に水滴のみの検知ができる。尚、透明媒体(1)として
はパイレックスガラス以外にも各種光学ガラス、高分子
樹脂さらには自動車のフロントガラス、リアガラス等を
そのまま用いることもできる。
The light intensity detected in (32) is normalized to the light intensity incident on the light receiving element with respect to air at the same incident angle, and is taken as the reflectance (chi). As is clear from this result75), what was stated earlier, that is, the angle of incidence (θi) is 4
When 2.9°≦θi<64.8°, a large optical loss occurs due to adhesion of water (corresponding to the solid line in the figure), and θi≧64.8°.
It was confirmed that this has nothing to do with water adhesion. Furthermore, the angle of incidence of oil (corresponding to the broken line in the figure) is θi≧~80°
It became clear that nearby areas were not affected. However, the reflectance (detected light intensity) fluctuates sharply, so Table 1 shows the normalized reflectance.
), (32), only when the light intensity of only one of them is attenuated, that is, when (θ1.θz)=(0,1), it is possible to determine that it is a water (rain) drop and operate the sensor. In this way, the wood-based sensor uses two light beams at different incident angles and compares their respective reflection characteristics, so that it is not affected by adhesion of liquids other than water, and detects only water droplets with high precision and sensitivity. can be detected. As the transparent medium (1), other than Pyrex glass, various optical glasses, polymer resins, automobile windshields, rear glasses, etc. can also be used as they are.

また、光源入射角θl、θ2の設定も適用される透明媒
体(1)の屈折率全考慮し、透明媒体(1)に水が付着
し念際の全反射臨界角にて決定され。
Furthermore, the settings of the light source incident angles θl and θ2 are determined based on the critical angle of total reflection when water adheres to the transparent medium (1), taking into account the entire refractive index of the transparent medium (1) to which it is applied.

θ1は臨界角より小さい角度、θ2は臨界角以−上で8
0°以下程度に設定すれば良い。
θ1 is an angle smaller than the critical angle, and θ2 is 8 above the critical angle.
It is sufficient to set it to about 0° or less.

次に、太陽光等の外乱光の影響低減を考えた場合、第1
図に示す様に光学部品をパッケージにて一体化する際図
中に示す如く遮弊板(7)を設けても太陽光等の外乱光
はあらゆる角度にてガラスの検出面へ入射するため、そ
れらの中には受光素子へ到達するものが存在する。しか
し、透明媒体であるガラスは平行平板であり、検出面に
おけるポイントでの光入射を考えると前述した様に空気
とガラスの臨界角の関係により入射角は最大42.9゜
となり模式的には第3a図に示す状況と考えられる。従
って、検出2光束とは通行角が異なりレンズによる検出
光と外乱光の空間的分離が可能となる。第3b図にプリ
ズム出射後の検出2光束(実線)と外乱光(破線)の夫
々のレンズによる集光状態を示す。検出2光束の夫々の
出射角θ1=50゜、θ2−70°に対し、外乱光の最
大出射角は42.9°であるため明確な分離が可能とな
る。一方、プリズムの(b)面から出射される外乱光に
関してはほとんどが受光素子部から遠い部分へのみ到達
し間頚にはならない。又、信号光2光束についても、第
3b図に示す通り進行角度の違いにより充分弁別して夫
々の受光素子上に集光され良好な出力信号が得られる。
Next, when considering reducing the influence of disturbance light such as sunlight, the first
When optical components are integrated into a package as shown in the figure, even if a shielding plate (7) is provided as shown in the figure, disturbance light such as sunlight will enter the glass detection surface at all angles. Some of them reach the light receiving element. However, glass, which is a transparent medium, is a parallel flat plate, and when considering light incidence at a point on the detection surface, the maximum angle of incidence is 42.9° due to the relationship between the critical angles of air and glass, as described above, and schematically, The situation can be considered as shown in Figure 3a. Therefore, the passing angle is different from that of the two detected light beams, and it becomes possible to spatially separate the detected light and the disturbance light by the lens. FIG. 3b shows the convergence state of the two detected light beams (solid line) and the disturbance light (broken line) after exiting the prism by the respective lenses. Since the maximum emission angle of the disturbance light is 42.9 degrees compared to the respective emission angles θ1=50° and θ2−70° of the two detected light beams, clear separation is possible. On the other hand, most of the disturbance light emitted from the (b) surface of the prism reaches only a portion far from the light-receiving element and does not reach the center. Furthermore, as shown in FIG. 3b, the two signal light beams are sufficiently discriminated based on the difference in their advancing angles, and are focused on the respective light receiving elements, so that a good output signal can be obtained.

