JPS6333396B2 - - Google Patents

Info

Publication number
JPS6333396B2
JPS6333396B2 JP57123151A JP12315182A JPS6333396B2 JP S6333396 B2 JPS6333396 B2 JP S6333396B2 JP 57123151 A JP57123151 A JP 57123151A JP 12315182 A JP12315182 A JP 12315182A JP S6333396 B2 JPS6333396 B2 JP S6333396B2
Authority
JP
Japan
Prior art keywords
voltage
motor
current
secondary battery
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57123151A
Other languages
Japanese (ja)
Other versions
JPS58222795A (en
Inventor
Hiromi Kakumoto
Takashi Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP57123151A priority Critical patent/JPS58222795A/en
Publication of JPS58222795A publication Critical patent/JPS58222795A/en
Publication of JPS6333396B2 publication Critical patent/JPS6333396B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 本発明は充電式電動機器に関するものである。[Detailed description of the invention] The present invention relates to rechargeable electric equipment.

充電式の丸鋸・ドリルなどの電動機器において
は、1回の充電でできるだけ多くの仕事(板の切
断とか穴あけなどの数又は累積距離など)が出来
ることが望まれる。
For electric equipment such as rechargeable circular saws and drills, it is desirable to be able to do as much work as possible (number of cuts, holes, etc., or cumulative distance) on a single charge.

そのためにはできるだけ少ない消費電気エネル
ギーで板の切断とか穴あけが出来るように、モー
タの回転数−トルク特性、電池の放電性能特性、
工具(丸鋸刃、ドリルなど)条件を決めている。
しかしながらこれらの器具側の条件をいくら固定
しても、使用条件および被削材の種類などによつ
ても、消費電力は大きく変化する。従つて1回の
充電で最大の効果が出せるようにするためには消
費電力がいつも最小になるような使用条件で使う
ことが必要となるが、適切なセンサがなければ使
用者が前述の使用条件を常に維持することは困難
であつた。
To achieve this, we need to improve the motor's rotation speed-torque characteristics, battery discharge performance characteristics, and
The conditions for tools (circular saw blades, drills, etc.) are determined.
However, no matter how fixed the conditions of these tools are, the power consumption varies greatly depending on the conditions of use and the type of workpiece material. Therefore, in order to get the maximum effect from a single charge, it is necessary to use the device under conditions that always minimize power consumption, but without an appropriate sensor, the user may It was difficult to maintain these conditions at all times.

ところで直流式の電動機器の過負荷検出制御方
式としては第1図で示すような回路構成のもの
(特開昭52−55100号公報参照)がすでに提供され
ている。この従来例は直流モータMを内蔵する電
動ドライバーの駆動源とドライバーシヤフトとの
間にコイルスプリングの如き慣性力緩衝部材を介
在させ、この電動ドライバーを電流制御方式によ
り駆動することを特徴としており、ネジ締付完了
の停止時に発生する、ロータその他の回転部に生
じる慣性力を吸収し、ネジ山破壊や被緊締物の折
損等を防止することを目的としている。第2図は
前述の従来例のモータのトルク電流特性であり、
負荷トルクが増加するとモータ電流が増加するこ
とを示している。この従来例ではこの電流が所定
値以上になつたとき、商用交流電源ACを降圧整
流する直流電源装置DCとモータMとの間にトラ
ンジスタT1などのインピーダンス制御素子を設
け、モータ電流がある所定値よりこえようとする
とインピーダンスを増加させることにより、モー
タ電流をある所定値以上にならないように制御し
ている。一方、電動機器としては、使い勝手の面
では商用交流電源ACではコードを引つ張らねば
ならないため電源がない所でも自由に使えるよう
に2次電池を内蔵した可搬、携帯型式のものが望
まれている。このような2次電池を電源とした電
動機器に、前述の従来例の回路を使用して種々検
討した所つぎの欠点があることがわかつた。その
1つは電動ドリルとか電動丸鋸などの負荷トルク
の大きい電動機器ではモータ電流が大きくなつ
て、電流制御用のインピーダンス制御素子(例え
ば第1図ではトランジスタT1に対応)及び電流
検出抵抗(例えば第1図では抵抗Ra,Rb,Rcに
対応)での電力損失が大きく、蓄電池の電力が有
効に活用できないことである。
By the way, as an overload detection control system for DC type electric equipment, a system having a circuit configuration as shown in FIG. 1 (see Japanese Patent Laid-Open No. 52-55100) has already been provided. This conventional example is characterized in that an inertial force buffering member such as a coil spring is interposed between the drive source of the electric screwdriver with a built-in DC motor M and the driver shaft, and the electric screwdriver is driven by a current control method. The purpose is to absorb the inertial force generated in the rotor and other rotating parts when the screw is stopped after tightening, and to prevent damage to the threads and breakage of the object to be tightened. Figure 2 shows the torque current characteristics of the conventional motor mentioned above.
It shows that the motor current increases as the load torque increases. In this conventional example, when this current exceeds a predetermined value, an impedance control element such as a transistor T1 is provided between the DC power supply device DC that step-down rectifies the commercial AC power supply AC and the motor M, and when the motor current reaches a predetermined value, When the motor current is about to exceed a certain value, the impedance is increased to control the motor current so that it does not exceed a certain predetermined value. On the other hand, in terms of ease of use, electric appliances are desirable because they require a cord to be pulled when using a commercial AC power source, so it is desirable to have a portable, portable type with a built-in secondary battery so that it can be used freely even in places where there is no power source. ing. After conducting various studies using the above-mentioned conventional circuit, it was found that electric equipment using such a secondary battery as a power source has the following drawbacks. One of them is that in electric equipment with large load torque such as electric drills and electric circular saws, the motor current becomes large . For example, in Figure 1, the power loss in the resistors Ra, Rb, and Rc (corresponding to resistors Ra, Rb, and Rc) is large, and the power of the storage battery cannot be used effectively.

