JPS6332986A - Integrated semiconductor laser - Google Patents

Integrated semiconductor laser

Info

Publication number
JPS6332986A
JPS6332986A JP17597486A JP17597486A JPS6332986A JP S6332986 A JPS6332986 A JP S6332986A JP 17597486 A JP17597486 A JP 17597486A JP 17597486 A JP17597486 A JP 17597486A JP S6332986 A JPS6332986 A JP S6332986A
Authority
JP
Japan
Prior art keywords
resonator
quantum
semiconductor laser
lengths
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17597486A
Other languages
Japanese (ja)
Inventor
Yoshitoku Nomura
野村 良徳
Teruhito Matsui
松井 輝仁
Yasuki Tokuda
徳田 安紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17597486A priority Critical patent/JPS6332986A/en
Priority to DE3751535T priority patent/DE3751535T2/en
Priority to DE3751549T priority patent/DE3751549T2/en
Priority to EP87306520A priority patent/EP0254568B1/en
Priority to EP93200589A priority patent/EP0547044B1/en
Priority to DE3751548T priority patent/DE3751548T2/en
Priority to DE87306520T priority patent/DE3787769T2/en
Priority to EP19930200587 priority patent/EP0547042A3/en
Priority to EP93200581A priority patent/EP0547038B1/en
Priority to EP93200588A priority patent/EP0547043B1/en
Priority to US07/078,393 priority patent/US4817110A/en
Publication of JPS6332986A publication Critical patent/JPS6332986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To generate laser oscillation on respective quantum levels, by forming an active layer in multiple quantum-wells having barrier width narrowed and electronic states combined and besides by composing plural semiconductor laser elements, which have the similar resonator lengths and the regions where carriers different in size can be injected, on the similar substrate. CONSTITUTION:Cleavage planes 12 and 13 compose a Fabry-Perot resonator. Diffused p-type dopants form a striped waveguide, which runs in parallel with the axis of the resonator, in quantum-well layers. This stripe width is made small because light through the waveguide is more absorbed by free carriers in the diffusion region in the vicinity of the guided-wave path. The lengths LA,LB, and LC in the resonator-length directions of electrodes 4A, 4B, and 4C, become small in the order of them, and LA is equal to the resonator length. If the lengths LA, LB,and LC of the respective electrodes are set up to be ones in which laser oscillation on the respective levels can be generated, laser beams with respective different wavelengths can be oscillated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は波長多重光通信等に用いる集積化半導体レー
ザに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an integrated semiconductor laser used in wavelength multiplexed optical communications and the like.

〔従来の技術〕[Conventional technology]

第3図(alは例えばアプライド フィジクス レター
ズ、29巻、506頁、1976年(Appl、Phy
s、 Lett。
Figure 3 (al is for example Applied Physics Letters, Vol. 29, p. 506, 1976 (Appl, Phys.
s, Lett.

Vol、29.p、506. (1976))に記載さ
れた従来の波長多重光通信用集積化半導体レーザの構成
を示す図である。
Vol, 29. p. 506. (1976)) is a diagram showing the configuration of a conventional integrated semiconductor laser for wavelength multiplexed optical communication.

図において、3はn側電極、4はp4@電極、5はn−
GaAs基板、6はN  A 16. s G a o
、 qAs、11はZn拡散フロント、14はp−Ga
As、15はpA 1o、z Gao、a A 3% 
16はpA 1 o、 oyG a o、 93A S
、17は周期的凸凹である。
In the figure, 3 is the n-side electrode, 4 is the p4@ electrode, and 5 is the n-side electrode.
GaAs substrate, 6 is NA 16. s G ao
, qAs, 11 is Zn diffusion front, 14 is p-Ga
As, 15 is pA 1o, z Gao, a A 3%
16 is pA 1 o, oyG ao, 93A S
, 17 are periodic irregularities.

このレーザは周期的凹凸によって分布帰還され発振する
。凸凹の周期Aとすると発振波長λは次のようになる。
This laser oscillates through distributed feedback due to the periodic unevenness. Assuming that the period of concavities and convexities is A, the oscillation wavelength λ is as follows.

nは導波路の実効屈折率、mは整数である。Δは非常に
小さく、凹凸の加工が困難なのでm=3が通常用いられ
る。
n is the effective refractive index of the waveguide, and m is an integer. Since Δ is very small and it is difficult to process unevenness, m=3 is usually used.