さら番こ、センサの決用光源としてレーザーダイオード
、LED等の発光スペクトル幅の狭帯域のものを用いれ
ば、外乱光は自然光(白色光)であることより、受光素
子の前面Gこ受光素子の波長帯域の光のみを透過する光
学フィルターを設置することで、受光素子の検出感度内
の自然光を充分減衰させる効果が望め、外乱光のパワー
レベルの低減が図れる。以上述べた様に外乱光に対して
レンズによる空間的分離さらにはフィルターを用い念波
長領域での分離を併用することでセンサ出力への外乱光
の影響はほとんど無視し得るものとなる。
Furthermore, if a light source with a narrow emission spectrum such as a laser diode or LED is used as the sensor's primary light source, the disturbance light is natural light (white light), so the front surface of the light receiving element is By installing an optical filter that transmits only light in the wavelength band, it is possible to sufficiently attenuate natural light within the detection sensitivity of the light receiving element, thereby reducing the power level of the disturbance light. As described above, by spatially separating the disturbance light using a lens and also using a filter to separate it in the optical wavelength range, the influence of the disturbance light on the sensor output can be almost ignored.

センサの装着位置に関しても、例えば自動車においてフ
ロントガラスあるhはリアガラスの内側にセンサを装着
し念場合、ガラスは一定の傾斜を有しているため、検出
面のセンサ装着部外に少量の雨滴が付着した際もセンサ
部まで流れ落ち雨滴検出の確立向上が望め、又、検出面
をワイパーにて拭き取られる部分としてその内側にセン
サを設置することで、雨滴検知時にはワイパーが動作し
雨滴を拭き取る構成となること力・らセンサ検出面に雨
滴が停帯することなく、従って、降雨の停止を確実に認
識できる。
Regarding the mounting position of the sensor, for example, if the sensor is mounted inside the windshield of a car and the rear glass, the glass has a certain slope, so a small amount of raindrops may fall outside the sensor mounting part of the detection surface. Even if raindrops adhere to the sensor, they will run down to the sensor part and improve the detection of raindrops.Also, by installing the sensor inside the detection surface as a part that can be wiped off with a wiper, the wiper will operate when raindrops are detected and wipe away the raindrops. This means that raindrops do not stay on the force sensor detection surface, and therefore, it is possible to reliably recognize that the rain has stopped.

この採番こ太実施例のセンサは、自動車のワイパー、パ
ワーウィンドウ、サンルーフ等の自動制御あるいは家庭
内での降雨コ識等広範な用途への適用が可能となる。
The sensor of this numbered Kota embodiment can be applied to a wide range of applications, such as automatic control of automobile wipers, power windows, sunroofs, etc., and rain detection in the home.

〈発明の効果〉 以上詳述した如く、本発明に係る光学式液体検出装置(
センサ)は以下に示す様な実用上極めて有益な特性を有
する。
<Effects of the Invention> As detailed above, the optical liquid detection device according to the present invention (
(sensor) has the following properties which are extremely useful in practice.

(1)光学的手法にて水滴を検知する念め、特に自動車
5ζおいて各種自動制御の念めの水滴検出あるいは家庭
内での降雨認識を行なう場合、センサの構成部品を自動
車内等検出面の内側に設定することができるため、外部
の環境変化に対して良好なる耐性を有する。
(1) In order to detect water droplets using optical methods, especially when detecting water droplets for various automatic controls in automobiles or recognizing rainfall in the home, the sensor components should be placed on the detection surface such as inside the automobile. Since it can be set inside the 300°C, it has good resistance to external environmental changes.

(2)  異なる入射角度の2光束を用い水滴付着時の
2光束夫々の反射特性(反射光強度)の比較2行って水
滴の検出に行うためセンサの検出面に水以外の液体が付
着した際もその影響を受けることなく検出対象の選択性
に優れ、さらに、太陽光等の外乱光に関してもレンズ、
光学フィルターの併用によりその影響を除去できる。
(2) Comparison of the reflection characteristics (reflected light intensity) of each of the two light beams when a water droplet is attached using two light beams with different incident angles 2 When a liquid other than water adheres to the detection surface of the sensor to detect water droplets The lens has excellent selectivity of the detection target without being affected by it, and the lens
This effect can be removed by using an optical filter.

(3)  センサの構成が簡単であり安価なセンサとす
ることができる。
(3) The sensor has a simple configuration and can be made inexpensive.