また第2の欠点としては特に電動丸鋸の場合で
板材を切断する場合に広幅の板材を一端から切り
始めたときに、少しでも曲つたり、蛇行したりす
ると、丸鋸刃の刃先両側面の摩擦力が大きくなる
ため負荷トルクが増大し、その分モータ電流も増
加しようとするが、電流制御値の設定値を非常に
大きくとり、モータMが簡単に停止しないように
し、前述の切断時の曲り、蛇行が生じた場合、モ
ータMと刃の取付軸の間に弾性スプリングのよう
な緩衝部材を介在させた場合は、モータは停止し
ないが刃は停止し、緩衝部材がすべりクラツチの
働らきをし、モータ電流はある一定値に押えられ
るが、スイツチを押している間は電流が流れつづ
けて無効電力のみ増え、電池電力の消耗が大きく
1回の充電での切断可能枚数は著しく低下する。
The second drawback is that when cutting a wide board from one end, especially when using an electric circular saw, if it bends or meanders even a little, the edge of the circular saw blade will cut on both sides. As the frictional force increases, the load torque increases, and the motor current also tries to increase by that amount, but the current control value is set very large to prevent the motor M from stopping easily. If bending or meandering occurs, if a buffer member such as an elastic spring is interposed between the motor M and the blade mounting shaft, the motor will not stop but the blade will stop, and the buffer member will prevent the sliding clutch from working. When the switch is pressed, the motor current is held down to a certain value, but as long as the switch is pressed, the current continues to flow and only the reactive power increases, which greatly consumes battery power and significantly reduces the number of sheets that can be cut on one charge. .

電動ドリルとして使用する場合も、試作して確
認を行なつてみたが、特に金属の材料の穴あけ作
業でドリルの先端が板材を貫通する際に大きな負
荷トルクが必要となり、緩衝部材部がすべりドリ
ルが回転しなくなるため途中までしか穴があかな
いときがあり、無効電力もへらないことがわかつ
た。第3図は試用した電動ドリルの先部の断面図
を示しモータMと、ドリル刃1の取付軸2との間
に弾性スプリングのような緩衝部材3を介在させ
てあつて、上述のスベリクラツチ機能を得るよう
にしてある。
When using it as an electric drill, we made a prototype and confirmed it, but when drilling metal materials in particular, a large load torque is required when the tip of the drill penetrates the plate material, and the shock absorbing member part may slip and cause the drill to fail. It was found that there were times when the hole could only be drilled partway because it stopped rotating, and the reactive power was not reduced. FIG. 3 shows a sectional view of the tip of the electric drill used on a trial basis. A buffer member 3 such as an elastic spring is interposed between the motor M and the mounting shaft 2 of the drill bit 1, and the above-mentioned sliding clutch function is shown in FIG. It is designed to obtain.

さて本発明は上述の問題点に鑑みて為されたも
ので、その目的とするところは1回の充電当りの
使用可能時間を長くするために、2次電池とモー
タとの間に設けたスイツチング手段に発生する電
力消費を最小にすることができるとともに、モー
タロツク時の電流を所定値以上流さないように制
御できる充電式電動機器を提供するにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a switching device between the secondary battery and the motor in order to extend the usable time per charge. It is an object of the present invention to provide a rechargeable electric device that can minimize the power consumption generated in the device and can control the current so that it does not exceed a predetermined value when the motor is locked.

