JPS6333324Y2 - - Google Patents

Info

Publication number
JPS6333324Y2
JPS6333324Y2 JP1979122587U JP12258779U JPS6333324Y2 JP S6333324 Y2 JPS6333324 Y2 JP S6333324Y2 JP 1979122587 U JP1979122587 U JP 1979122587U JP 12258779 U JP12258779 U JP 12258779U JP S6333324 Y2 JPS6333324 Y2 JP S6333324Y2
Authority
JP
Japan
Prior art keywords
fire
electric wire
parts
flame
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1979122587U
Other languages
Japanese (ja)
Other versions
JPS5641413U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1979122587U priority Critical patent/JPS6333324Y2/ja
Publication of JPS5641413U publication Critical patent/JPS5641413U/ja
Application granted granted Critical
Publication of JPS6333324Y2 publication Critical patent/JPS6333324Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

本考案は耐火電線特に消防用設備の非常用電源
回路に用いられる耐火電線に関するものである。 最近建築物は益々高層化される傾向にあるが、
これに伴つて建築物の火災対策は益々重要視され
ている。火災を出さぬことが先ず第一であるが、
火災が発生した場合には、これによる被害を最少
限に止めることが肝要である。それには先ず建築
物内において設置された各消防用設備の起動装置
及び電動機自動火災報知設備の受信機、避難誘導
灯、非常口を示す表示灯を火災の発生と同時に確
実に作動せしめ得ると共に火災発生後も所定の時
間(たとえば建築物内に居る人間が建築物外へ避
難するまでの時間)は、これを継続して確実に作
動せしめうることが必要である。それには上記各
設備への回路配線用として使用される電線は、火
災時の高熱雰囲気内にあつても充分に耐え得る特
性を有することが必要である。 例えば、自治省消防庁ではこの種の電線につい
ては、厳しい耐火基準を設けこれに合格すること
を法制化している。即ち、JISA1302に定める屋
内火災温度曲線に準じて耐火炉内に置かれた電線
を露出若しくは電線管付の状態で30分間加熱を行
い、その直後に直流500Vの絶縁抵抗測定器で計
つた時に、この値が0.4MΩ以上であること。ま
た加熱直後線間に1500Vの交流電圧を加えた場合
に、これが1分間耐えること、また電線延焼長が
炉内壁より150mm以内であることである。 従来この種の耐火電線としては銅線などの導体
上に耐火絶縁層(例えばマイカ粉末、マイカ微鱗
片などの無機物とガラス・アスベストあるいはプ
ラスチツクテープなどの支持体からなるもの、る
いはこれらとシリコンゴム層などを組合せたもの
など)とポリエチレンからなる合成樹脂絶縁層と
も順次形成して絶縁線芯となし、該耐火電線絶縁
線芯を必要に応じて介在物を用いて撚合せ、更に
その上に合成樹脂からなるシース層を設ける構造
を基本構造とするもので、市販の耐火電線では殆
んど全てが軟質ポリ塩化ビニル樹脂をシース材料
とするものであつた。 この軟質ポリ塩化ビニル樹脂は一定の分解温度
以上の温度に曝されると、先ず塩化水素の離脱か
ら熱分解が始まる分解特性があり、しかも主成分
であるポリ塩化ビニルは分子構造上理論的に581
mg/gと多量の塩化水素を含有するため、特に火
災時などの高温下では発生した塩化水素ガスが周
辺機器を腐食すずばかりでなく、人体へも悪影響
を及ぼし、更には火災でイオン化された塩化水素
ガスは耐火電線の耐火絶縁層に侵入して、耐火電
線本来の機能を低下せしめる危険性があつた。 一方、難燃性ポリエチレンなどの難燃性ポリオ
レフイン樹脂をシース材料として用いる場合には
ポリオレフイン樹脂は分子構造上全くハロゲン原
子を含まないために例えばハロゲン系難燃剤を使
用して難燃化したとしても、火災時に発生するハ
ロゲン化水素の量は、ポリ塩化ビニル系樹脂に比
較して著しく少なく、上述せる危険性の程度はか
なり軽減されると言えるが、ただ単に難燃性ポリ
エチレンなどを使用する場合には電線の延焼性が
一般に軟質ポリ塩化ビニル樹脂に比べて大きくな
り、前述せる自治省消防庁の定める耐火基準を満
足し難くなる場合が多いという欠点があつた。 本考案者らは燃焼中のハロゲン化水素発生量が
少ないという難燃性ポリオレフイン系樹脂の特長
を活かし、電線の延焼性を低下せしることを目的
として種々の難燃性ポリオレフイン系樹脂をシー
スとする耐火電線の燃焼について研究した結果、
本考案に到つたものである。 すなわち、本考案の要旨とするところは、導体
上1に耐火絶縁層2が設けられた耐火電線におい
て該耐火電線の最外層シース層4を、酸素指数24
以上で、105℃における熱変形率が65%以下であ
り、かつ無機物粉末の含有量が30重量部(樹脂分
100重量部基準で)以下である難燃性、結晶性ポ
リエチレン樹脂組成物で形成したことを特徴とす
る耐火電線である。 一般に耐火電線では絶縁線芯の合成樹脂絶縁層
ならびに介在物は全く難燃化処理がなされていな
いか、あるいはシース層に比べてかなり軽度の難
燃化に留められる。そして、前者は特にポリエチ
レンによつて形成されるのが通常である。また介
在物としては、ポリプロピレン割繊維などを用い
るのが通常である。上記の材料は経済性の点から
考えると難燃化処理を施さずに使用することが望
ましい。いわば易燃性のものが通常使用される。
従つて耐火電線を消防庁の定める耐火試験方法に
従つて火災に曝す場合などは強力な火災によつて
一旦シース層が破壊された後の電線の延焼は絶縁
層の合成樹脂あるいは介在物の燃焼が先行し、ま
た導体からの熱伝導によつてシース層より絶縁層
の温度が高くなつて絶縁層の溶融熱分解が先行す
る結果、シース層がラツパ状に口を開き、これを
伝つて絶縁層の合成樹脂介在物が溶融滴下しなが
ら先ず燃焼し、次いでラツパ状になつたシース層
の縁辺が溶融垂下燃焼落下することの繰返しで起
る。 一般に合成樹脂の延焼性は、難燃性の尺度を表
わす酸素指数(JISK7201−1976に定義される)
と一義的な関係があるとされているが上記の耐火
電線の延焼様態では、シース層を形成する難燃性
ポリオレフイン系樹脂の酸素指数との関係が一様