第3図に示すようにいくつかの4波路において八を少し
変えると(1)式によって異なる波長の光が得られる。
As shown in FIG. 3, if 8 is slightly changed in some of the four wave paths, light of different wavelengths can be obtained according to equation (1).

しかしこのような集積化レーザの製作にあたっては、わ
ずかずつ八をかえた凹凸を各導波路に形成すること、エ
ピタキシャル成長を2回行うため凹凸がくずれやすいこ
となどの困難な工程が多く必要なので分留りが悪い。
However, manufacturing such an integrated laser requires many difficult steps, such as forming unevenness in each waveguide with a slightly different number of eight, and epitaxial growth being performed twice, which makes the unevenness easy to collapse. It's bad.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の波長多重光通信用光源は以上のように構成されて
いるので製作が困難なため高価になる。
Conventional light sources for wavelength-multiplexed optical communication are constructed as described above and are difficult to manufacture and therefore expensive.

この発明は上記のような問題点を解消するためになされ
たもので発振波長を系統的に変化させた半導体レーザを
1回の結晶成長で集積化できる集積化半導体レーザを得
ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to obtain an integrated semiconductor laser in which semiconductor lasers whose oscillation wavelengths are systematically varied can be integrated by one crystal growth. .

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る集積化半導体レーザは、バリア幅を狭く
することによって電子状態が結合した多重量子井戸を活
性層とするとともに、同一の共振器長を有し、かつ異な
る大きさのキャリアを注入できる領域を有する複数の半
導体レーザを同一基板上に構成したものである。
The integrated semiconductor laser according to the present invention uses a multi-quantum well in which electronic states are combined by narrowing the barrier width as an active layer, has the same cavity length, and can inject carriers of different sizes. A plurality of semiconductor lasers each having a region are formed on the same substrate.

〔作用〕 この発明の半導体レーザではバリア幅が狭いので、井戸
層間の電子状態の結合が生じて一つの量子井戸層の量子
準位が複数の量子準位に分離するので、複数配設された
各レーザの電流注入領域の大きさを各量子準位の値に対
応させて共振器軸方向に異ならしめることにより、上記
各レーザをして上記分離した各量子準位での発振を行な
わせることができる。
[Function] Since the semiconductor laser of the present invention has a narrow barrier width, coupling of electronic states between well layers occurs and the quantum level of one quantum well layer is separated into multiple quantum levels. By making the size of the current injection region of each laser different in the resonator axis direction in correspondence with the value of each quantum level, each of the lasers is caused to oscillate at each of the separated quantum levels. Can be done.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において1は負側の電流端子、2A。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, 1 is the negative current terminal, 2A.

2B、2Cは正側の電流端子、3はn側電極、4A、4
B、4Cはn側電極、5はn6−GaAs基板、6はn
−AlGaAsクラッド層、7は多ffl量子井戸から
なる活性層、8はp−AlGaAsクラッド層、9A、
9B、9Cはp” −GaASコンタクト層、10は絶
縁膜、11はp型不純物の拡散フロント、12,1.3
は臂開面である。
2B, 2C are positive current terminals, 3 is n-side electrode, 4A, 4
B, 4C are n side electrodes, 5 is n6-GaAs substrate, 6 is n
-AlGaAs cladding layer, 7 is an active layer consisting of multi-ffl quantum wells, 8 is p-AlGaAs cladding layer, 9A,
9B and 9C are p''-GaAS contact layers, 10 is an insulating film, 11 is a p-type impurity diffusion front, 12, 1.3
is the open side of the arm.

また臂閲面12.13はファブリペロ共振器を構成する
。拡散されたp型ドーパントは共振器の軸に平行なスト
ライプ状の導波路を量子井戸層に形成する。ここでこの
ストライブ幅はその導波路の近傍の拡散領域において、
導波されている光の自由キャリアによる吸収を増加させ
るため狭くしている。また電極4A、4B、4Cの共振
器長さ方向の長さLa、Lm、Lcは順次短くなってお
り、LAは共振器の長さと同じである。
The armature viewing surfaces 12 and 13 constitute Fabry-Perot resonators. The diffused p-type dopants form striped waveguides in the quantum well layer parallel to the axis of the cavity. Here, this stripe width is determined by the width of the stripe in the diffusion region near the waveguide.
It is narrowed to increase the absorption of guided light by free carriers. Further, the lengths La, Lm, and Lc of the electrodes 4A, 4B, and 4C in the resonator length direction are successively shorter, and LA is the same as the length of the resonator.