以下本発明を実施例によつて説明する。第4図
は本発明の機能をブロツク化して示した図であつ
て、Ni−Cd電池又は鉛蓄電池等の2次電池4か
ら操作スイツチ5とパワートランジスタ等の半導
体スイツチ素子から構成されたスイツチング手段
6と介してモータMへ電力を供給するようになつ
ている。Aの制御回路ブロツクは操作スイツチ5
がオンしたときに、スイツチング手段6がオンす
るのに十分な電流パルス又は電圧パルスをパルス
発振回路7よりスイツチング手段6に送つて、モ
ータMに2次電池4からの電力をスイツチング手
段6を介して供給させモータMを回転させるとと
もに、回転中のモータMに不適正な使い方によつ
て過負荷がかかつたとき、モータMに大電流が流
れ、電池両端電圧が低下することを電圧分圧器8
からの分圧出力Viと、基準電圧発生回路9で発生
させた基準設定電圧V1とを電圧比較器10で比
較し、分圧出力Viが基準設定電圧V1より低下し
た場合に表示手段11を作動させて表示させ、か
つスイツチング手段6をオンさせる時間幅を挾く
する制御動作を行なつて、使用者に異常使用であ
ることを報知し、かつ過大な電流がモータMに流
れ、モータMの焼損或いは電池電力の無駄な消耗
を防止するためのものである。12は定電圧電源
で、この定電圧電源12は基準電圧発生回路9、
電圧比較器10、増幅回路13の電源を与えるた
めのものである。
The present invention will be explained below with reference to Examples. FIG. 4 is a block diagram illustrating the functions of the present invention, and includes a switching means composed of a secondary battery 4 such as a Ni-Cd battery or a lead-acid battery, an operation switch 5, and a semiconductor switch element such as a power transistor. Electric power is supplied to the motor M via 6. The control circuit block of A is the operation switch 5.
When the motor M is turned on, a current pulse or a voltage pulse sufficient to turn on the switching means 6 is sent from the pulse oscillation circuit 7 to the switching means 6, and power from the secondary battery 4 is supplied to the motor M via the switching means 6. In addition to rotating the motor M, the voltage divider is used to detect that if the rotating motor M is overloaded due to improper usage, a large current will flow through the motor M and the voltage across the battery will drop. 8
The voltage comparator 10 compares the divided voltage output V i from the reference voltage generating circuit 9 with the reference setting voltage V 1 generated by the reference voltage generation circuit 9, and the display is displayed when the divided voltage output Vi falls below the reference setting voltage V 1 . By activating the means 11 and displaying the information, and by performing a control operation to limit the time period during which the switching means 6 is turned on, the user is notified of the abnormal use, and an excessive current is caused to flow to the motor M. This is to prevent burnout of the motor M or wasteful consumption of battery power. 12 is a constant voltage power supply, and this constant voltage power supply 12 is connected to a reference voltage generation circuit 9,
It is used to supply power to the voltage comparator 10 and the amplifier circuit 13.

第5図は充電式丸鋸電動機器に用いた第4図に
基く具体回路例を示し、2次電池4としては電圧
12V、2.5AHrの容量を有し、かつ負荷電流を流
さないときには13.1V(以下開放電圧E0と称する)
の起動力を有している鉛蓄電池又はNi−Cd電池
を用いている。
Figure 5 shows a specific circuit example based on Figure 4 used in a rechargeable circular saw electric device, and the secondary battery 4 has a voltage
It has a capacity of 12V, 2.5AHr, and when no load current is flowing, it is 13.1V (hereinafter referred to as open circuit voltage E 0 ).
A lead-acid battery or a Ni-Cd battery is used, which has a starting power of .

次に本回路の動作を説明する。今操作スイツチ
5がオンすると、定電圧電源12がまず動作し、
該電源の出力端bには安定化された5−7Vの定
電圧Vbが発生され、電圧比較器10、基準電圧
発生回路9、増幅回路13の電源として夫々の回
路に供給される。一方操作スイツチ5を介して2
次電池4には抵抗R1とR4との直列回路からなる
電圧分圧器8が接続されており、この電圧分圧器
8は電池電圧を分圧し、その分電点cより分圧出
力を取出し電圧比較器10の一方の入力端に加え
ている。このときの電圧をViとする。他方電圧比
較器10の他の一端には定基準電圧発生回路9か
らの基準設定電圧が加わるようになつている。基
準電圧発生回路9は定電圧電源12の出力電圧を
抵抗R4,R5で分圧して基準設定電圧V1を発生さ
せるようになつており、例えば異常使用時にモー
タトルクが増加し、電池電圧が低下したときの所
定電圧に等価となるように抵抗R4,R5の比を設
定している。しかして操作スイツチ5が上述のよ
うにとじられた直後ではパワーMOS型トランジ
スタQ22からなるスイツチング手段6はまだオン
されておらず、電池電圧は開放電圧E0に近い状
態となつており、電圧比較器10のトランジスタ
Q7への入力電圧Viは次式で示される。
Next, the operation of this circuit will be explained. When the operation switch 5 is turned on now, the constant voltage power supply 12 operates first,
A stabilized constant voltage V b of 5-7 V is generated at the output terminal b of the power supply, and is supplied to the voltage comparator 10 , reference voltage generation circuit 9 , and amplifier circuit 13 as power supplies. On the other hand, via the operation switch 5,
A voltage divider 8 consisting of a series circuit of resistors R 1 and R 4 is connected to the battery 4, and this voltage divider 8 divides the battery voltage and takes out the divided voltage output from the distribution point c. It is applied to one input terminal of the voltage comparator 10. The voltage at this time is defined as Vi . On the other hand, a reference setting voltage from a constant reference voltage generation circuit 9 is applied to the other end of the voltage comparator 10. The reference voltage generation circuit 9 divides the output voltage of the constant voltage power supply 12 with resistors R 4 and R 5 to generate a reference set voltage V 1 . For example, when the motor torque increases during abnormal use, the battery voltage The ratio of resistors R 4 and R 5 is set so as to be equivalent to a predetermined voltage when the voltage decreases. Immediately after the operating switch 5 is closed as described above, however, the switching means 6 consisting of the power MOS transistor Q22 is not yet turned on, and the battery voltage is close to the open circuit voltage E0 . Transistor of comparator 10
The input voltage Vi to Q7 is given by the following equation.

Vi≒R2/R1+R2×E0 …… 一方基準設定電圧V1は定電圧電源12の出力
電圧をVbとすると次式で示される。
V i ≒R 2 /R 1 +R 2 ×E 0 ... On the other hand, the reference setting voltage V 1 is expressed by the following equation, where the output voltage of the constant voltage power supply 12 is V b .

