JPS6333514A - Manufacture of molten steel containing calcium by refining - Google Patents

Manufacture of molten steel containing calcium by refining

Info

Publication number
JPS6333514A
JPS6333514A JP17278686A JP17278686A JPS6333514A JP S6333514 A JPS6333514 A JP S6333514A JP 17278686 A JP17278686 A JP 17278686A JP 17278686 A JP17278686 A JP 17278686A JP S6333514 A JPS6333514 A JP S6333514A
Authority
JP
Japan
Prior art keywords
molten steel
alloy
containing calcium
weight
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17278686A
Other languages
Japanese (ja)
Other versions
JPH0371483B2 (en
Inventor
Toshio Hori
堀 利男
Michiyasu Nozu
野津 道泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17278686A priority Critical patent/JPS6333514A/en
Publication of JPS6333514A publication Critical patent/JPS6333514A/en
Publication of JPH0371483B2 publication Critical patent/JPH0371483B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To control the shape of sulfide in a molten steel independently of the kind of steel by adding an Si-Ca-Fe alloy having a specified composition to the molten steel after primary refining. CONSTITUTION:A molten steel is degassed in an RH vacuum degassing apparatus after primary refining and an Si-Ca-Fe alloy is added to manufacture a molten steel contg. Ca. The Si-Ca-Fe alloy contains 30-50wt% Si 5-17wt% Ca and 30-65wt% Fe or further contains <=10wt% one or more among Ni, Cu, Mn and Al. Thus, the shape of sulfide can be controlled without increasing the amounts of impurities such as H and N.

Description

【発明の詳細な説明】 cft業上0利用分野] 本発明は、MnSで代表される硫化物の形態制御におけ
るカルシウムを含む溶鋼の溶製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Application in CFT Industry The present invention relates to a method for producing molten steel containing calcium in controlling the morphology of sulfides represented by MnS.

[従来の技術] 硫化物の形態制御におけるカルシウムを含む溶鋼の溶製
は、一般に第6図に示すようにCa−8i粉のインジェ
クション法(第6図イ)、CaワイヤーによるCaの添
加法(第6図口)が採用されている(日本鉄鋼協会、鉄
と鋼、1985.Vo171.123頁、他)。又RH
におけるN i −Ca 。
[Prior Art] Melting of molten steel containing calcium for controlling the form of sulfides is generally carried out by the injection method of Ca-8i powder (Fig. 6 A), the Ca addition method using Ca wire (Fig. 6 A), as shown in Fig. 6. Figure 6) has been adopted (Iron and Steel Institute of Japan, Tetsu to Hagane, 1985. Vo171, p. 123, etc.). Also RH
N i -Ca at.

Cu−Ca、Fe−Ca合金によるCaの添加法の例も
ある(日本鉄鋼協会、鉄と鋼、1985,5980)。
There are also examples of Ca addition methods using Cu-Ca and Fe-Ca alloys (Iron and Steel Institute of Japan, Tetsu-to-Hagane, 1985, 5980).

[発明が解決しようとする問題点] しかしながら上述のインジェクション法やCaワイヤー
添加法には以下の欠点が挙げられる。即ち(1)スラグ
2を攪拌する為にスラグ中の[H]が溶鋼4に移動して
溶鋼中の[H]が上昇する。
[Problems to be Solved by the Invention] However, the above-mentioned injection method and Ca wire addition method have the following drawbacks. That is, (1) in order to stir the slag 2, [H] in the slag moves to the molten steel 4, and [H] in the molten steel rises.

(2)空気との接触により溶鋼中の[N]が上昇する。(2) [N] in molten steel increases due to contact with air.

又RHにおけるNi−Ca、Cu−Ca、Fe−Ca合
金添加法には以下の欠点が挙げられる。
Furthermore, the methods of adding Ni--Ca, Cu--Ca, and Fe--Ca alloys in RH have the following drawbacks.

(3) N i 、 Cuを含む特殊な合金鋼のm製に
しか適用出来ない (4)Fe−Caの場合はCa歩留が低い。
(3) It can only be applied to special alloy steels containing Ni and Cu. (4) In the case of Fe-Ca, the Ca yield is low.