次に動作について説明する。Next, the operation will be explained.

本実施例の多重量子井戸はバリア層の幅が狭いので、3
つの量子井戸間で電子状態の結合が生じ、その結果この
多重量子井戸の基本量子準位は第2図に示すように3つ
に分裂し、重い正孔(h h)が関与する準位のみを見
ると3つの吸収ピークが観測される<1iい正孔のみが
関与する発光に注目することはTEモードのみを考える
ことに相当する)。これらの量子準位はエネルギーが高
くなるほど階段状に状態密度が高くなるので注入キャリ
ア密度を十分高くしてバンドフィリングを生ぜしめると
高いエネルギーの量子準位はど増幅利得が高くなること
はよく知られている。
In the multiple quantum well of this example, since the barrier layer has a narrow width, the width of the barrier layer is narrow.
Coupling of electronic states occurs between the two quantum wells, and as a result, the fundamental quantum level of this multiple quantum well is split into three as shown in Figure 2, with only the level involving heavy holes (h h). When looking at this, three absorption peaks are observed.<1i Focusing on light emission involving only small holes is equivalent to considering only the TE mode). It is well known that the density of states of these quantum levels increases stepwise as the energy increases, so if the injected carrier density is made sufficiently high to cause band filling, the amplification gain of the high energy quantum levels will increase. It is being

次に共振器長LAの半導体レーザに長さLll  (L
l < t、a ’Jの領域にのみ電流を注入すること
を考える。電流注入された領域では増幅利得g8が□得
られる。吸収、散乱等による導波路損失をαとすると次
の条件が満たされたときレーザ発振する。
Next, a semiconductor laser with a cavity length LA and a length Lll (L
Consider injecting current only into the region l < t, a'J. An amplification gain g8 is obtained in the region where the current is injected. If the waveguide loss due to absorption, scattering, etc. is α, laser oscillation occurs when the following conditions are met.

ここでRは臂開面12.13の反射率である。(2)式
から明らかなように、L、を小さくしていくと不等式の
右辺が増すので高いg、でないと発振しなくなる。この
ことからし、を順次小さくしていくと、上記の3つの準
位による発振が波長の長い順に得られることがわかる。
Here, R is the reflectance of the arm opening surface 12.13. As is clear from equation (2), as L becomes smaller, the right side of the inequality increases, so unless g is high, oscillation will not occur. From this, it can be seen that if , is made smaller one after another, oscillations due to the three levels described above can be obtained in the order of the longer wavelengths.

従って第1図に示す本実施例装置の各電極の長さLA、
L、、Lcをそれぞれの準位による発振が得られる長さ
に設定すれば、集積化された半導体レーザのそれぞれか
ら異なった波長のレーザ光が発振される。
Therefore, the length LA of each electrode in the device of this embodiment shown in FIG.
By setting L, , Lc to lengths that allow oscillation by each level, laser beams of different wavelengths are oscillated from each integrated semiconductor laser.

以上のように、本実施例では同一基板上に電子状態が結
合するほど薄いバリア層を有する多重量子井戸層を活性
層とした同一共振器長の複数の半導体レーザを構成し、
その各々の電極の長さを変え、これによりその共振器内
部損失を異ならしめてそれぞれ異なる量子準位による発
振を行わせるようにしたから、異なる波長での発振が可
能で波長多重通信に使用できる半導体レーザが得られる
As described above, in this example, a plurality of semiconductor lasers with the same cavity length are configured on the same substrate, with the active layer being a multi-quantum well layer having a barrier layer thin enough to combine electronic states,
By changing the length of each electrode, the internal loss of the resonator is made different, and each oscillates at a different quantum level, making it possible to oscillate at different wavelengths, making this a semiconductor that can be used for wavelength multiplexing communications. Laser is obtained.

またこの半導体レーザは回折格子を作製する必要がない
ので1回のエピタキシャル成長で製造でき、コノ、トも
安価となる。
Furthermore, since this semiconductor laser does not require the production of a diffraction grating, it can be produced by one epitaxial growth process, making it both inexpensive.