V1≒R5/R5+R4×Vb …… ここでVi>V1のときはトランジスタQ7がオン
し、トランジスタQ8がオフとなる公知の差動増
幅型コンパレータ回路を電圧比較器10に用いて
おり、従つて出力端子eはVi>V1のときは“L”
レベルとなつて増幅回路13のトランジスタQ14
をオンさせる。このことにより、抵抗R17,R18
に電流が流れてトランジスタQ16がオンとなり、
ダイオード接続されたトランジスタQ17を介して
パルス発振回路7内に設けられたトランジスタ
Q18をオフさせる。トランジスタQ18がオフにな
るとトランジスタQ19はオフになり抵抗R19,R20
に電流が流れなくなつてトランジスタQ20をオフ
にする。このとき表示手段11として設けられた
抵抗R9と発光ダイオードD1の直列回路を介して
スイツチング手段6を構成する可変インピーダン
ス要素たるパワーMOS型トランジスタQ22のゲー
ト電圧を高くし、スイツチング手段6のパワー
MOS型トランジスタQ22は瞬時にオン状態とな
り、2次電池4からの直流電力がモータMへ供給
されモータMが回転する。一方第5図中のf点の
電圧が上昇すると、コンデンサC4は充電々荷を、
抵抗R8、コンデンサC3、抵抗R7、コンデンサC1
を介して放電し、一時的にg点の電位が低下して
トランジスタQ19がオン状態となる。トランジス
タQ19がオンすると抵抗R19,R20の直列回路に電
流が流れて、トランジスタQ20もオン状態とな
る。従つてf点の電圧が再び低下し、パワー
MOS型トランジスタQ22のゲート電圧が瞬時的に
オフ状態に反転する。このようにしてパワー
MOS型トランジスタQ22はパルス発振回路7のf
点の電圧の上、下に対応して、オン、オフ動作を
繰り返すことになる。第6図はf点の電圧変化の
状態を図示したもので、そのオン、オフの周期は
自由に選ぶことができる。本実施例ではオンとオ
フの時間の比率は10:1〜5:1の範囲に設定し
ている。つまりこの比率を余り小さくすればモー
タMへの供給電流平均値もそれに比例して低下
し、省電力の点では効果を十分発揮するが、丸鋸
などの場合は、必要な切断能力はあらかじめ使用
条件から決定されており、従つてモータMに必要
な停動トルク、出力馬力なども決まつてくるた
め、この目標を満足するに十分な電流を確保でき
る値にしてやらなければならず、単に省電力の面
からだけオン/オフの時間比を決めることができ
ないからである。一方このオン、オフ動作を繰り
返えしているときに、表示手段11の発光ダイオ
ードD1の点滅状態が発生しているが、人間の目
には殆んど点灯していないように見えるような状
態となるように抵抗R9の値及びオン/オフの時
間比を設定しておく方がよい。
V 1 ≒ R 5 / R 5 + R 4 × V b ... Here, when V i > V 1 , transistor Q 7 is turned on and transistor Q 8 is turned off. Voltage comparison is made using a known differential amplification type comparator circuit. Therefore, the output terminal e is “L” when V i >V 1 .
Transistor Q 14 of the amplifier circuit 13 becomes the level
Turn on. This results in resistances R 17 and R 18
Current flows through and turns on transistor Q16 ,
Transistor provided in pulse oscillation circuit 7 via diode-connected transistor Q17
Turn off Q 18 . When transistor Q 18 turns off, transistor Q 19 turns off and resistors R 19 , R 20
When no current flows through Q20, transistor Q20 is turned off. At this time, the gate voltage of the power MOS transistor Q22, which is a variable impedance element constituting the switching means 6, is increased through a series circuit of the resistor R9 and the light emitting diode D1 , which are provided as the display means 11 , and the switching means 6 is switched on. power
The MOS transistor Q22 is instantly turned on, and DC power from the secondary battery 4 is supplied to the motor M, causing the motor M to rotate. On the other hand, when the voltage at point f in Fig. 5 rises, capacitor C4 carries a charge,
Resistor R 8 , Capacitor C 3 , Resistor R 7 , Capacitor C 1
The potential at point g temporarily drops, turning transistor Q19 on. When transistor Q 19 is turned on, current flows through the series circuit of resistors R 19 and R 20 , and transistor Q 20 is also turned on. Therefore, the voltage at point f decreases again, and the power
The gate voltage of the MOS transistor Q22 is instantaneously turned off. In this way power
MOS type transistor Q 22 is f of pulse oscillation circuit 7
The on and off operations are repeated in response to the rise and fall of the voltage at the point. FIG. 6 shows the state of voltage change at point f, and the on/off period can be freely selected. In this embodiment, the ratio of on and off times is set in the range of 10:1 to 5:1. In other words, if this ratio is made too small, the average value of the current supplied to the motor M will also drop in proportion to it, which is quite effective in terms of power saving.However, in the case of a circular saw, etc., the necessary cutting capacity is used in advance. This is determined based on the conditions, and therefore the stall torque and output horsepower required for motor M are also determined, so it is necessary to set a value that can secure enough current to satisfy this target, and it is not just a matter of saving. This is because the on/off time ratio cannot be determined solely from the viewpoint of power. On the other hand, while this on and off operation is repeated, the light emitting diode D1 of the display means 11 blinks, but to the human eye it appears that it is hardly lit. It is better to set the value of resistor R 9 and the on/off time ratio so that the condition is satisfied.

さてモータMが回転し始めて定常回転になるの
には本実施例では約1〜2secかかるが、従来の場
合は起動時の突入電流が非常に大きいものである
が、スイツチング手段6のパワーMOS型トラン
ジスタQ22のオン、オフ動作のためにかなり抑制
することができ、始動時の電力消耗を押えること
が可能となつた。第7図は始動時のモータMへの
突入電流の低減効果を示したもので、曲線aaは
パワーMOS型トランジスタQ22からなるスイツチ
ング手段6を設けないときの電流を、曲線bbは
本実施例の場合を示す。
Now, in this embodiment, it takes about 1 to 2 seconds for the motor M to start rotating and reach steady rotation.In the conventional case, the inrush current at startup is very large, but the power MOS type switching means 6 The on/off operation of the transistor Q22 can be significantly suppressed, making it possible to reduce power consumption during startup. FIG. 7 shows the effect of reducing the rush current to the motor M at the time of starting, where the curve aa represents the current when the switching means 6 consisting of the power MOS transistor Q22 is not provided, and the curve bb represents the current when the switching means 6 consisting of the power MOS transistor Q22 is not provided. The case is shown below.

次に使用時に異常トルクの発生等の異常を使用
者に知らせる手段並びに、モータ焼損防止につい
ての動作原理を説明する。
Next, a means for notifying the user of an abnormality such as the occurrence of abnormal torque during use, and an operating principle for preventing motor burnout will be explained.

一般に、Ni−Cd電池、鉛電池などの2次電池
4は若干の内部抵抗(通常10mΩ〜100mΩ)を
有していることはすでに公知のことであり、ま
た、モータMに異常トルクが発生したとき、直流
モータのトルク電流特性から負荷トルクが増大す
ると電流が比例的に増大することも公知のことで
あり、このため2次電池4の両端電圧は切断使用
時には一定でなく、電流変化に対応して第8図の
ように変化する。同図aは本発明の充電式電動機
器の実使用時の電流変化を示し、同図bはそのと
きの電圧変化を示す。
In general, it is already known that secondary batteries 4 such as Ni-Cd batteries and lead batteries have some internal resistance (usually 10 mΩ to 100 mΩ), and abnormal torque may occur in the motor M. It is also known that the current increases proportionally when the load torque increases due to the torque-current characteristics of a DC motor. Therefore, the voltage across the secondary battery 4 is not constant during cutting, but responds to current changes. Then, it changes as shown in Fig. 8. Figure a shows the current change during actual use of the rechargeable electric device of the present invention, and Figure b shows the voltage change at that time.

さて第5図々示実施例の正常使用時の場合の無
負荷電流は2A、使用開始、即ち厚さ12mmの合板
を直線状に切断し始めたときのモータ電流は約
10A程度で、切断終了時には鋸刃の側面が合板に
よつて強く押されるための摩擦力によつて若干電
流が増加するが高々30A以内におさまることが分
つた。またそのときの電池電圧の低下は10.5V程
度にとどまり、またそのときの切断時間は幅20cm
の合板に対して約0.8〜1secで切断が可能であつ
た。更にそのときの押し付け力は1.5〜2Kgであ
つた。
Now, the no-load current of the embodiment shown in Figure 5 during normal use is 2A, and the motor current when it starts to be used, that is, when it starts cutting 12mm thick plywood in a straight line, is approximately
At about 10A, the current increases slightly due to the frictional force caused by the side of the saw blade being pressed strongly by the plywood at the end of cutting, but it was found to be within 30A at most. In addition, the battery voltage drop at that time is only about 10.5V, and the cutting time at that time is 20cm wide.
It was possible to cut plywood in about 0.8 to 1 second. Furthermore, the pressing force at that time was 1.5 to 2 kg.

以上のように実施例器具を使用して更に早い時
間で切断する場合3〜5Kgで押し付けたり、故意
に蛇行させて切つたりしてみたところ、このよう
な異常使用の際はモータMの著しい回転低下を生
じ電流が増加する傾向があることが分つた。
As mentioned above, when using the example device to cut more quickly, we tried pressing it with 3 to 5 kg or intentionally making the cut in a meandering manner. It was found that there was a tendency for the rotation to decrease and the current to increase.

そこで第5図実施例回路においてスイツチング
手段6を短絡して上述の異常使用実験を試みその
時の電流、電圧変化を調べたところ、第9図a,
bのように夫々変化し、電流は40〜60A、電圧は
9.5V〜8.8V位まで低下することが分かり、正常
使用時の電流電圧変動範囲と明確に区別できるこ
とが明らかとなつた。
Therefore, in the circuit of the embodiment shown in FIG. 5, the switching means 6 was short-circuited and the above-mentioned abnormal usage experiment was conducted, and the current and voltage changes at that time were investigated.
b, the current is 40 to 60A, and the voltage is
It was found that the voltage decreased to about 9.5V to 8.8V, and it became clear that it could be clearly distinguished from the current and voltage fluctuation range during normal use.

また電気ドリルにも第5図回路を用いてみた
が、使用目的、モータ、電池電圧、容量などによ
り正常、異常の範囲を区別する電流、電圧範囲は
異なつてくるが、夫々明確に区別できる領域が存
在することが分つた。
I also tried using the circuit shown in Figure 5 for an electric drill, and found that although the current and voltage ranges that distinguish between normal and abnormal ranges differ depending on the purpose of use, motor, battery voltage, capacity, etc., there are clearly distinguishable regions for each. It was found that there exists

次に本発明の異常検出動作を説明する。尚説明
の都合上充電式電動丸鋸の場合についての実施
例、即ち第5図回路で説明する。
Next, the abnormality detection operation of the present invention will be explained. For convenience of explanation, an embodiment of a rechargeable electric circular saw, ie, the circuit shown in FIG. 5, will be described.

さて既に第8図bで明らかにしたように異常使
用時に電池電圧は低下するが、本実施例では所定
の板が切れずモータMがロツクされる寸前となる
例えば9.3Vを最適使用条件の下限値とし、該電
圧を異常判定のための電圧とする。
Now, as already clarified in Fig. 8b, the battery voltage decreases during abnormal use, but in this embodiment, the lower limit of the optimal usage condition is 9.3V, which is the point where the predetermined plate is not cut and the motor M is on the verge of being locked. value, and this voltage is used as the voltage for abnormality determination.

従つて上述の基準設定電圧V1は式と式か
ら V1=Vi=R2/R1+R2×9.8V=R5/R5+R4×Vb の関係を満足するように抵抗R1〜R5と定電圧電
源12の出力電圧Vbを決定した。
Therefore, the above-mentioned reference setting voltage V 1 can be determined from the equations by adjusting the resistance R so as to satisfy the relationship V 1 = Vi = R 2 / R 1 + R 2 ×9.8V = R 5 / R 5 + R 4 × V b . 1 to R5 and the output voltage Vb of the constant voltage power supply 12 were determined.

しかして過負荷が発生し、正常な機能を発揮し
なくなるまでモータ回転数が低下すると、電圧分
圧器8の岐点電圧Viは基準設定電圧V1より小さ
くなるため電圧比較器10のトランジスタQ7
オフし、トランジスタQ8はオンになる。トラン
ジスタQ7がオフになると、トランジスタQ14がオ
フし、またトランジスタQ16もオフし、更にトラ
ンジスタQ15がオンし、トランジスタQ19をオン
し、更にまたトランジスタQ20もオンとなり、パ
ルス発生回路7の点fの電圧は低下し、スイツチ
ング手段6のパワーMOS型トランジスタQ22がオ
フになつてモータMへの電流は遮断される。その
結果電池電圧は上昇し、Vi>V1となつてスイツ
チング手段6のパワー型トランジスタQ22は再び
オンになる。このときのオン、オフの周期は2次
電池4が充電直後で十分な電力を有しているとき
は比較的短時間であるがその比がほぼ1/1にな
るようにコンデンサC4、抵抗R9,R22の値を決め
ることによつて、過負荷発生時にモータMに流れ
る電流モータロツク時の最大電流の約1/2程度ま
でおとすことができる。
However, when an overload occurs and the motor speed decreases to the point where it no longer functions normally, the node voltage V i of the voltage divider 8 becomes smaller than the reference setting voltage V 1 , so the transistor Q of the voltage comparator 10 7 is turned off and transistor Q 8 is turned on. When transistor Q 7 is turned off, transistor Q 14 is turned off, transistor Q 16 is also turned off, transistor Q 15 is turned on, transistor Q 19 is turned on, and transistor Q 20 is also turned on, and the pulse generation circuit is turned on. The voltage at point f in FIG. 7 decreases, the power MOS transistor Q22 of the switching means 6 is turned off, and the current to the motor M is cut off. As a result, the battery voltage increases and V i >V 1 becomes true, so that the power type transistor Q 22 of the switching means 6 is turned on again. The on/off cycle at this time is relatively short when the secondary battery 4 has just been charged and has sufficient power, but the capacitor C 4 and the resistor are By determining the values of R 9 and R 22 , the current flowing through the motor M when an overload occurs can be reduced to about 1/2 of the maximum current when the motor is locked.

また2次電池4が消耗してくると、2次電池4
の内部抵抗が増大することによつて、モータMの
過負荷発生時の電池電圧の両端電圧の低下は充電
直後より大きくなる。パルス発振回路7のオン、
オフの周期のオフ時間が長くなるように回路を構
成しているので、表示手段11の発光ダイオード
D1の点灯はトランジスタQ20がオン、即ちパワー
MOS型トランジスタQ22がオフになつているとき
に行なわれるので、その点灯時間がより大きくな
つて点滅が明確になる。
Also, when the secondary battery 4 becomes exhausted, the secondary battery 4
As the internal resistance of the motor M increases, the voltage drop across the battery when an overload occurs on the motor M becomes larger than that immediately after charging. Turning on the pulse oscillation circuit 7,
Since the circuit is configured so that the off period of the off period is long, the light emitting diode of the display means 11
Lighting up of D 1 means that transistor Q 20 is on, i.e. power is on.
Since this is performed when the MOS transistor Q22 is off, the lighting time becomes longer and the blinking becomes clearer.

しかして2次電池4の充電直後のときの過負荷
発生時は発光ダイオードD1の点灯が中位の明る
さとなり、2次電池4が消耗し再充電が必要なと
きはより明確な明るさで点灯表示が行なわれるこ
とになる。使用者は発光ダイオードD1の明るさ
によつて異常使用と再充電時期の両方を判断しな
がら器具を使用することができるのである。
Therefore, when an overload occurs immediately after charging the secondary battery 4, the light emitting diode D1 lights up at a medium brightness, and when the secondary battery 4 is exhausted and needs to be recharged, the brightness becomes more clear. A lighting display will be performed. The user can use the device while determining both abnormal use and recharging time based on the brightness of the light emitting diode D1 .