本発明は、上記(1)〜(4)の従来法の欠点を解決す
る。カルシウムを含む溶鋼の溶製法に関する。
The present invention solves the drawbacks of the conventional methods (1) to (4) above. This invention relates to a method for producing molten steel containing calcium.

[問題点を解決するための手段] 本発明は(1)1次精錬後の溶鋼にSi−Ca−Fe系
合金を添加するカルシウムを含む溶鋼の溶製法であり、
(2)Si−Ca−Fe系合金が、Siを30〜50重
量%、Caを5〜17重量%、Feを30〜65重量%
含有するSi−Ca−Fe系合金である上記(1)のカ
ルシウムを含む溶鋼の溶製法であり、又(3)Si−C
a−Fe系合金が、Siを30〜50重量%、Caを5
〜17重量%、Feを30〜65重量%含有し、更にN
i、、 Cup Mn、 A Qの1種又は2種以上を
10重量%以下の範囲で含有するSi−Ca−Fe系合
金である上記(1)のカルシウムを含む溶鋼の溶製法で
ある。
[Means for Solving the Problems] The present invention is (1) a method for producing molten steel containing calcium by adding a Si-Ca-Fe alloy to molten steel after primary refining;
(2) Si-Ca-Fe alloy contains 30-50% by weight of Si, 5-17% by weight of Ca, and 30-65% by weight of Fe.
This is a method for producing molten steel containing calcium as described in (1) above, which is a Si-Ca-Fe alloy containing Si-Ca-Fe, and (3) Si-C
The a-Fe alloy contains 30 to 50% by weight of Si and 5% of Ca.
-17% by weight, contains 30-65% by weight of Fe, and further contains N
This is a method for producing molten steel containing calcium according to (1) above, which is a Si-Ca-Fe alloy containing one or more of Cup Mn, A and Q in an amount of 10% by weight or less.

本発明によれば、三元系のSiを含むCa合金鉄の使用
であるため、Ca添加を必要とするアルミシリコンキル
ド鋼の全鋼種に適用出来、前記の欠点(3)が解決でき
るものである。又本発明の5L−Ca−Fe系合金はF
e及びSiを含む合金であり、使用の結果は後述するご
と<Caの歩留が良好であり、その理由は必ずしも明確
ではないが、三元系の結合形態及び比重が比較的大きい
(Si−Caの比重約2に対し本発明の5L−Ca−F
e系合金は比重約4)ためと推論され、前記の欠点(4
)が解決できるものである。尚、RH,DH等で添加す
ればスラグ及び大気と遮断している為、[H]。
According to the present invention, since a Ca alloy iron containing ternary Si is used, it can be applied to all types of aluminum-silicon killed steel that require Ca addition, and the above-mentioned drawback (3) can be solved. be. Furthermore, the 5L-Ca-Fe alloy of the present invention is F
It is an alloy containing E and Si, and the results of its use are as described below.The yield of Ca is good.The reason for this is not necessarily clear, but the ternary bond form and specific gravity are relatively large (Si- The 5L-Ca-F of the present invention has a specific gravity of about 2 for Ca.
It is inferred that this is because the e-based alloy has a specific gravity of approximately 4), and does not have the above-mentioned drawback (4).
) can be solved. Furthermore, if RH, DH, etc. are added, [H] is blocked from the slag and the atmosphere.

[N]の上昇がなく、前記の欠点(1)、(2)が解決
でき、更に良い結果が得られる。
There is no increase in [N], the above-mentioned drawbacks (1) and (2) can be solved, and even better results can be obtained.

[作用] 即ち本発明の特徴とするところは、S iy Ca +
Feを主成分とする三元系Ca合金をベースとした合金
の添加法にあり、鋼種を限定することなく、さらには、
[H]  [:N1等不純物を上昇させずに。
[Function] That is, the feature of the present invention is that S iy Ca +
It is an alloy addition method based on a ternary Ca alloy with Fe as the main component, without limiting the steel type, and furthermore,
[H] [: Without increasing impurities such as N1.

硫化物の形態制御を行うことができる。The morphology of sulfides can be controlled.