なお、本発明による半導体レーザにおいては光伝播の損
失を大きくするとともに注入されたキャリアがエネルギ
ー緩和されにり<シて高次の量子準位の占有率が高めら
れるようにするために各半導体レーザの量子井戸活性層
の層厚は300Å以下、横とじこめによる光導波路のス
トライブ幅は3ミクロン以下にすることが望ましい。
In addition, in the semiconductor laser according to the present invention, in order to increase the optical propagation loss, the energy of the injected carriers is relaxed, and the occupation rate of higher-order quantum levels is increased. It is desirable that the layer thickness of the quantum well active layer is 300 Å or less, and the stripe width of the optical waveguide due to lateral confinement is 3 microns or less.

また上記実施例では半導体にGaAs/AlGaAsを
用いた場合について説明したが、これはInP/InG
aAsPを用いてもよい。
Furthermore, in the above embodiment, the case where GaAs/AlGaAs was used as the semiconductor was explained, but this is InP/InG.
aAsP may also be used.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、集積化半導体レーザに
おいてバリア幅を狭くすることによって電子状態が結合
した多重量子井戸を活性層とするとともに、同一の共振
器長を有しミかつ異なる大きさのキャリアを注入できる
領域を有する複数の半導体レーザを同一基板上に構成し
たので、異なる波長で発振する波長多重光通信用の集積
化半導体レーザが安価に得られる効果がある。
As described above, according to the present invention, in an integrated semiconductor laser, by narrowing the barrier width, a multiple quantum well in which electronic states are combined is used as an active layer, and a multi-quantum well with the same resonator length and different sizes is used as an active layer. Since a plurality of semiconductor lasers each having a region into which carriers can be injected are formed on the same substrate, an integrated semiconductor laser for wavelength multiplexed optical communication that oscillates at different wavelengths can be obtained at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による集積化半導体レーザの構造を示す
斜視図、第2図は結合のある3つの量子井戸の吸収スペ
クトルを示す図、第3図(a)は従来の多波長を発振す
る半導体レーザの構造を示す断面図、第3図(b)は従
来の多波長を発振する半導体レーザを示す斜視図である
。 図において、1は負側電流端子、2は正側の電流端子、
3はn側の電極、4はp側電極、5はn−GaAs基板
、6はnAlGaAsクラッド層、7は多重量子井戸か
らなる活性層、8はp−AtGaAsクラッド層、9は
p−GaAs:]ンタクト層、10は絶縁膜、11は拡
散フロント、12゜13は臂開面である。
Figure 1 is a perspective view showing the structure of an integrated semiconductor laser according to the present invention, Figure 2 is a diagram showing the absorption spectrum of three quantum wells with coupling, and Figure 3 (a) is a diagram showing the conventional multi-wavelength oscillation. FIG. 3(b) is a cross-sectional view showing the structure of a semiconductor laser, and is a perspective view showing a conventional semiconductor laser that oscillates at multiple wavelengths. In the figure, 1 is the negative current terminal, 2 is the positive current terminal,
3 is an n-side electrode, 4 is a p-side electrode, 5 is an n-GaAs substrate, 6 is an nAlGaAs cladding layer, 7 is an active layer consisting of a multiple quantum well, 8 is a p-AtGaAs cladding layer, 9 is p-GaAs: ] contact layer, 10 is an insulating film, 11 is a diffusion front, and 12° and 13 are open faces.

Claims (1)