尚スイツチング手段6にパワーMOS型トラン
ジスタQ22を使用した理由はゲート電圧をかける
だけで電流が殆んど不要のためパルス発振回路7
のトランジスタQ20を小型にしやすく、携帯型電
動器具に好都合であり、また大電流をモータMに
流す必要のある丸鋸等の場合、通常のパイポーラ
型パワートランジスタに較べてオン、オフのスイ
ツチング時間が短いため、オン、オフの度に発生
するトランジスタの発熱損失を少なくすることが
できるからである。またパワーMOS型トランジ
スタQ22の制御動作は前述の全ての場合におい
て、オン、オフの断続動作によりモータMへの電
流をパルス状にして送るようにしているため、ベ
ース電流に比例した電流を流すシリーズレギユー
レータ方式のトランジスタ使用法では例えば電流
10A、コレクタとエミツタ間電圧5V程度で使用
したとしても50Wもの電力損失が発生するのに対
し、本実施例では10W以下に低減でき電池電力の
有効活用ができることになる。
The reason why a power MOS type transistor Q22 was used as the switching means 6 is because it requires almost no current just by applying a gate voltage, so the pulse oscillation circuit 7
It is easy to make the transistor Q 20 small, which is convenient for portable electric appliances, and for circular saws that require large currents to flow through the motor M, the on/off switching time is shorter than that of a normal bipolar power transistor. This is because the heat loss that occurs in the transistor each time it is turned on or off can be reduced because the transistor is short. In addition, in all the cases described above, the control operation of the power MOS transistor Q22 is such that the current is sent in pulse form to the motor M by intermittent ON/OFF operation, so that a current proportional to the base current flows. For example, when using a series regulator type transistor, the current
Even when used at 10 A and a voltage of about 5 V between the collector and emitter, a power loss of 50 W would occur, but in this embodiment, the power loss can be reduced to 10 W or less, allowing effective use of battery power.

尚また実施例回路には充電回路を省略している
が、2次電池4の充電は適宜設けた充電回路によ
つて行なうのは言うまでもない。
Further, although the charging circuit is omitted from the circuit of the embodiment, it goes without saying that charging of the secondary battery 4 is performed by an appropriately provided charging circuit.

また表示手段11としては電磁ソレノイドから
なる刺激手段や、ブザーのような音による表示手
段を用いてもよい。
Further, as the display means 11, a stimulation means made of an electromagnetic solenoid or a sound display means such as a buzzer may be used.

本発明は過負荷でモータがロツクされる前の最
適使用条件下における2次電池の両端電圧の下限
値を基準設定電圧として設定し、実使用時におけ
る2次電池の両端電圧と基準電圧を比較する電圧
比較器を有し、該電圧比較器の比較出力を過負荷
発生時に断続するパルス状信号に変換し、表示手
段と、2次電池とモータとの間に設けたスイツチ
ング手段とに加えて表示手段を断続表示させると
ともにスイツチング手段を断続的にスイツチング
させるようにしてあるから、表示手段の表示によ
つて、使用状態が最適使用条件範囲外にあるのか
が使用者に分り、そのため使用者は使用状態を表
示手段の表示状態を見ながら最適使用条件下にお
くことができ、万一最適使用条件外の過負荷使用
になつた場合は、スイツチング手段が高速でオ
ン・オフをくりかえし、2次電池からモータへの
平均電流を過負荷の程度が大きいときはオフ時間
が長くなるように制御させることにより、モータ
過負荷発生時の過大電流を一定範囲に押えること
ができ、その上、スイツチング手段として可変イ
ンピーダンス素子を用いて該可変インピーダンス
素子のゲートに断続する上記パルス状信号を加
え、過負荷量に対応してオン/オフ時間比を変化
させるからスイツチング手段にトランジスタなど
の可変インピーダンス素子を使用したときのスイ
ツチングロス電力を最小にする効果を得ることが
できる。
The present invention sets the lower limit of the voltage across the secondary battery under optimal usage conditions before the motor is locked due to overload as the reference setting voltage, and compares the voltage across the secondary battery during actual use with the reference voltage. It has a voltage comparator that converts the comparative output of the voltage comparator into a pulse signal that is intermittent when an overload occurs, and in addition to display means and switching means provided between the secondary battery and the motor. Since the display means is configured to display information intermittently and the switching means is configured to switch intermittently, the user can tell whether the operating condition is outside the optimum operating condition range by the display on the display means. It is possible to set the operating condition to the optimum operating condition while checking the display status of the display means, and in the event that the operating condition becomes overloaded outside the optimum operating condition, the switching means repeats on and off at high speed, and the secondary By controlling the average current from the battery to the motor so that the off time becomes longer when the degree of overload is large, it is possible to suppress the excessive current within a certain range when a motor overload occurs. A variable impedance element such as a transistor is used as the switching means because the intermittent pulse signal is applied to the gate of the variable impedance element and the on/off time ratio is changed in accordance with the amount of overload. It is possible to obtain the effect of minimizing the switching loss power when

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の回路図、第2図は同上の動作
説明図、第3図は電動ドリルの先部の断面図、第
4図は本発明の機能を示す回路ブロツク図、第5
図は本発明の一実施例の回路図、第6図は同上の
パルス発振回路の出力電圧の波形図、第7図、第
8図a,bは同上の動作説明図、第9図a,bは
同上の動作説明図であり、Mはモータ、V1は基
準設定電圧、4は2次電池、10は電圧比較器、
11は表示手段である。
Fig. 1 is a circuit diagram of the conventional example, Fig. 2 is an explanatory diagram of the same operation as above, Fig. 3 is a sectional view of the tip of the electric drill, Fig. 4 is a circuit block diagram showing the functions of the present invention, Fig. 5
The figure is a circuit diagram of an embodiment of the present invention, FIG. 6 is a waveform diagram of the output voltage of the pulse oscillation circuit same as above, FIGS. 7 and 8 a and b are operation explanatory diagrams, and FIGS. b is an explanatory diagram of the same operation as above, M is a motor, V 1 is a reference setting voltage, 4 is a secondary battery, 10 is a voltage comparator,
11 is a display means.

Claims (1)

【特許請求の範囲】[Claims] 1 2次電池を電源として駆動用のモータを作動
させる充電式電動機器において、過負荷でモータ
がロツクされる前の最適使用条件下における2次
電池の両端電圧の下限値を基準設定電圧として設
定し、実使用時における2次電池の両端電圧と基
準電圧を比較する電圧比較器と、該電圧比較器の
比較出力を過負荷発生時に断続するパルス状信号
に変換し、該パルス状電圧を上記2次電池とモー
タとの間に設けたスイツチング手段及び表示手段
に加えて上記表示手段を断続表示させるとともに
スイツチング手段を断続的にスイツチングさせる
パルス発生手段とからなり、上記スイツチング手
段として可変インピーダンス素子を用いて該可変
インピーダンス素子のゲートに断続する上記パル
ス状信号を加え、過負荷量に対応してオン/オフ
時間比を変化させることを特徴とする充電式電動
機器。
1. In rechargeable electric equipment that operates a drive motor using a secondary battery as a power source, the lower limit of the voltage across the secondary battery under optimal usage conditions before the motor is locked due to overload is set as the reference setting voltage. A voltage comparator that compares the voltage across the secondary battery and a reference voltage during actual use, converts the comparison output of the voltage comparator into a pulse-like signal that is intermittent when an overload occurs, and converts the pulse-like voltage into the above-mentioned pulse-like signal. In addition to the switching means and display means provided between the secondary battery and the motor, the pulse generation means causes the display means to display intermittently and the switching means to switch intermittently, and the switching means includes a variable impedance element. A rechargeable electric device characterized in that the on/off time ratio is changed in accordance with the amount of overload by applying the intermittent pulsed signal to the gate of the variable impedance element.
JP57123151A 1982-07-15 1982-07-15 Charging type motor device Granted JPS58222795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57123151A JPS58222795A (en) 1982-07-15 1982-07-15 Charging type motor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57123151A JPS58222795A (en) 1982-07-15 1982-07-15 Charging type motor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57102722A Division JPS58218896A (en) 1982-06-15 1982-06-15 Charging electric tool

Publications (2)

Publication Number Publication Date
JPS58222795A JPS58222795A (en) 1983-12-24
JPS6333396B2 true JPS6333396B2 (en) 1988-07-05

Family

ID=14853443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57123151A Granted JPS58222795A (en) 1982-07-15 1982-07-15 Charging type motor device

Country Status (1)

Country Link
JP (1) JPS58222795A (en)

Also Published As

Publication number Publication date
JPS58222795A (en) 1983-12-24

Similar Documents

Publication Publication Date Title
RU2459695C2 (en) Electrically driven screwdriver
US6836614B2 (en) Electrical power tool having a motor control circuit for providing control over the torque output of the power tool
US20030047331A1 (en) Microprocessor for controlling the speed and frequency of a motor shaft in a power tool
US5410229A (en) Motor speed control circuit with electronic clutch
US20050248320A1 (en) Switch reduction in a cordless power tool
US4001668A (en) Electric shaver operable from a wide range of supply voltages
JP2005349566A (en) Power tool equipped with motor control circuit which increases effective torque output
JPS6077694A (en) Method and device for controlling motor automatically decelerated at rotating speed at no load idling time
EP0808018B1 (en) Electrical power tool having a motor control circuit for providing improved control over the torque output of the power tool
CN101941192B (en) Electric tool
EP2711138A2 (en) Power tool
US11511387B2 (en) Electric tool
US6359410B1 (en) Apparatus and method for motor current protection through a motor controller
JP4563259B2 (en) Electric tool
JP2003248519A (en) Method and device for power control depending on temperature of electric equipment
JPS6333396B2 (en)
US20090190905A1 (en) Regulator Circuit for an Electric Motor, Provided with a Microprocessor
JPS5815478A (en) Current control device in speed control device of dc motor
US20140368149A1 (en) Electronic Device
JPS58218896A (en) Charging electric tool
JPS6031192B2 (en) DC motor speed control device
JPH09314476A (en) Motor-driven tool having motor control circuit for controlling torque output
JP2000237978A (en) Battery powered tool
US20210313909A1 (en) Method for controlling a rotational speed of an electric tool and electric tool
WO2022178774A1 (en) Power tool having variable output