以下本発明を詳細に述べる。第1図(イ)は、RHにお
ける本発明の実施態様例を示す、RH処理末期において
、本発明のSi−Ca−Fe系合金6を添加することに
より、Caは溶鋼4に溶解される。
The present invention will be described in detail below. FIG. 1(A) shows an embodiment of the present invention in RH. At the end of the RH process, Ca is dissolved in the molten steel 4 by adding the Si-Ca-Fe alloy 6 of the present invention.

この時RH7の槽内は50〜100トルの真空状態にあ
り、溶鋼4は大気と完全に遮断されており、スラグ2を
攪拌しないので、[N]や[H]の上昇は無い、第1@
(ロ)には溶鋼鍋における添加態様を例示する。第2図
は各種のCa合金銘柄のCa歩留を示す0本発明のSi
−Ca−Fe系合金はNi−CaやCu −Caとは゛
ぼ同等の歩留が得られている。しかしながら第2図の二
元系のCa添加物は製造鋼種の制約があり好ましくない
ものである。
At this time, the inside of the tank RH7 is in a vacuum state of 50 to 100 torr, the molten steel 4 is completely isolated from the atmosphere, and the slag 2 is not stirred, so there is no rise in [N] or [H]. @
(b) illustrates the addition mode in a molten steel ladle. Figure 2 shows the Ca yield of various Ca alloy brands.
-Ca--Fe alloys have yields that are approximately the same as those of Ni--Ca and Cu--Ca. However, the binary Ca additive shown in FIG. 2 is undesirable because of restrictions on the types of steel manufactured.

第3図はSi−Ca−Fe中のCa含有量とCa歩留の
関係を示す。Ca含有量が17%を超えるとCa歩留は
急激に悪化する。又Caが5%未満では添加物が多くな
りすぎて取扱い並びに溶鋼温度低下があり好ましくない
。第4図はSi−Ca−Fe系合金中のNi、Cu、M
n、Al含有量とCa歩留の関係を示す。これらの元素
は1種又は2種以上を10重量%未満の範囲で含有する
ものであり、Ni、Cu、 Mn、 A Q含有量はい
ずれも若干ながらCa歩留がよかった。その理由は必ず
しも明かではないが、Caの合金化が強固になったから
であると推定される。第5図はSi−Ca−Fe系合金
中のSi含有量とCa歩留の関係を示す、Siは30%
以上含有すればCa歩留が安定しており、Caの合金化
が安定したからであると推定される。しかしSLは50
%を起すと製品中の[Si]が許容の上限を越える危険
性がある為、Si含有量は50%以内とすべきである。
FIG. 3 shows the relationship between the Ca content in Si-Ca-Fe and the Ca yield. When the Ca content exceeds 17%, the Ca yield deteriorates rapidly. Further, if the Ca content is less than 5%, the amount of additives becomes too large, which is undesirable since handling and temperature of the molten steel decrease. Figure 4 shows Ni, Cu, and M in the Si-Ca-Fe alloy.
n shows the relationship between Al content and Ca yield. One or more of these elements were contained in a range of less than 10% by weight, and the Ca yield was good, although the Ni, Cu, Mn, and AQ contents were all slightly small. Although the reason for this is not necessarily clear, it is presumed that the alloying of Ca has become stronger. Figure 5 shows the relationship between Si content and Ca yield in Si-Ca-Fe alloys, Si is 30%
It is presumed that this is because if the content is above, the Ca yield is stable and the alloying of Ca is stabilized. But SL is 50
%, there is a risk that the [Si] in the product will exceed the permissible upper limit, so the Si content should be within 50%.

第1表は本発明及び従来法におけるCa添加前後の溶鋼
の成分の比較を示す、従来法(1)とは第6図(イ)の
方法によるものであり、従来法(2)とは第6図(ロ)
の方法によるものである。第1表にみられるごと〈従来
法(1)、(2)は不純元素である[H]や[N]のピ
ックアップが見られるが、本発明には見られない。
Table 1 shows a comparison of the composition of molten steel before and after adding Ca in the present invention and the conventional method. Figure 6 (b)
This method is used. As seen in Table 1, the conventional methods (1) and (2) pick up the impurity elements [H] and [N], but they do not appear in the present invention.