【特許請求の範囲】[Claims] (1)同一の共振器長を有する複数の半導体レーザを同
一基板上に構成した集積化半導体レーザにおいて、 該複数の半導体レーザの各々を、隣接する量子井戸の電
子状態が結合するような狭いバリア幅を有する多重量子
井戸構造の活性層と、他のレーザのそれと異なる大きさ
のキャリア注入領域とを有するものとしたことを特徴と
する集積化半導体レーザ。
(1) In an integrated semiconductor laser in which a plurality of semiconductor lasers having the same cavity length are configured on the same substrate, each of the plurality of semiconductor lasers is separated by a narrow barrier that connects the electronic states of adjacent quantum wells. 1. An integrated semiconductor laser comprising: an active layer having a multi-quantum well structure having a width; and a carrier injection region having a size different from that of other lasers.
JP17597486A 1986-07-25 1986-07-25 Integrated semiconductor laser Pending JPS6332986A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP17597486A JPS6332986A (en) 1986-07-25 1986-07-25 Integrated semiconductor laser
DE3751535T DE3751535T2 (en) 1986-07-25 1987-07-23 Semiconductor laser.
DE3751549T DE3751549T2 (en) 1986-07-25 1987-07-23 Semiconductor laser.
EP87306520A EP0254568B1 (en) 1986-07-25 1987-07-23 A semiconductor laser device
EP93200589A EP0547044B1 (en) 1986-07-25 1987-07-23 A semiconductor laser device
DE3751548T DE3751548T2 (en) 1986-07-25 1987-07-23 Semiconductor laser.
DE87306520T DE3787769T2 (en) 1986-07-25 1987-07-23 Semiconductor laser device.
EP19930200587 EP0547042A3 (en) 1986-07-25 1987-07-23 A semiconductor laser device
EP93200581A EP0547038B1 (en) 1986-07-25 1987-07-23 A semiconductor laser device
EP93200588A EP0547043B1 (en) 1986-07-25 1987-07-23 A semiconductor laser device
US07/078,393 US4817110A (en) 1986-07-25 1987-07-24 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17597486A JPS6332986A (en) 1986-07-25 1986-07-25 Integrated semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6332986A true JPS6332986A (en) 1988-02-12

Family

ID=16005500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17597486A Pending JPS6332986A (en) 1986-07-25 1986-07-25 Integrated semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6332986A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157680A (en) * 1989-11-08 1992-10-20 Mitsubishi Denki Kabushiki Kaisha Integrated semiconductor laser
US5161164A (en) * 1990-08-28 1992-11-03 Mitsubishi Deni Kabushiki Kaisha Semiconductor laser device
US6643310B2 (en) 2000-02-29 2003-11-04 Sony Corporation Semiconductor laser apparatus, laser coupler, data reproduction apparatus, data recording apparatus and production method of semiconductor laser apparatus
JP2006173625A (en) * 2004-12-17 2006-06-29 Palo Alto Research Center Inc Semiconductor laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157680A (en) * 1989-11-08 1992-10-20 Mitsubishi Denki Kabushiki Kaisha Integrated semiconductor laser
US5161164A (en) * 1990-08-28 1992-11-03 Mitsubishi Deni Kabushiki Kaisha Semiconductor laser device
US5177749A (en) * 1990-08-28 1993-01-05 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device
US6643310B2 (en) 2000-02-29 2003-11-04 Sony Corporation Semiconductor laser apparatus, laser coupler, data reproduction apparatus, data recording apparatus and production method of semiconductor laser apparatus
US6893888B2 (en) 2000-02-29 2005-05-17 Sony Corporation Production method of semiconductor laser apparatus
JP2006173625A (en) * 2004-12-17 2006-06-29 Palo Alto Research Center Inc Semiconductor laser

Similar Documents

Publication Publication Date Title
US6201824B1 (en) Strongly complex coupled DFB laser series
EP0547043B1 (en) A semiconductor laser device
US5327448A (en) Semiconductor devices and techniques for controlled optical confinement
US5398256A (en) Interferometric ring lasers and optical devices
Lang et al. Theory of grating-confined broad-area lasers
US6184542B1 (en) Superluminescent diode and optical amplifier with extended bandwidth
EP0480697B1 (en) Tunable semiconductor laser
JP2867819B2 (en) Multiple quantum well semiconductor laser
JPS60124887A (en) Distributed feedback type semiconductor laser
JPS6332986A (en) Integrated semiconductor laser
JPS59119783A (en) Semiconductor light emitting device
US5436924A (en) Semiconductor laser device
JPH03151684A (en) Manufacture of multi-wavelength integrated semiconductor laser
JPH11163456A (en) Semiconductor laser
JP2852663B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6332985A (en) Semiconductor laser
JPH11233874A (en) Semiconductor laser device and manufacture thereof
JP2003158337A (en) Laser diode
JPS5858784A (en) Distribution feedback type semiconductor laser
JPH02305487A (en) Semiconductor laser
JPS6332979A (en) Semiconductor laser
JP2683092B2 (en) Semiconductor laser device
JP2703618B2 (en) Semiconductor laser device
JPH04245494A (en) Multiwavelength semiconductor laser element and driving method of that element
JPH0271573A (en) Distributed feedback type semiconductor array laser