JPS6332900A - Vacuum chamber for synchrotron accelerator - Google Patents

Vacuum chamber for synchrotron accelerator

Info

Publication number
JPS6332900A
JPS6332900A JP17275286A JP17275286A JPS6332900A JP S6332900 A JPS6332900 A JP S6332900A JP 17275286 A JP17275286 A JP 17275286A JP 17275286 A JP17275286 A JP 17275286A JP S6332900 A JPS6332900 A JP S6332900A
Authority
JP
Japan
Prior art keywords
reinforcing member
vacuum container
vacuum
magnetic field
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17275286A
Other languages
Japanese (ja)
Inventor
岩佐 康史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17275286A priority Critical patent/JPS6332900A/en
Publication of JPS6332900A publication Critical patent/JPS6332900A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は高エネルギーシンクロトロン加速器用真空容器
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a vacuum vessel for a high energy synchrotron accelerator.

(従来の技術) 従来の高エネルギーシンクロトロン加速器の真空容器の
一般的技術動向として、「真空」9日本真空協会発行、
第27巻、第3号、 1984の111ページ右欄下か
ら6行目に記述のある如く、磁場に垂直な方向の電気抵
抗を大きくして渦電流が誘起されに<<シ、粒子に磁場
変化の作用を充分に伝達できるようにして加速に伴う軌
道半径の拡大を防止するように真空容器壁を薄肉化する
ことが考えられる。
(Conventional technology) As a general technology trend for vacuum vessels of conventional high-energy synchrotron accelerators, "Vacuum" 9 published by the Japan Vacuum Association,
Vol. 27, No. 3, 1984, page 111, 6th line from the bottom of the right column. It is conceivable to make the walls of the vacuum vessel thinner so that the effect of the change can be sufficiently transmitted and the orbit radius can be prevented from expanding due to acceleration.

従来の加速器用真空容器、特に高エネルギーシンクロト
ロン加速器用の真空容器の一般的技術動向として、前記
文献の117ページの図22に記載のある如く、第4図
にその断面図を示すように肉厚0.1+m程度の薄肉円
筒の周囲にアルミナなどのセラミックを溶射して強度を
補強し真空容器の剛性を増し大気外圧をもたせる手段が
考えられている。
As a general technical trend of conventional vacuum containers for accelerators, especially vacuum containers for high-energy synchrotron accelerators, as described in FIG. Consideration has been given to reinforcing the strength by thermally spraying ceramic such as alumina around a thin cylinder with a thickness of about 0.1+m to increase the rigidity of the vacuum vessel and provide it with an external pressure.

シンクロトロン加速器では軌道半径が拡大するのを防止
するため軌道半径面内に垂直方向に印加している磁場を
粒子の加速にともなって増加させる。この磁場の変化率
は特にたとえばPS+などの重イオン粒子を高エネルギ
ーに加速する重イオンシンクロトロン加速器ではかなり
大きいものになり、磁場中に設置される真空容器にとっ
て、■ 磁場の変化によって真空容器壁に渦電流が誘起
され粒子に十分な作用を及ぼすことができないので軌道
半径を一定に保つことが困難になる。
In synchrotron accelerators, in order to prevent the orbital radius from expanding, the magnetic field applied perpendicularly to the orbital radius plane increases as the particles accelerate. The rate of change in this magnetic field is quite large, especially in heavy ion synchrotron accelerators such as PS+, which accelerate heavy ion particles to high energy. Since eddy currents are induced in the particles and cannot have a sufficient effect on the particles, it becomes difficult to keep the radius of the orbit constant.

■ 真空容器に強い電磁力が働き、真空容器を破損する
おそれが大きい。
■ Strong electromagnetic force acts on the vacuum container, and there is a high risk of damaging the vacuum container.

などの好ましくない影響を与えるという重大な欠点があ
った。
It had serious drawbacks such as undesirable effects.