以上述べたように、本発明はCaの添加物の形態が、従
来が二元系であるのに対しSi−Ca−Fe系の三元系
合金をベースとしたものであることを第  1  表 最大の特徴としており、安価であり、又結合形態及び比
重からによると推定されるが、添加歩留が向上する。又
本発明でNi、Cu、Mn、AΩ等を含有するSi−C
a−Fe系合金はNi、 Cu、 Mn。
As described above, in the present invention, the form of the Ca additive is based on a Si-Ca-Fe ternary alloy, as opposed to the conventional binary system, as shown in Table 1. The most important feature is that it is inexpensive, and it improves the addition yield, which is presumed to be due to the bonding form and specific gravity. In addition, in the present invention, Si-C containing Ni, Cu, Mn, AΩ, etc.
The a-Fe alloys include Ni, Cu, and Mn.

AM等の添加が溶鋼の鋼種として望ましい場合に使用す
るもので、通常は特殊元素を含まない5L−Ca−Fe
系合金を使用するために、鋼種上の制約も少なく、操業
上も有利に使用される。
It is used when addition of AM etc. is desirable for the steel type of molten steel, and usually 5L-Ca-Fe which does not contain special elements.
Because it uses a series alloy, there are fewer restrictions on the steel type, and it is advantageous in terms of operation.

[実施例コ 次にRH真空脱ガス装置における本発明の具体的な実施
例を述べる。
[Example] Next, a specific example of the present invention in an RH vacuum degassing apparatus will be described.

1次精錬後の150トンの溶鋼をRH真空脱ガス装置に
て脱ガスして成分調整した[C] =0.10%、[S
il =0.04%、[Mnl =1.06%。
After primary refining, 150 tons of molten steel was degassed using an RH vacuum degassing device to adjust the composition [C] = 0.10%, [S
il = 0.04%, [Mnl = 1.06%.

[AI2] =0.035%t  [H] =1.0p
pm。
[AI2] =0.035%t [H] =1.0p
p.m.

[01=23ppmt  [Nコ = 25ppme 
 [Cal  =Oppmの溶鋼に、Ca=10%、5
L=40%含む本発明の5L−Ca−Fe系合金を2 
、75Kg/ を投入し、1分間溶鋼を還流して処理を
終了し、[C]=0.10%、[Sil =0.15%
、  [Mnl =1゜06%、[Al =0.034
%、[H]=1.0PPmy  [0] =20ppm
、  [N] =25ppm、  [Ca]=26pp
−の溶鋼を得た [発明の効果] 前述のように、本発明によれば、Fe、 SL。
[01 = 23ppmt [N = 25ppm
[For molten steel with Cal = Oppm, Ca = 10%, 5
The 5L-Ca-Fe alloy of the present invention containing L=40% is
, 75Kg/ , refluxed the molten steel for 1 minute to complete the treatment, [C] = 0.10%, [Sil = 0.15%
, [Mnl = 1°06%, [Al = 0.034
%, [H] = 1.0PPmy [0] = 20ppm
, [N] = 25ppm, [Ca] = 26pp
- [Effect of the Invention] As described above, according to the present invention, Fe, SL.

Caを主成分とするCa合金を溶鋼中に添加することに
より、鋼種を限定することなく、硫化物の形態制御を行
うことが出来る。さらには、インジェクション法、c8
ワイヤー法との比較において。
By adding a Ca alloy containing Ca as a main component to molten steel, the form of sulfides can be controlled without limiting the type of steel. Furthermore, injection method, c8
In comparison with the wire method.

特別な設備が不要である為、処理コストも安価であり、
[H]  [N]等不純元素のピックアップも無い。
Processing costs are low as no special equipment is required.
There is no pickup of impurity elements such as [H] and [N].