以上述べた様に未発明の光学式液体検出装置は安価をこ
作製できるとともをこ良好なる耐環境性を有し、また2
光束を用いて光の全反射を利用することにより水滴を検
知するため、高感度でかつ水滴検知の選択性に優れ、さ
らには、外乱光の影響はほとんど受けな・い高精度な検
出を可能とするものである。
As mentioned above, the uninvented optical liquid detection device can be manufactured at low cost, has good environmental resistance, and has two
Since water droplets are detected by utilizing total reflection of light using a luminous flux, it has high sensitivity and excellent selectivity in detecting water droplets, and also enables highly accurate detection that is almost unaffected by ambient light. That is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す2光束を用い治具にて
パッケージした光学式液体検出装置の構成図である。第
2図は第1図に示す構成にて検出面に水とオイルが夫々
付着し念時の特性を示す特性図である。第3a、ab図
は未発明の装置番こよるレンズ?利用しての外乱光の空
間的分離(除去)の原理を示す模式図である。 第4図は静電容量式雨滴センサの原理図であり第5図は
1光束で全反射特性の変化より雨滴を検出する光学式セ
ンサの構成図である。 l・・・ガラス、la・・・検出面、lb・・・4.2
1.22.53・・・発光素子−31,32,52・・
・受光素子−4・・・光入射用プリズム、5・・・光出
射用プリズム、6・・・レンズ、7・・・遮弊板、8・
・・固定用治具、41.51・・・自動車のフロントガ
ラス、42・・・平行電極、43・・・雨滴。 代理人 弁理士 杉 山 毅 至(((II1名〕篤 
l 図 ANGLE (deクツ ′$2 コ
FIG. 1 is a configuration diagram of an optical liquid detection device packaged with a jig using two light beams, showing one embodiment of the present invention. FIG. 2 is a characteristic diagram showing the characteristics in case of water and oil adhering to the detection surface in the configuration shown in FIG. 1. Are the lenses in Figures 3a and ab based on uninvented devices? FIG. 2 is a schematic diagram illustrating the principle of spatial separation (removal) of disturbance light. FIG. 4 is a diagram showing the principle of a capacitive raindrop sensor, and FIG. 5 is a diagram showing the configuration of an optical sensor that detects raindrops based on changes in total reflection characteristics with one beam of light. l...glass, la...detection surface, lb...4.2
1.22.53...Light emitting element-31, 32, 52...
・Light receiving element-4... Prism for light incidence, 5... Prism for light output, 6... Lens, 7... Shielding plate, 8...
...Fixing jig, 41.51...Automobile windshield, 42...Parallel electrode, 43...Raindrop. Agent Patent Attorney Takeshi Sugiyama (((II 1 person) Atsushi
l Figure ANGLE (dekutsu'$2

Claims (1)

【特許請求の範囲】 1、検出面を有する透明媒体に対し、発光素子から出射
された光束の入射角を検出面に接する被検出液体と前記
透明媒体で形成される界面における全反射の臨界角より
も小さい角度で且つ検出面に被検出液体の付着のない時
に透明媒体中を全反射して伝搬する角度に設定して成る
光学系と、前記光束の検出面における反射特性の変化を
検出する受光素子と検出面の外側から入射する外乱光を
、前記検出光束と外乱光の進行角の相違から受光素子に
入射しない部分に集光するレンズとを具備して成ること
を特徴とする光学式液体検出装置。 2、受光素子の前面に、発光素子の発光波長帯域の光を
選択的に透過し、他の波長帯域の光を反射あるいは吸収
する光学フィルターを装荷した特許請求の範囲第1項記
載の光学式液体検出装置。 3、前記透明媒体の検出面に対し入射する光束が異なる
入射角度に設定された2光束であり、一方は、検出面に
被検出液体が接した際の全反射の臨界角以上の角度、他
方は全反射の臨界角よりも小さい角度に夫々設定された
光学系と前記2光束夫々の反射特性の変化を検出する受
光素子と、該受光素子の検出信号を比較することにより
被検出液体の有無を検知する比較手段とを具備して成る
特許請求の範囲第1項または第2項記載の光学式液体検
出装置。 4、前記被検出液体が雨滴、雪片または他の水滴である
特許請求の範囲第1項、第2項または第3項記載の光学
式液体検出装置。 5、検出装置の装着位置が自動車あるいは電車のフロン
トガラスあるいはリアガラスにおいてワイパーにて拭き
取られる部分の内側、すなわち該検出装置の検出面をワ
イパーが拭き取る構成である特許請求の範囲第1項、第
2項、第3項または第4項記載の光学式液体検出装置。
[Claims] 1. The incident angle of the light beam emitted from the light emitting element with respect to a transparent medium having a detection surface is determined by determining the critical angle of total reflection at the interface formed by the liquid to be detected that is in contact with the detection surface and the transparent medium. an optical system configured to be set at an angle smaller than , and at an angle that causes total reflection and propagation in a transparent medium when there is no liquid to be detected attached to the detection surface, and a change in the reflection characteristics of the light beam on the detection surface. An optical system comprising a light receiving element and a lens that condenses disturbance light incident from the outside of the detection surface onto a portion that does not enter the light receiving element due to the difference in the traveling angle between the detected light flux and the disturbance light. Liquid detection device. 2. The optical system according to claim 1, wherein an optical filter is loaded on the front surface of the light-receiving element, which selectively transmits light in the emission wavelength band of the light-emitting element and reflects or absorbs light in other wavelength bands. Liquid detection device. 3. The light beams incident on the detection surface of the transparent medium are two light beams set at different incident angles, one of which is at an angle greater than or equal to the critical angle of total reflection when the liquid to be detected comes into contact with the detection surface, and the other. is an optical system set at an angle smaller than the critical angle of total reflection, a light receiving element that detects a change in the reflection characteristics of each of the two light beams, and the presence or absence of a liquid to be detected by comparing the detection signal of the light receiving element. The optical liquid detection device according to claim 1 or 2, comprising comparison means for detecting. 4. The optical liquid detection device according to claim 1, 2 or 3, wherein the liquid to be detected is raindrops, snowflakes or other water droplets. 5. The mounting position of the detection device is the inside of the portion of the windshield or rear glass of an automobile or train that is wiped by a wiper, that is, the wiper wipes the detection surface of the detection device. The optical liquid detection device according to item 2, 3, or 4.
JP17851186A 1986-07-28 1986-07-28 Optical liquid detector Pending JPS6333645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17851186A JPS6333645A (en) 1986-07-28 1986-07-28 Optical liquid detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17851186A JPS6333645A (en) 1986-07-28 1986-07-28 Optical liquid detector

Publications (1)

Publication Number Publication Date
JPS6333645A true JPS6333645A (en) 1988-02-13

Family

ID=16049749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17851186A Pending JPS6333645A (en) 1986-07-28 1986-07-28 Optical liquid detector

Country Status (1)

Country Link
JP (1) JPS6333645A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086259A1 (en) * 2000-05-12 2001-11-15 Nippon Sheet Glass Co., Ltd. Adhering substance detector and controller using the same
JP2002082044A (en) * 2000-09-08 2002-03-22 Nippon Sheet Glass Co Ltd Device for detecting clinging matter and control device using it
JP2004506569A (en) * 2000-08-24 2004-03-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Automatic control method of lighting device and automatic control device of lighting device
JP2004514918A (en) * 2000-12-06 2004-05-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Rain sensor used especially for automobiles
US7492447B2 (en) 2002-10-30 2009-02-17 Atago Co., Ltd. Refractometer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086259A1 (en) * 2000-05-12 2001-11-15 Nippon Sheet Glass Co., Ltd. Adhering substance detector and controller using the same
US6919961B2 (en) 2000-05-12 2005-07-19 Niles Co., Ltd. Adhering substance detector and controller using the same
JP4605975B2 (en) * 2000-05-12 2011-01-05 ナイルス株式会社 Adherent detection device and control device using the same
JP2004506569A (en) * 2000-08-24 2004-03-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Automatic control method of lighting device and automatic control device of lighting device
JP2002082044A (en) * 2000-09-08 2002-03-22 Nippon Sheet Glass Co Ltd Device for detecting clinging matter and control device using it
JP2004514918A (en) * 2000-12-06 2004-05-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Rain sensor used especially for automobiles
US7492447B2 (en) 2002-10-30 2009-02-17 Atago Co., Ltd. Refractometer

Similar Documents

Publication Publication Date Title
US7348586B2 (en) Exterior element sensor
US6376824B1 (en) Optical sensor
US6232603B1 (en) Rain sensor operation on solar reflective glass
KR101766018B1 (en) One body type rain sensor with reflection type sensor for detecting the external object
CN1348095A (en) Moisture detector
JPH10507428A (en) Sensor for visibility detection and fogging detection by rain
KR20020016000A (en) Sensing device for detecting wetness on a glass pane
KR19990082870A (en) Water drop detection sensor
FI95080C (en) Method and apparatus for detecting impurities on sheet surface
JP2007278711A (en) Raindrop sensor
JP2006343273A (en) Optical raindrop sensor
JPS62163949A (en) Optical type liquid detection sensor
JPS6333645A (en) Optical liquid detector
JPH04507227A (en) Method and device for controlling windscreen wipers
US6627910B2 (en) Precipitation sensor
JP2002534662A (en) Detector for detecting dirt on the transparent plate surface
JPS5984141A (en) Water droplet detector
KR100981196B1 (en) Prism mediated type rain sensor
JPS63144239A (en) Optical liquid detecting method
KR100981215B1 (en) Rain sensor
JPH11295214A (en) Sensor for detecting waterdrop and quantity of light
CN113933914B (en) Anti-interference rainfall detection method and equipment
CN210294579U (en) Rain sensor for wiper system of rail transit locomotive
JP3788685B2 (en) Water drop detection sensor with transmission / reception function
KR100957421B1 (en) Rain sensor