ではなく、上述せるシース層のラツパ状端の形態
保持の程度が耐火電線の延焼性に大きな役割を果
すことが見出したのである。言い替えれば、上記
樹脂の酸素指数が同一であつても、燃焼中に容易
に垂下するものでは延焼性の点で著しく劣るので
ある。 上記事象に基づき、種々の難燃性ポリオレフイ
ン系樹脂を検討した結果、その酸素指数が24以上
で、しかも105℃における熱変形率が65%以下で
ある難燃性、結晶性ポリエチレン系樹脂組成物で
もつてシース層を形成した耐火電線は自治省消防
庁の定める耐火試験に合格することを経験的に見
出したのである。 ここに105℃における熱変形率はJISC3005−
1977「プラスチツク電線試験方法」23項に規定さ
れる加熱変形試験方法に従つて測定される値であ
つて、厚さ約2mm、幅約15mm、長さ約30mmの板状
試験片に105℃の試験温度の下に厚さ方向に4Kg
の荷重を加え、同温度に30分間経過した後の厚さ
の変化率、すなわち、 熱変形率(%)=加熱前の厚さ(mm)−加熱後の
厚さ(mm)/加熱前の厚さ(mm)×100 で定義される。 本考案にて、結晶性ポリエチレン系樹脂とは、
高密度、中密度、低密度ポリエチレンなどの結晶
性エチレン単独重合体、ブテン−1などのオレフ
インをコモノマーとして含有する結晶性のエチレ
ン系共重合体、酢酸ビニルやアクリル酸エチルな
どの共重合性化合物とエチレンとの結晶性共重合
体などであつて、これらの2種以上の混合物であ
る場合もある。耐火電線は前述の用途から明らか
なように、施工時ビル内のコンクリート表面上を
引き回すことが多くシース層の外傷発生に対する
耐性に優れていることが好ましい。 結晶性ポリエチレン系樹脂はこのような施工時
耐傷性に優れている。また、これらにシース材料
としての特性を損わない範囲内で、炭酸カルシウ
ム、シリカ、クレイ、水酸化マグネシウムなどの
無機質フイラーを充填することもある。この際無
機物紛末の含有量は、その合計で30重量部(樹脂
分100重量部基準で)以下とする。また、酸化防
止剤、滑剤、顔料など加工助剤を添加することは
通常行われることである。これらの結晶性ポリエ
チレン系樹脂単独の酸素指数は18〜22の範囲にあ
り、これらの樹脂に無機質フイラーを30重量部以
下の範囲で添加した場合もほとんど同じである。
また、化学架橋あるいは電子線照射架橋などの架
橋処理を施すことは熱変形率を改善するのに有効
な手段である。 本考案において結晶性ポリエチレン系樹脂の難
燃性付与は、いわゆる難燃剤の添加によつてなさ
れるものである。すなわち、例えばハロゲン系難
燃剤、硼酸系難燃剤、燐系難燃剤、シリコン系難
燃剤などの難燃剤、あるいはこれらと三酸化アン
チモンなどの難燃助剤との併用、または水酸化ア
ルミニウム、水酸化マグネシウムなどの水和金属
酸化物などとの併用によつて達成され、これらの
難燃剤を2種以上併用することもある。 上記の如くして得られる難燃性、結晶性ポリエ
チレン系樹脂から選択して、本考案に使用される
難燃性、結晶性ポリエチレン系樹脂組成物の具体
的な例を下記に示すが、本考案がこれらだけに限
定されるものでないことは言うまでもない。 〔例 1〕 低密度ポリエチレン(NUC9025日本ユニカ
ー(株)製品) 100重量部 塩素化ポリエチレン(ダイソラツクU−303
大阪曹達(株)製品) 10重量部 ハロゲン系難燃剤(DBDPE東洋曹達(株)製
品) 10重量部 ハロゲン系難燃剤(デクロランプラス575ス
トウフアーケミカル製品) 15重量部 三酸化アンチモン 10重量部 水酸化アルミニウム(ハイジライトH−42M
昭和電工(株)製品) 15重量部 上記組成物の酸素指数=25 熱変形率(105℃)=20% 実施例 1 第2図に示す如く断面積38mm2の軟銅撚線1上に
厚さ0.13mmのポリエチレンマイカテープをその幅
の1/2が重なるようにしながら3枚を重ね巻きし
て、厚さ0.7mmの耐火層2を形成させ、その上に
密度0.92、メルトインデツクス1.0の低密度ポリ
エチレンを1.2mmの厚さに押出被覆して絶縁層を
設けた絶縁線芯3本をポリプロピレン割繊維5を
介在して撚合せ、その上に0.05mm厚さのナイロン
テープ6を押え巻きし、この外側にシース4とし
て本文に記載した〔例1〕の難燃性ポリエチレン
樹脂を厚さ1.8mmに押出被覆して、本考案の耐火
電線を得た。この耐火電線について第1表に示す
如き耐火試験の基準に基づいて、耐火性能を測定
した結果は第2表に示す通りである。 比較例 比較のために、酸素指数28、熱変形率73%の下
記の組成物をシース材料として、実施例1と同様
にして、耐火電線を得た。この耐火電線について
実施例1と同様にして、耐火性能を測定した結果
は第2表に付記する如く、延焼性の点で不合格で
あつた。 比較例の組成物 エチレン−酢酸ビニル共重合体(エバフレツ
クスEV360三井ポリケミカル(株)製品)
70重量部 低密度ポリエチレン(ユカロンHE−30三菱
油化(株)製品) 30重量部 ハロゲン系難燃剤(FG−3000帝人(株)製品)
20重量部 三酸化アンチモン 10重量部 水酸化アルミニウム(ハイジライトH−42M
昭和電工(株)製品) 80重量部 上記組成物の酸素指数=28 熱変形率(105℃)=73%
The present invention relates to fire-resistant electric wires, particularly fire-resistant electric wires used in emergency power circuits of firefighting equipment. Recently, buildings are becoming more and more high-rise,
Along with this, fire prevention measures for buildings are becoming more and more important. The first thing to do is to prevent fires,