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様例を示す図で、第1図(イ)
はRHにおける本発明の実施態様、第1図(ロ)は溶鋼
鍋における本発明の実施態様である。 第2図は各種のCa合金銘柄のCa歩留を示す図。 第3図は5L−Ca−Fe合金中のCa含有量とCa歩
留を示す図。 第4図は5L−Ca−Fe合金中の、 Ni、 Cu、
 Mn。 AΩの含有量とCa歩留を示す図。 第5図は5L−Ca−Fe合金中のSL含有量とCa歩
留を示す図。 第6図は、従来の溶鋼へのCa添加法を示す図である。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG.
1 shows an embodiment of the present invention in a RH, and FIG. 1(b) shows an embodiment of the present invention in a molten steel ladle. FIG. 2 is a diagram showing the Ca yield of various Ca alloy brands. FIG. 3 is a diagram showing the Ca content and Ca yield in the 5L-Ca-Fe alloy. Figure 4 shows Ni, Cu, in 5L-Ca-Fe alloy.
Mn. The figure which shows content of AΩ and Ca yield. FIG. 5 is a diagram showing the SL content and Ca yield in the 5L-Ca-Fe alloy. FIG. 6 is a diagram showing a conventional method of adding Ca to molten steel.

Claims (3)

【特許請求の範囲】[Claims] (1)1次精錬後の溶鋼にSi−Ca−Fe系合金を添
加することを特徴とするカルシウムを含む溶鋼の溶製法
(1) A method for producing molten steel containing calcium, which is characterized by adding a Si-Ca-Fe alloy to molten steel after primary refining.
(2)Si−Ca−Fe系合金が、Siを30〜50重
量%、Caを5〜17重量%、Feを30〜65重量%
含有するSi−Ca−Fe系合金である特許請求の範囲
第1項に記載の、カルシウムを含む溶鋼の溶製法
(2) Si-Ca-Fe alloy contains 30-50% by weight of Si, 5-17% by weight of Ca, and 30-65% by weight of Fe.
A method for producing molten steel containing calcium according to claim 1, which is a Si-Ca-Fe alloy containing calcium.
(3)Si−Ca−Fe系合金が、Siを30〜50重
量%、Caを5〜17重量%、Feを30〜65重量%
含有し、更にNi、Cu、Mn、Alの1種又は2種以
上を10重量%以下の範囲で含有するSi−Ca−Fe
系合金である特許請求の範囲第1項に記載のカルシウム
を含む溶鋼の溶製法
(3) Si-Ca-Fe alloy contains 30-50% by weight of Si, 5-17% by weight of Ca, and 30-65% by weight of Fe.
Si-Ca-Fe containing one or more of Ni, Cu, Mn, and Al in an amount of 10% by weight or less
A method for producing molten steel containing calcium as set forth in claim 1, which is a based alloy.
JP17278686A 1986-07-24 1986-07-24 Manufacture of molten steel containing calcium by refining Granted JPS6333514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17278686A JPS6333514A (en) 1986-07-24 1986-07-24 Manufacture of molten steel containing calcium by refining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17278686A JPS6333514A (en) 1986-07-24 1986-07-24 Manufacture of molten steel containing calcium by refining

Publications (2)

Publication Number Publication Date
JPS6333514A true JPS6333514A (en) 1988-02-13
JPH0371483B2 JPH0371483B2 (en) 1991-11-13

Family

ID=15948326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17278686A Granted JPS6333514A (en) 1986-07-24 1986-07-24 Manufacture of molten steel containing calcium by refining

Country Status (1)