ところで、JIS B8243−1977 (官報公示
昭和52゜2、14)第4.3項に従い、外圧をうける
円筒胴の強さを求めるための板の厚さを求める手順によ
り求めた5US304の薄肉円筒(内径100腫長さ2
000m温度370℃)の最高許容外圧を第3図に示す
。第3図よれば大気外圧による座屈に耐えるには少なく
とも約1.11の肉厚が必要なことがわかる。しかし5
US304で重イオン加速装置用の真空容器を構成する
場合には肉厚0.11程度の薄肉化が要求されている。
By the way, a thin-walled cylinder of 5US304 ( Inner diameter 100 mm length 2
Figure 3 shows the maximum allowable external pressure at a temperature of 370°C. From FIG. 3, it can be seen that a wall thickness of at least about 1.11 is required to withstand buckling due to atmospheric external pressure. But 5
When constructing a vacuum container for a heavy ion accelerator using US304, a thin wall thickness of about 0.11 is required.

第3図によればここまで薄肉化すると真空容器は大気外
圧に耐えられないのは明かである。
According to FIG. 3, it is clear that the vacuum container cannot withstand atmospheric pressure if the wall is made this thin.

現在肉厚0.1nm程度の5US304の材質の真空容
器壁(1)に溶射厚さ3mm程度のセラミック溶射を行
なえばセラミック層■により大気外圧に対する強度は充
分であり、真空容器自体の剛性も問題ないことが判明し
ている。ところで真空容器の断面形状は、磁場を形成す
る電磁石の磁束を有効に利用して電磁石の小形化を計る
ために機略長方形の偏平形状にするのが一般的である。
Currently, if ceramic spraying to a thickness of about 3 mm is applied to the vacuum vessel wall (1) made of 5US304 with a wall thickness of about 0.1 nm, the strength against atmospheric external pressure is sufficient due to the ceramic layer 2, and the rigidity of the vacuum vessel itself is also a problem. It turns out that there isn't. By the way, the cross-sectional shape of the vacuum container is generally made into a substantially rectangular flat shape in order to effectively utilize the magnetic flux of the electromagnet that forms the magnetic field and to downsize the electromagnet.

第5図に磁場印加用の電磁石に組み込んだ真空容器の断
面図を示す。
FIG. 5 shows a sectional view of a vacuum container incorporated into an electromagnet for applying a magnetic field.

第5図にしめず真空容器には、偏平な形状の断面を有す
る薄肉円筒にセラミックを溶射した場合、現状のセラミ
ック溶射技術ではセラミック層■と金属の薄板の真空容
器壁■が断面形状において長手の辺で剥離するという重
大な欠点がある。
Figure 5 shows that when ceramic is sprayed onto a thin-walled cylinder with a flat cross-section, the ceramic layer ■ and the thin metal vacuum vessel wall ■ are elongated in cross-section. It has a serious drawback that it peels off at the edges.

第6図及び第7図に示すようにハニカム形状の補強部材
(へ)を設ける手段によれば真空容器壁■の厚みが0.
1m程度でも大気外圧に充分耐える。しかしこの手段に
よれば第8図に示すととくハニカム形状の補強部材の小
要素■により磁場に垂直な面内に1ターンが形成されて
この部分に渦電流が誘起されやすくなるという重大な欠
点を有していた。
As shown in FIGS. 6 and 7, by providing a honeycomb-shaped reinforcing member, the thickness of the vacuum container wall (2) can be reduced to 0.
It can withstand atmospheric external pressure even at a distance of about 1 m. However, this method has the serious drawback that, as shown in Figure 8, one turn is formed in a plane perpendicular to the magnetic field by the small element (2) of the honeycomb-shaped reinforcing member, and eddy currents are likely to be induced in this part. It had

(発明が解決しようとする問題点) 上記従来の装置は、第4図のように断面を円形にした場
合には、電磁石の磁束を有効に利用できず、第5図のよ
うに断面を偏平にした場合はセラミックと金属の薄板が
剥離する欠点があって、使用に耐えず、第6図、第7図
、第8図のようにハニカム状の補強部材を設ける場合は
補強部材の小要素により、磁場に垂直な面内に1ターン
が形成されて渦電流が誘起されるので使用できない。
(Problems to be Solved by the Invention) In the conventional device described above, when the cross section is circular as shown in FIG. 4, the magnetic flux of the electromagnet cannot be effectively utilized, and the cross section is flattened as shown in FIG. However, if a honeycomb-shaped reinforcing member is provided as shown in Figs. 6, 7, and 8, the small elements of the reinforcing member are As a result, one turn is formed in a plane perpendicular to the magnetic field and an eddy current is induced, making it unusable.

本発明の目的は、偏平断面の構造としながらも、強度が
大で、かつ渦電流を生じないシンクロトロン加速器用真
空容器を提供することにある。
An object of the present invention is to provide a vacuum vessel for a synchrotron accelerator that has a structure with a flat cross section, has high strength, and does not generate eddy currents.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 粒子を加速するための磁場中に置かれ、粒子の加速に伴
い磁束を時間的に変化させる偏平断面の真空容器におい
て、軸方向に概略垂直な方向に固着されたリブ状補強部
材を軸方向に沿って複数個配列することにより真空容器
を補強する。
(Means for solving the problem) In a vacuum container with a flat cross section, which is placed in a magnetic field for accelerating particles and whose magnetic flux changes over time as the particles accelerate, it is fixed in a direction approximately perpendicular to the axial direction. The vacuum container is reinforced by arranging a plurality of rib-shaped reinforcing members along the axial direction.

(作 用) 真空容器の外部にリブ状補強部材を設けたので、外圧に
対する充分なまげ剛性を有し、かつ渦電流を充分に低減
することが可能である。
(Function) Since the rib-shaped reinforcing member is provided on the outside of the vacuum container, it is possible to have sufficient bending rigidity against external pressure and to sufficiently reduce eddy currents.

(発明の実施例) 実施例1 第1図において本発明の第1の実施例を説明する。第1
図においては矢印0の方向に磁場が印加されている。第
1図において■は薄肉の金属製の概略長方形の断面を有
するチューブ状の真空容器壁、(12)は、真空容器壁
■の長手方向に直角なリブ状の第1の補強部材(10)
と長手方向に平行に設けたリブ状の第2の補強部材(1
1)とからなり、前記真空容器壁外部に固着された補強
部材の要素である。各要素(12)はそれぞれ接触せず
、1ターンを形成しないようにしておく。真空容器壁■
の側面には磁場の方向0のみの側面の補強部材(13)
を固着する。
(Embodiments of the Invention) Example 1 A first example of the present invention will be described with reference to FIG. 1st
In the figure, a magnetic field is applied in the direction of arrow 0. In FIG. 1, ■ is a tube-shaped vacuum vessel wall made of thin metal and has a roughly rectangular cross section, and (12) is a rib-shaped first reinforcing member (10) perpendicular to the longitudinal direction of the vacuum vessel wall ■.
and a rib-shaped second reinforcing member (1) provided parallel to the longitudinal direction.
1), which is an element of a reinforcing member fixed to the outside of the wall of the vacuum container. Each element (12) does not touch each other and does not form one turn. Vacuum container wall■
There is a reinforcing member (13) on the side of the magnetic field only in the direction 0 of the magnetic field.
to fix.

次にこの実施例1の作用について説明する。Next, the operation of this first embodiment will be explained.

第1図では本実施例1による真空容器内の粒子を加速す
るにしたがって軌道半径を一定に保持するために印加す
る磁場の方向は紙面に垂直な方向である。第1図におい
て磁場が変化しても補強部材の要素(12)は1ターン
を形成しないので補強部材の要素には渦電流は流れない
、また真空容器壁■は薄肉であるので、これも渦電流は
殆ど流れない、このため補強部材(10) 。
In FIG. 1, the direction of the magnetic field applied to keep the radius of orbit constant as the particles in the vacuum container according to Example 1 are accelerated is perpendicular to the plane of the paper. In Fig. 1, even if the magnetic field changes, the reinforcing member element (12) does not form one turn, so no eddy current flows through the reinforcing member element.Also, since the vacuum vessel wall ■ is thin, this also causes an eddy current. Almost no current flows, so the reinforcing member (10).

(11)、 (13)にて真空容器は大気外圧に充分耐
える剛性を有し、また渦電流が流れにくいので電磁力が
ほとんど作用せず真空容器が変形したり破損したりする
恐れはない。また磁場の変化にともなう真空容器の渦電
流が少ないので磁場の変化により加速された粒子に軌道
半径保持のための十分な作用を及ぼすことができる。
In (11) and (13), the vacuum container has enough rigidity to withstand atmospheric external pressure, and since eddy currents hardly flow, almost no electromagnetic force acts on it, so there is no risk of the vacuum container being deformed or damaged. Furthermore, since there is little eddy current in the vacuum container due to changes in the magnetic field, a sufficient effect can be exerted on particles accelerated by changes in the magnetic field to maintain the orbital radius.

従って、この実施例1によれば、薄板の真空容器壁を補
強部材で補強することにより真空容器壁自身の厚さを渦
電流が誘起されないほど薄くできる。また補強部材の要
素(12)を1ターンを形成しないように配置したので
補強部材にも渦電流は流れない。このため真空容器は十
分な剛性をもつので大気外圧に充分耐える。また゛電磁
力は働かないので真空容器が電磁力で変型したり破損し
たりすることはなくなる。また真空容器に磁場の変化に
よって渦電流が誘起されないので加速された粒子に十分
な軌道半径保持力を作用させることが可能になる。
Therefore, according to the first embodiment, by reinforcing the thin vacuum vessel wall with a reinforcing member, the thickness of the vacuum vessel wall itself can be made so thin that no eddy current is induced. Further, since the elements (12) of the reinforcing member are arranged so as not to form one turn, no eddy current flows in the reinforcing member either. For this reason, the vacuum container has sufficient rigidity and can withstand atmospheric external pressure. Furthermore, since electromagnetic force does not work, the vacuum container will not be deformed or damaged by electromagnetic force. Furthermore, since no eddy current is induced in the vacuum container by changes in the magnetic field, it is possible to exert a sufficient orbit radius holding force on the accelerated particles.

実施例2 第2の実施例を第2図に示す、これは第1の実施例の第
2の補強部材を設けないものであって、他は第1の実施
例と同様である。
Embodiment 2 A second embodiment is shown in FIG. 2, which is the same as the first embodiment except that the second reinforcing member of the first embodiment is not provided.

このようにしても実施例1とほぼ同様な作用効果が得ら
れる。
Even in this case, substantially the same effects as in the first embodiment can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば変化する磁場によっても渦電流が流れに
くく充分な剛性を有する真空容器を構成することが可能
となるので重粒子を充分に高エネルギーに加速すること
のできる高エネルギーシンクロトロン加速器用真空容器
を提供することが可能になった。
According to the present invention, it is possible to construct a vacuum container with sufficient rigidity that prevents eddy currents from flowing even in the presence of a changing magnetic field, and is therefore suitable for use in high-energy synchrotron accelerators that can accelerate heavy particles to sufficiently high energies. It became possible to provide a vacuum container.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を示す斜視図、第2図は
第2の実施例を示す斜視図、第3図は円筒真空容器の肉
厚と最高許容外圧の関係を示す曲線図、第4図ないし第
6図はそれぞれ異なる従来例を示す横断面図、第7図は
第6図の要部上面図。 第8図は第7図の小要素に誘起される渦電流の説明図で
ある。 1・・・真空容器壁、    10・・・第1の補強部
材。 11・・・第2の補強部材、  12・・・補強部材の
要素。
Fig. 1 is a perspective view showing the first embodiment of the present invention, Fig. 2 is a perspective view showing the second embodiment, and Fig. 3 is a curve showing the relationship between the wall thickness of a cylindrical vacuum container and the maximum allowable external pressure. 4 to 6 are cross-sectional views showing different conventional examples, and FIG. 7 is a top view of the main part of FIG. 6. FIG. 8 is an explanatory diagram of eddy currents induced in the small elements of FIG. 7. 1... Vacuum container wall, 10... First reinforcing member. 11... Second reinforcing member, 12... Element of reinforcing member.

Claims (2)

【特許請求の範囲】[Claims] (1)概略長方形の断面を有するチューブ状の真空容器
壁の外側にリブ状補強部材を複数個配列固着したことを
特徴とするシンクロトロン加速器用真空容器。
(1) A vacuum vessel for a synchrotron accelerator, characterized in that a plurality of rib-shaped reinforcing members are arranged and fixed on the outside of a tube-shaped vacuum vessel wall having a generally rectangular cross section.
(2)補強部材はチューブの軸方向に対して略垂直な方
向に設けた第1の補強部材と、この第1の補強部材に直
角に複数個設けた第2の補強部材とで要素を形成し、各
要素同士は1ターンを形成するような接触をしないこと
を特徴とした特許請求の範囲第1項記載のシンクロトロ
ン加速器用真空容器。
(2) The reinforcing member forms an element with a first reinforcing member provided in a direction substantially perpendicular to the axial direction of the tube and a plurality of second reinforcing members provided at right angles to this first reinforcing member. 2. The vacuum vessel for a synchrotron accelerator according to claim 1, wherein the elements do not contact each other to form one turn.
JP17275286A 1986-07-24 1986-07-24 Vacuum chamber for synchrotron accelerator Pending JPS6332900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17275286A JPS6332900A (en) 1986-07-24 1986-07-24 Vacuum chamber for synchrotron accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17275286A JPS6332900A (en) 1986-07-24 1986-07-24 Vacuum chamber for synchrotron accelerator

Publications (1)

Publication Number Publication Date
JPS6332900A true JPS6332900A (en) 1988-02-12

Family

ID=15947664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17275286A Pending JPS6332900A (en) 1986-07-24 1986-07-24 Vacuum chamber for synchrotron accelerator

Country Status (1)

Country Link
JP (1) JPS6332900A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289099A (en) * 1990-04-06 1991-12-19 Toshiba Corp Beam duct
JPH04112499A (en) * 1990-08-31 1992-04-14 Mitsubishi Electric Corp Vacuum storage for sor device
JP2015503897A (en) * 2011-12-31 2015-02-02 ロートエナジー ホールディングス, リミテッドRotenergy Holdings, Ltd. Electromechanical flywheel storage system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289099A (en) * 1990-04-06 1991-12-19 Toshiba Corp Beam duct
JPH04112499A (en) * 1990-08-31 1992-04-14 Mitsubishi Electric Corp Vacuum storage for sor device
JP2015503897A (en) * 2011-12-31 2015-02-02 ロートエナジー ホールディングス, リミテッドRotenergy Holdings, Ltd. Electromechanical flywheel storage system

Similar Documents

Publication Publication Date Title
JP4363344B2 (en) Particle beam accelerator
US4731598A (en) Periodic permanent magnet structure with increased useful field
US6220549B1 (en) Method and apparatus for fabricating panels used for the active control of surface drag
JPS5915982B2 (en) Electric discharge chemical reaction device
JPS6332900A (en) Vacuum chamber for synchrotron accelerator
JPS62186500A (en) Charged beam device
Büchner et al. Sheared field tearing mode instability and creation of flux ropes in the Earth magnetotail
JPH01187904A (en) Electromagnet
JP3438785B2 (en) Plasma processing apparatus and method
US4884235A (en) Micromagnetic memory package
Sugama et al. Relation between growth rate of the suydam mode and that of low mode number interchange instability
Scheitrum et al. A triple pole piece magnetic field reversal element for generation of high rotational energy beams
CA2099813A1 (en) X-z geometry periodic permanent magnet focusing system
JP2000182800A (en) Vacuum container
JPH03289099A (en) Beam duct
JP3945310B2 (en) H-type deflection electromagnet and charged particle accelerator
KR970007417A (en) Large-area magnetron sputtering system
JPS59138318A (en) High-frequency complex magnetic material
JPH0525387B2 (en)
US3432776A (en) Wave-delay structures
KR830008375A (en) Orthogonal Electromagnetic Tube
JPH046792B2 (en)
JP2987913B2 (en) Composite reinforced material
JP2001147283A (en) Fusion device
FI130275B (en) A fluidic device, a fluidic system, a method for manufacturing an actuating magnet on a substrate, and a method for manufacturing a fluidic device