When a fire occurs, it is important to minimize the damage caused by it. First of all, it is necessary to ensure that the activation devices of each fire-fighting equipment installed in the building, the receivers of motorized automatic fire alarm equipment, evacuation guide lights, and emergency exit indicator lights are activated at the same time as a fire occurs. It is necessary that the system can continue to operate reliably for a predetermined period of time (for example, until the people inside the building evacuate from the building). For this purpose, the electric wires used for circuit wiring to each of the above-mentioned facilities must have characteristics that can sufficiently withstand even in a high-temperature atmosphere during a fire. For example, the Fire and Disaster Management Agency of the Ministry of Home Affairs has established strict fire resistance standards for this type of electric wire and has legislated that they must pass these standards. In other words, when a wire placed in a refractory furnace is exposed or has a conduit attached and heated for 30 minutes according to the indoor fire temperature curve specified in JISA1302, and immediately after that, the wire is measured with a 500V DC insulation resistance meter. This value must be 0.4MΩ or more. In addition, when an AC voltage of 1500V is applied between the wires immediately after heating, the wires must withstand this for 1 minute, and the length of wire fire extension must be within 150 mm from the inner wall of the furnace. Conventionally, this type of fire-resistant electric wire has been made of a fire-resistant insulating layer (for example, an inorganic material such as mica powder or mica scales and a support such as glass, asbestos, or plastic tape) on a conductor such as a copper wire, or a wire made of these and silicone rubber. A synthetic resin insulating layer made of polyethylene and a synthetic resin insulating layer made of polyethylene are sequentially formed to form an insulated wire core, and the insulated wire core of the fireproof wire is twisted using an inclusion as necessary, and then The basic structure is a sheath layer made of synthetic resin, and almost all commercially available fire-resistant electric wires use soft polyvinyl chloride resin as the sheath material. When this soft polyvinyl chloride resin is exposed to a temperature above a certain decomposition temperature, it begins to decompose thermally, starting with the elimination of hydrogen chloride. 581
Since it contains a large amount of hydrogen chloride (mg/g), the generated hydrogen chloride gas not only corrodes peripheral equipment but also has a negative effect on the human body, especially under high temperatures such as during a fire. There was a risk that the hydrogen chloride gas would penetrate the fireproof insulation layer of the fireproof wires and deteriorate the original function of the fireproof wires. On the other hand, when flame-retardant polyolefin resin such as flame-retardant polyethylene is used as a sheath material, polyolefin resin does not contain any halogen atoms in its molecular structure, so even if it is made flame-retardant by using a halogen-based flame retardant, for example. The amount of hydrogen halide generated in the event of a fire is significantly smaller than that of polyvinyl chloride resins, and the above-mentioned danger can be said to be considerably reduced. However, if flame-retardant polyethylene is used, However, the disadvantage is that the spread of fire in electric wires is generally greater than that of soft polyvinyl chloride resins, and it is often difficult to meet the fire resistance standards set by the Fire and Disaster Management Agency of the Ministry of Home Affairs, mentioned above. The inventors took advantage of flame-retardant polyolefin resin's ability to generate a small amount of hydrogen halide during combustion, and sheathed various flame-retardant polyolefin resins with the aim of reducing the spread of fire in electric wires. As a result of research on the combustion of fire-resistant electric wires,
This is what led us to this idea. That is, the gist of the present invention is that in a refractory electric wire in which a refractory insulating layer 2 is provided on a conductor 1, the outermost sheath layer 4 of the refractory electric wire has an oxygen index of 24.
In the above, the thermal deformation rate at 105℃ is 65% or less, and the content of inorganic powder is 30 parts by weight (resin content).
The present invention is a fire-resistant electric wire characterized in that it is formed from a flame-retardant, crystalline polyethylene resin composition having a composition of 100 parts by weight or less. In general, in fire-resistant electric wires, the synthetic resin insulating layer and inclusions of the insulated wire core are either not flame-retardant at all, or are flame-retardant only to a much milder extent than the sheath layer. The former is typically made of polyethylene. Further, as the inclusion, polypropylene split fibers or the like are usually used. From an economic point of view, it is desirable to use the above materials without flame retardant treatment. So to speak, easily flammable materials are usually used.
Therefore, when fire-resistant wires are exposed to fire according to the fire resistance test method specified by the Fire and Disaster Management Agency, once the sheath layer is destroyed by a strong fire, the spread of fire to the wires is caused by the combustion of the synthetic resin or inclusions in the insulation layer. As a result, the temperature of the insulating layer becomes higher than that of the sheath layer due to heat conduction from the conductor, and the melting and thermal decomposition of the insulating layer precedes.As a result, the sheath layer opens in a floppy shape, and the insulation layer spreads through this. This occurs as the synthetic resin inclusions in the layer first burn while melting and dripping, and then the edges of the sheath layer, which have become flabby, melt and droop as they burn and fall. In general, the fire spread of synthetic resins is determined by the oxygen index (defined in JISK7201-1976), which is a measure of flame retardancy.
However, in the above-mentioned fire spread mode of the fire-resistant electric wire, the relationship with the oxygen index of the flame-retardant polyolefin resin forming the sheath layer is not uniform, and the above-mentioned unevenness of the sheath layer It was discovered that the degree of shape retention of the shaped ends plays a major role in the fire spread of fire-resistant wires. In other words, even if the above-mentioned resins have the same oxygen index, those that easily sag during combustion are significantly inferior in terms of fire spread. Based on the above phenomenon, we investigated various flame-retardant polyolefin resins and found that a flame-retardant, crystalline polyethylene resin composition with an oxygen index of 24 or more and a thermal deformation rate of 65% or less at 105°C. However, we have found empirically that fire-resistant electric wires with a sheath layer can pass the fire-resistance test set by the Fire and Disaster Management Agency of the Ministry of Home Affairs. Here, the thermal deformation rate at 105℃ is JISC3005−
The value is measured according to the heating deformation test method specified in Section 23 of the 1977 "Plastic Electric Wire Test Method", and is a value measured in accordance with the heating deformation test method specified in Section 23 of the 1977 "Test Method for Plastic Electric Wires". 4Kg in thickness direction under test temperature
The rate of change in thickness after applying a load of Defined as thickness (mm) x 100. In this invention, crystalline polyethylene resin is
Crystalline ethylene homopolymers such as high-density, medium-density, and low-density polyethylene, crystalline ethylene copolymers containing olefins such as butene-1 as a comonomer, and copolymerizable compounds such as vinyl acetate and ethyl acrylate. and ethylene, and may be a mixture of two or more of these. As is clear from the above-mentioned uses, fire-resistant electric wires are often routed over concrete surfaces within buildings during construction, so it is preferable that the sheath layer has excellent resistance to damage. Crystalline polyethylene resin has excellent scratch resistance during construction. In addition, these may be filled with inorganic fillers such as calcium carbonate, silica, clay, and magnesium hydroxide within a range that does not impair the properties of the sheath material. At this time, the total content of inorganic powder shall be 30 parts by weight or less (based on 100 parts by weight of resin content). Additionally, it is common practice to add processing aids such as antioxidants, lubricants, and pigments. The oxygen index of these crystalline polyethylene resins alone is in the range of 18 to 22, and is almost the same when an inorganic filler is added to these resins in an amount of 30 parts by weight or less.
Further, crosslinking treatment such as chemical crosslinking or electron beam irradiation crosslinking is an effective means for improving the thermal deformation rate. In the present invention, flame retardancy is imparted to the crystalline polyethylene resin by adding a so-called flame retardant. That is, for example, flame retardants such as halogen flame retardants, boric acid flame retardants, phosphorus flame retardants, silicone flame retardants, or combinations of these with flame retardant aids such as antimony trioxide, or aluminum hydroxide, hydroxide, etc. This is achieved by the combined use of hydrated metal oxides such as magnesium, and two or more of these flame retardants may be used in combination. Specific examples of flame-retardant, crystalline polyethylene resin compositions selected from the flame-retardant, crystalline polyethylene resins obtained as described above and used in the present invention are shown below. It goes without saying that the invention is not limited to these. [Example 1] Low density polyethylene (NUC9025 Nippon Unicar Co., Ltd. product) 100 parts by weight Chlorinated polyethylene (Daisorak U-303
Osaka Soda Co., Ltd. product) 10 parts by weight Halogen flame retardant (DBDPE Toyo Soda Co. product) 10 parts by weight Halogen flame retardant (Dechlorane Plus 575 Stauffer Chemical product) 15 parts by weight Antimony trioxide 10 parts by weight Water Aluminum oxide (Higilite H-42M
Showa Denko Co., Ltd. product) 15 parts by weight Oxygen index of the above composition = 25 Thermal deformation rate (105°C) = 20% Example 1 As shown in Figure 2, on the annealed copper stranded wire 1 with a cross-sectional area of 38 mm 2 , the thickness was A fireproof layer 2 with a thickness of 0.7mm is formed by wrapping three 0.13mm polyethylene mica tapes so that 1/2 of their widths overlap, and on top of that a low-density layer with a density of 0.92 and a melt index of 1.0. Three insulated wire cores made of extruded density polyethylene coated to a thickness of 1.2 mm and provided with an insulating layer were twisted together with polypropylene split fibers 5 interposed therebetween, and a 0.05 mm thick nylon tape 6 was pressed and wound thereon. The fire-resistant electric wire of the present invention was obtained by extrusion coating the flame-retardant polyethylene resin of [Example 1] described in the text as a sheath 4 to a thickness of 1.8 mm on the outside thereof. The fire resistance performance of this fire resistant wire was measured based on the fire resistance test standards shown in Table 1, and the results are shown in Table 2. Comparative Example For comparison, a refractory electric wire was obtained in the same manner as in Example 1 using the following composition having an oxygen index of 28 and a thermal deformation rate of 73% as a sheath material. The fireproof performance of this fireproof electric wire was measured in the same manner as in Example 1. As shown in Table 2, the wire failed in terms of fire spread. Comparative Example Composition Ethylene-Vinyl Acetate Copolymer (Evaflex EV360 Mitsui Polychemical Co., Ltd. product)
70 parts by weight low-density polyethylene (Yukalon HE-30 Mitsubishi Yuka Co., Ltd. product) 30 parts by weight halogen flame retardant (FG-3000 Teijin Ltd. product)
20 parts by weight Antimony trioxide 10 parts by weight Aluminum hydroxide (Higilite H-42M
Showa Denko Co., Ltd. product) 80 parts by weight Oxygen index of the above composition = 28 Heat distortion rate (105°C) = 73%

【表】 但し、電線管付耐火試験
[Table] However, fire resistance test with conduit

【表】 実施例 2 第2図に示す如く断面積3.5mm2の軟銅撚線1上
に厚さ0.13mmのポリエチレンマイカテープをその
幅の1/2が重なるようにしながら5枚を重ね巻き
して、厚さ1.2mmの耐火層2を形成させ、その上
に密度0.92、メルトインデツクス1.0の低密度ポ
リエチレンを0.8mmの厚さに押出被覆して絶縁層
を設けた絶縁線芯3本をポリプロピレン割繊維5
を介在して撚合せ、その上に0.05mm厚さのナイロ
ンテープ6を押え巻きし、この外側にシース4と
して下記配合組成、 配合組成 高密度ポリエチレン(シヨーレツクス4002E
昭和電工(株)製品) 100重量部 ハロゲン系難燃剤(DBDPE東洋曹達(株)製
品) 30重量部 三酸化アンチモン 15重量部 カーボンブラツク 3重量部 の難燃性ポリエチレン樹脂を厚さ1.5mmに押出被
覆して、本考案の耐火電線を得た。上記組成物の
酸素指数は24、熱変形率(105℃)=3%であつ
た。この耐火電線について第1表に示す如き耐火
試験の基準に基づいて、耐火性能を測定した結果
は第3表に示す通りであつた。 実施例3及び比較例 第2図に示す如く断面積3.5mm2の軟銅撚線1上
に厚さ0.13mmのポリエチレンマイカテープをその
幅の1/2が重なるようにしながら5枚を重ね巻き
して、厚さ1.2mmの耐火層2を形成させ、その上
に密度0.92、メルトインデツクス1.0の低密度ポ
リエチレンを0.8mmの厚さに押出被覆して絶縁層
を設けた絶縁線芯3本をポリプロピレン割繊維5
を介在して撚合せ、その上に0.05mm厚さのナイロ
ンテープ6を押え巻きし、この外側にシース4と
して下記配合組成、 配合組成 低密度ポリエチレン(ユカロンZF−30三菱
油化(株)製品) 100重量部 ハロゲン系難燃剤(FG3000帝人化成(株)製品)
30重量部 三酸化アンチモン 15重量部 カーボンブラツク 3重量部 の難燃性ポリエチレン樹脂を厚さ1.5mmに押出被
覆した。その後1.0MeVの加速エネルギーをもつ
電子線にて20Mradの電子線を均一に照射し、実
施例3の耐火電線を得た。 また比較例においては同じ配合組成の難燃性ポ
リエチレン樹脂を厚さ1.5mmに押出被覆したのみ
で電子線照射を施さなかつた。上記組成物の
20Mrad電子線照射後(ゲル分率=65%)の酸素
指数は24、熱変形率(105℃)=25%、また非照射
での酸素指数は24、熱変形率(105℃)は71%で
あつた。こられ耐火電線について第1表に示す如
き耐火試験の基準に基づいて、耐火性能を測定し
た結果は第3表に示す通りであつた。
[Table] Example 2 As shown in Figure 2, five pieces of polyethylene mica tape with a thickness of 0.13 mm were wrapped around an annealed copper stranded wire 1 with a cross-sectional area of 3.5 mm 2 so that 1/2 of the width overlapped. A fireproof layer 2 with a thickness of 1.2 mm was formed, and on top of that, three insulated wire cores were coated with an insulating layer made by extruding low-density polyethylene with a density of 0.92 and a melt index of 1.0 to a thickness of 0.8 mm. Polypropylene split fiber 5
A nylon tape 6 with a thickness of 0.05 mm is wrapped around it, and a sheath 4 with the following composition is made of high-density polyethylene (Shorex 4002E).
Showa Denko Co., Ltd. product) 100 parts by weight Halogen flame retardant (DBDPE Toyo Soda Co., Ltd. product) 30 parts by weight Antimony trioxide 15 parts by weight Carbon black 3 parts by weight flame retardant polyethylene resin extruded to a thickness of 1.5 mm The fire-resistant electric wire of the present invention was obtained by coating. The above composition had an oxygen index of 24 and a thermal deformation rate (105°C) of 3%. The fire resistance performance of this fire resistant electric wire was measured based on the fire resistance test standards shown in Table 1, and the results were as shown in Table 3. Example 3 and Comparative Example As shown in Figure 2, five layers of polyethylene mica tape with a thickness of 0.13 mm were wrapped around an annealed copper stranded wire 1 with a cross-sectional area of 3.5 mm 2 so that 1/2 of the width overlapped. A fireproof layer 2 with a thickness of 1.2 mm was formed, and on top of that, three insulated wire cores were coated with an insulating layer made by extruding low-density polyethylene with a density of 0.92 and a melt index of 1.0 to a thickness of 0.8 mm. Polypropylene split fiber 5
A nylon tape 6 with a thickness of 0.05 mm is wrapped around it, and the following composition is used as a sheath 4 on the outside. ) 100 parts by weight halogen flame retardant (FG3000 Teijin Kasei Ltd. product)
30 parts by weight antimony trioxide 15 parts by weight carbon black 3 parts by weight flame retardant polyethylene resin was extrusion coated to a thickness of 1.5 mm. Thereafter, the wire was uniformly irradiated with an electron beam of 20 Mrad using an electron beam with an acceleration energy of 1.0 MeV to obtain a refractory electric wire of Example 3. In the comparative example, a flame-retardant polyethylene resin having the same composition was only extruded and coated to a thickness of 1.5 mm, and no electron beam irradiation was performed. of the above composition
After 20 Mrad electron beam irradiation (gel fraction = 65%), the oxygen index is 24 and thermal deformation rate (105℃) = 25%, and without irradiation, the oxygen index is 24 and thermal deformation rate (105℃) is 71%. It was hot. The fire resistance performance of these fire resistant wires was measured based on the fire resistance test standards shown in Table 1, and the results are shown in Table 3.

【表】 実施例2,3から明らかな如く比較例は熱変形
率(105℃)が65%を超えているので、耐火特性
を満足しないが、電子線照射を施すことにより、
該熱変形率が65%以下の要件を達成することがで
き、優れた耐火特性を得たものであつた。 以上、実施例からも明らかな如く本考案の耐火
電線は、優れた耐火特性を有するものであり、ま
た、施工時のシース層に生ずる外傷発生に対する
耐性が一段と高く、その実用的価値は極めて大き
いものである。
[Table] As is clear from Examples 2 and 3, the thermal deformation rate (105°C) of the comparative example exceeds 65%, so it does not satisfy the fire resistance properties, but by applying electron beam irradiation,
The thermal deformation rate was able to achieve the requirement of 65% or less, and excellent fire resistance properties were obtained. As is clear from the examples above, the fire-resistant electric wire of the present invention has excellent fire-resistant properties, and is even more resistant to damage caused to the sheath layer during construction, so its practical value is extremely high. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の耐火電線の一実施例品の断面
図、第2図は他の実施例品の断面図である。 1…導体、2…耐火絶縁層、3…易燃性合成樹
脂層、4…シース層、5…易燃性介在層、6…押
えテープ。
FIG. 1 is a sectional view of one embodiment of the fireproof electric wire of the present invention, and FIG. 2 is a sectional view of another embodiment. DESCRIPTION OF SYMBOLS 1... Conductor, 2... Fireproof insulating layer, 3... Flammable synthetic resin layer, 4... Sheath layer, 5... Flammable intervening layer, 6... Presser tape.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 導体上に耐火絶縁層、および易燃性の電気絶縁
層が設けられた耐火電線用絶縁線芯上、または該
絶縁線芯の所望数を必要に応じて易燃性の介在物
を用いて撚合せた撚合せ線芯上にシース層を施し
てなる耐火電線において、該耐火電線の最外層シ
ース層を、酸素指数24以上で105℃における熱変
形率が65%以下であり、かつ無機物粉末の含有量
が30重量部(樹脂分100重量部基準で)以下であ
る難燃性結晶性ポリエチレン樹脂組成物で形成し
たことを特徴とする耐火電線。
Twisting a desired number of insulated wire cores on an insulated wire core for a fireproof electric wire in which a fireproof insulating layer and a flammable electrical insulation layer are provided on a conductor, or using flammable inclusions as necessary. In a fire-resistant electric wire formed by applying a sheath layer on a combined twisted wire core, the outermost sheath layer of the fire-resistant electric wire has an oxygen index of 24 or more, a thermal deformation rate of 65% or less at 105°C, and is made of inorganic powder. A fire-resistant electric wire characterized in that it is formed from a flame-retardant crystalline polyethylene resin composition having a content of 30 parts by weight or less (based on 100 parts by weight of resin content).
JP1979122587U 1979-09-05 1979-09-05 Expired JPS6333324Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1979122587U JPS6333324Y2 (en) 1979-09-05 1979-09-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1979122587U JPS6333324Y2 (en) 1979-09-05 1979-09-05

Publications (2)

Publication Number Publication Date
JPS5641413U JPS5641413U (en) 1981-04-16
JPS6333324Y2 true JPS6333324Y2 (en) 1988-09-06

Family

ID=29354633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1979122587U Expired JPS6333324Y2 (en) 1979-09-05 1979-09-05

Country Status (1)

Country Link
JP (1) JPS6333324Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106780U (en) * 1989-02-10 1990-08-24

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619804A (en) * 1979-07-27 1981-02-24 Sumitomo Electric Industries Flame resisting wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5619804A (en) * 1979-07-27 1981-02-24 Sumitomo Electric Industries Flame resisting wire

Also Published As

Publication number Publication date
JPS5641413U (en) 1981-04-16

Similar Documents

Publication Publication Date Title
US4549041A (en) Flame-retardant cross-linked composition and flame-retardant cable using same
JPS60189114A (en) Flame resistant cable
JPS6333324Y2 (en)
JP3778478B2 (en) Non-halogen flame retardant resin-coated wire
JPS6122404B2 (en)
US5814406A (en) Communication cable for use in a plenum
JPH09204824A (en) Fire resistant cable
JPS6313285B2 (en)
JPH0326571Y2 (en)
JPH0454648Y2 (en)
JPH0430692B2 (en)
JPH0345638A (en) Flame-retardant electrical insulation composition
JPS6223408B2 (en)
JP3050584B2 (en) Flame retardant wires and cables
JPS5928573Y2 (en) flame retardant cable
JPS6137135Y2 (en)
JP3580608B2 (en) Fire resistant wire
JPH0245925Y2 (en)
JPH0337909A (en) Incombustible coated electric wire/cable
JP2767962B2 (en) Flame retardant insulated wire
JPH062175Y2 (en) Flame-retardant wire cable
JPH0917243A (en) High-tension fire resistant cable
JPS6139412A (en) Refractory wire
JPS639955Y2 (en)
JPS5826419Y2 (en) fireproof wire