Country Link
JP (1) JPS6333514A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343398C (en) * 2005-12-16 2007-10-17 安阳市龙泉华贯冶金厂 Method for preparing silicon aluminium calcium composite deoxidant
CN100359024C (en) * 2005-11-10 2008-01-02 安康市光大铁合金有限公司 Low content aluminium silicon cacium barium alloy and its manufacture method
CN100398670C (en) * 2006-08-31 2008-07-02 杨堃 Compound deoxidizer in calcium series
CN102134630A (en) * 2011-04-07 2011-07-27 河北钢铁股份有限公司唐山分公司 Calcium treatment method for refining molten steel under vacuum
JP2011524462A (en) * 2008-04-22 2011-09-01 ナショナル・センター・オブ・コンプレックス・プロセッシング・オブ・ミネラル・ロー・マテリアルズ・オブ・リパブリック・オブ・カザフスタン・アールエスイー Alloy "Kazakhstansky" for reducing and doping steel
CN110042202A (en) * 2019-04-22 2019-07-23 南京钢铁股份有限公司 A kind of RH refining furnace vacuum process calcium treating method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515224A (en) * 1974-07-03 1976-01-16 Nippon Steel Corp Koseijokono seizohoho
JPS5184717A (en) * 1975-01-16 1976-07-24 Chuo Denki Kogyo Co KARUSHIUM UTENKAYO GOKIN
JPS586945A (en) * 1981-07-06 1983-01-14 Aikoo Kk Treatment of molten metal
JPS6184315A (en) * 1984-09-28 1986-04-28 Nippon Kokan Kk <Nkk> Method for refining molten steel in ladle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515224A (en) * 1974-07-03 1976-01-16 Nippon Steel Corp Koseijokono seizohoho
JPS5184717A (en) * 1975-01-16 1976-07-24 Chuo Denki Kogyo Co KARUSHIUM UTENKAYO GOKIN
JPS586945A (en) * 1981-07-06 1983-01-14 Aikoo Kk Treatment of molten metal
JPS6184315A (en) * 1984-09-28 1986-04-28 Nippon Kokan Kk <Nkk> Method for refining molten steel in ladle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100359024C (en) * 2005-11-10 2008-01-02 安康市光大铁合金有限公司 Low content aluminium silicon cacium barium alloy and its manufacture method
CN100343398C (en) * 2005-12-16 2007-10-17 安阳市龙泉华贯冶金厂 Method for preparing silicon aluminium calcium composite deoxidant
CN100398670C (en) * 2006-08-31 2008-07-02 杨堃 Compound deoxidizer in calcium series
JP2011524462A (en) * 2008-04-22 2011-09-01 ナショナル・センター・オブ・コンプレックス・プロセッシング・オブ・ミネラル・ロー・マテリアルズ・オブ・リパブリック・オブ・カザフスタン・アールエスイー Alloy "Kazakhstansky" for reducing and doping steel
KR101493551B1 (en) * 2008-04-22 2015-02-13 내셔널 센터 오브 콤플렉스 프로세싱 오브 미네랄 로 메터리얼즈 오브 리퍼블릭 오브 카자흐스탄 알에스이 Alloy "kazakhstanski" for reducing and doping steel
CN102134630A (en) * 2011-04-07 2011-07-27 河北钢铁股份有限公司唐山分公司 Calcium treatment method for refining molten steel under vacuum
CN110042202A (en) * 2019-04-22 2019-07-23 南京钢铁股份有限公司 A kind of RH refining furnace vacuum process calcium treating method

Also Published As

Publication number Publication date
JPH0371483B2 (en) 1991-11-13

Similar Documents

Publication Publication Date Title
KR102409324B1 (en) Cast iron inoculum and method of producing cast iron inoculant
UA126351C2 (en) Cast iron inoculant and method for production of cast iron inoculant
JPS6333514A (en) Manufacture of molten steel containing calcium by refining
KR102565782B1 (en) Ca addition method to molten steel
UA126352C2 (en) Cast iron inoculant and method for production of cast iron inoculant
US4361442A (en) Vanadium addition agent for iron-base alloys
US2258604A (en) Cast steel
US3328164A (en) Prealloy for the treatment of iron and steel melts
US5037609A (en) Material for refining steel of multi-purpose application
US2036576A (en) Process for making alloys
US3304174A (en) Low oxygen-silicon base addition alloys for iron and steel refining
US3306737A (en) Magnesium and rare earth metal containing prealloy for the treatment of iron and steel melts
US3926623A (en) Process for purification of manganese alloys
US4261735A (en) Injection-metallurgical process
RU2116371C1 (en) Cast iron
JP2001107133A (en) Manufacture of high phosphorus extra low carbon steel
US4483710A (en) Addition agent for adding vanadium to iron base alloys
JP2000265208A (en) Method for adding boron to molten steel in vacuum degassing treatment
US1578044A (en) Method of purifying molten metals
US3169855A (en) Zinc purification
JP3230067B2 (en) Method for removing impurities from chromium-containing molten steel
CN117222769A (en) Production of ferrosilicon-vanadium and/or niobium alloys and use thereof
RU2044063C1 (en) Method for making low-alloyed steel with niobium
SU1661237A1 (en) Steel deoxidizing and alloying additive
CN113774186A (en) Low-carbon low-silicon aluminum composite deoxidizer and preparation and use method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees