JPS633286B2 - - Google Patents

Info

Publication number
JPS633286B2
JPS633286B2 JP893884A JP893884A JPS633286B2 JP S633286 B2 JPS633286 B2 JP S633286B2 JP 893884 A JP893884 A JP 893884A JP 893884 A JP893884 A JP 893884A JP S633286 B2 JPS633286 B2 JP S633286B2
Authority
JP
Japan
Prior art keywords
lens
negative
positive
group
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP893884A
Other languages
Japanese (ja)
Other versions
JPS60153018A (en
Inventor
Satoru Tachihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP893884A priority Critical patent/JPS60153018A/en
Publication of JPS60153018A publication Critical patent/JPS60153018A/en
Publication of JPS633286B2 publication Critical patent/JPS633286B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、口径比が1:2.8と明るく、かつ焦
点距離の4.5倍以上にも及ぶ長いバツクフオーカ
スを有すると共に、全周方向に対し180゜の画角を
持つ所謂円周魚眼レンズに関し、特に像高が画角
に正比例する様に歪曲収差をコントロールした等
距離射影型魚眼レンズに関するものである。 魚眼レンズは、故意に歪曲収差を発生させるこ
とによつて球面を平面上に投影できる様に考慮さ
れたレンズで、その特殊な歪みの効果を利用して
一般写真にも使われるものであるが、歪曲収差を
故意に出すと共に一眼レフカメラ用の交換レンズ
として長いバツクフオーカスを確保する為には、
前群に強い屈折力の負レンズ群を配するのが常で
ある。そのため一般に、倍率色収差の補正が困難
になると共に、像面弯曲と非点収差が増大し、高
い光学性能を維持するのは難しい。特に、像高が
入射角度に比例する所謂等距離射影型の魚眼レン
ズでは、入射角度に対して歪曲収差の量を一意的
に決め、これをコントロールする必要がある為、
さらに困難さの度合が増す。 本発明は、前述のごとき困難を克服して、口径
比1:2.8で、バツクフオーカスが焦点距離離の
4.5倍以上にも及ぶ、等距離射影型魚眼レンズを
提供するものである。 まず本発明のレンズ構成を説明すると、物体側
より順に、共に物体側に凸面を向けた負メニスカ
スレンズの第1レンズと第2レンズ、負レンズの
第3レンズ及び正レンズの第4レンズから成る第
レンズ群と、正レンズの第5レンズと負レンズ
の第6レンズとの貼合わせレンズから成る第レ
ンズ群と、正レンズの第7レンズと負レンズの第
8レンズとの貼合わせレンズ及び負レンズの第9
レンズと正レンズの第10レンズとの貼合わせレン
ズから成る第レンズ群とから構成され、下記の
条件を満足することを特徴とする魚眼レンズであ
る。 (1) 3<|f〓|/f<6、f〓<0 (2) 0.2<d6/f<0.7 (3) 0.75<r6/r7<1.15 (4) −1.9<r13/f<−1.5 (5) 2<r16/f<3.5 (6) 〓N−〓P>0.18 (7) 〓P−〓N>20 ただし f:全系の焦点距離 f〓:第レンズ群の焦点距離 d6:第3レンズと第4レンズの空気間隔 r6:第3レンズの像側の面の曲率半径 r7:第4レンズの物体側の面の曲率半径 r13:第7レンズと第8レンズとの貼合わせ面の
曲率半径 r16:第9レンズと第10レンズとの貼合わせ面の
曲率半径 〓N:第レンズ群中の負レンズの屈折率の平均
値 〓P:第レンズ群中の正レンズの屈折率の平均
値 〓P:第レンズ群中の正レンズのアツベ数の平
均値 〓N:第レンズ群中の負レンズのアツベ数の平
均値 次に上記各条件について説明する。 条件(1)は第レンズ群の屈折力に関する。条件
(1)の上限を越えると、第レンズ群の屈折力は小
さくなり過ぎて、必要なバツクフオーカスを確保
することが困難となるか、あるいはバツクフオー
カス確保の為にレンズ全長が長大になつてしまう
欠点が生じる。逆に条件(1)の下限を越えると、第
レンズ群の屈折力は大きくなり過ぎて、正の球
面収差及び色収差が増大すると共に、ペツツバー
ル和が小さくなり過ぎて、像面弯曲が増大し、良
好な性能を維持することが困難となる。 条件(2)は第3レンズと第4レンズ間の空気間隔
に関する。第1レンズより第3レンズまでは全て
負レンズであつて、負の歪曲収差を発生させてい
るが、本発明のように等距離射影型の魚眼レンズ
の場合、単に90゜の入射角度の光に対して100%の
負の歪曲収差を発生させるだけではなく、任意の
入射角度の光に対して、ある決まつた歪曲収差が
賦与される様な配置をとる必要がある。本発明で
は正レンズである第4レンズを第3レンズから適
切な距離だけ離して配置することにより、いろい
ろな角度から入射する光束が第4レンズを通過す
る高さを調節して第4レンズによる正の歪曲収差
の発生量をコントロールし、このことにより第1
レンズから第3レンズまでの負のレンズ群で発生
する負の歪曲収差とのバランスをうまく調節し
て、最終的な歪曲収差の量をコントロールしてい
る。条件2を外れると、前述の点の実現が困難と
なる。また、条件(2)の上限を越えると、正の球面
収差の発生が増大しすぎるという欠点をも生じ
る。 条件(3)は条件(2)とも関連して第レンズ群内で
発生する球面収差、色収差の補正に係わる。条件
(3)の下限を越えると、第3レンズまでで発生する
前記諸収差を第4レンズにて補正する効果が、第
4レンズの像側の面に過大にかかつて高次の正の
球面収差、色収差が残存するし、条件(3)の上限を
越えても、第4レンズの物体側面の曲率半径が小
さくなり過ぎて、やはり高次の正の球面収差、色
収差が残存し、何れの場合も良好な性能が維持で
きない。 条件(4)は第7レンズと第8レンズとの貼合わせ
面の曲率半径に関する。条件(4)によつて貼合わせ
面が軸外光束よりも軸上の光束に対して強く作用
するよう設定され、後述の条件(6)、(7)と関連し
て、主に軸上色収差及び球面収差の補正に効果が
ある。条件(4)の下限を越えると、軸上色収差及び
球面収差の補正効果が薄れると共に、軸外光束の
倍率色収差が増大し好ましくない。また上限を越
えると、軸上色収差及び球面収差の補正効果が過
剰となり好ましくない。 条件(5)は第9レンズと第10レンズとの貼合わせ
面の曲率半径に関する。条件(5)も、後述の条件
(6)、(7)と関連して、軸上色収差の補正と共に、軸
外光束の倍率色収差の補正及びコマ収差の補正に
寄与する。条件(5)の下限を越えると、倍率色収差
及びコマ収差の補正には有効であるが、正の軸上
色収差が大きく発生し好ましくない。条件(5)の上
限を越えると、逆に倍率色収差、コマ収差の補正
作用が薄れ、貼合わせ面の意味を失なう。 条件(6)は第レンズ群中の正レンズに使用する
硝材と負レンズに使用する硝材の屈折率差に関す
る。 本発明のレンズは前述した如く、第レンズ群
に強い負レンズ群を使用している為、ペツツバー
ル和が減少する傾向にあり、像面弯曲、非点収差
が悪化する。このペツツバール和の減少を補正す
るのが条件(6)である。この条件(6)を外れると、ペ
ツツバール和の減少を補正する効果が薄れ、像面
弯曲、非点収差が悪化し補正できず好ましくな
い。また同時に、前述した第レンズ群中の各貼
合わせ面における諸収差の補正効果が薄れ好まし
くない。 条件(7)は第レンズ群中の正レンズに使用する
硝材と負レンズに使用する硝材のアツベ数差に関
する。第レンズ群中の第7レンズと第8レン
ズ、及び第9レンズと第10レンズの各貼合わせ面
は、前述した如く各々軸上色収差、倍率色収差の
補正に寄与している。条件(7)を外れると、各貼合
わせ面における各色収差の補正効果が無くなり、
良好な性能を維持できない。 なお、必要に応じて、第6レンズと第7レンズ
の間にフイルターとして平行平面板を挿入するこ
とは可能であり、本発明の範囲内に入る。 以下、本発明の実施例を示す。ここでfは全系
の焦点距離、fBはバツクフオーカス、rはレンズ
各面の曲率半径、dはレンズ厚又はレンズ間隔、
nは各レンズのd―lineの屈折率、νは各レンズ
のアツベ数である。 実施例 1
The present invention relates to a so-called circumferential fisheye lens that is bright with an aperture ratio of 1:2.8, has a long backfocus that is more than 4.5 times the focal length, and has an angle of view of 180° in the entire circumferential direction. This relates to an equidistant projection type fisheye lens in which distortion is controlled so that the angle of view is directly proportional to the angle of view. A fisheye lens is a lens designed to project a spherical surface onto a flat surface by intentionally creating distortion, and is also used in general photography by taking advantage of the special distortion effect. In order to intentionally create distortion and ensure a long back focus as an interchangeable lens for single-lens reflex cameras,
A negative lens group with strong refractive power is usually placed in the front group. Therefore, in general, it becomes difficult to correct lateral chromatic aberration, and field curvature and astigmatism increase, making it difficult to maintain high optical performance. In particular, with so-called equidistant projection type fisheye lenses where the image height is proportional to the angle of incidence, it is necessary to uniquely determine the amount of distortion for the angle of incidence and control this.
The degree of difficulty increases further. The present invention overcomes the above-mentioned difficulties and has an aperture ratio of 1:2.8, with a back focus that is close to the focal length.
It provides an equidistant projection type fisheye lens with a magnification of more than 4.5 times. First, to explain the lens configuration of the present invention, it consists of, in order from the object side, a first lens and a second lens that are negative meniscus lenses with their convex surfaces facing the object side, a third lens that is a negative lens, and a fourth lens that is a positive lens. A third lens group consisting of a laminated lens of a positive fifth lens and a negative sixth lens; a laminated lens of a positive seventh lens and a negative eighth lens; 9th lens
This fisheye lens is composed of a lens group consisting of a bonded lens and a tenth lens, which is a positive lens, and is characterized by satisfying the following conditions. (1) 3<|f〓|/f<6, f〓<0 (2) 0.2<d 6 /f<0.7 (3) 0.75<r 6 /r 7 <1.15 (4) −1.9<r 13 / f<−1.5 (5) 2<r 16 /f<3.5 (6) 〓 N −〓 P >0.18 (7) 〓 P −〓 N >20 where f: Focal length of the entire system f: The focal length of the first lens group Focal length d 6 : Air distance between the third and fourth lenses r 6 : Radius of curvature of the image side surface of the third lens r 7 : Radius of curvature of the object side surface of the fourth lens r 13 : Between the seventh lens and Radius of curvature of the bonding surface with the 8th lens r 16 : Radius of curvature of the bonding surface with the 9th lens and the 10th lens 〓 N : Average value of the refractive index of the negative lens in the 1st lens group 〓 P : The 1st lens Average value of the refractive index of the positive lenses in the group〓 P : Average value of the Atsube number of the positive lenses in the 1st lens group〓 N : Average value of the Atsube numbers of the negative lenses in the 1st lens group Next, each of the above conditions will be explained. do. Condition (1) relates to the refractive power of the first lens group. conditions
If the upper limit of (1) is exceeded, the refractive power of the first lens group will become too small, making it difficult to secure the necessary back focus, or the overall length of the lens will become longer in order to secure the back focus. arise. Conversely, if the lower limit of condition (1) is exceeded, the refractive power of the first lens group becomes too large, positive spherical aberration and chromatic aberration increase, and the Petzval sum becomes too small, resulting in an increase in field curvature. It becomes difficult to maintain good performance. Condition (2) relates to the air gap between the third and fourth lenses. All lenses from the first lens to the third lens are negative lenses and generate negative distortion, but in the case of an equidistant projection type fisheye lens like the present invention, it simply reflects light at an incident angle of 90°. On the other hand, it is necessary not only to generate 100% negative distortion, but also to take an arrangement that imparts a certain fixed distortion to light at any incident angle. In the present invention, by arranging the fourth lens, which is a positive lens, at an appropriate distance from the third lens, the height at which light beams incident from various angles pass through the fourth lens is adjusted, and the height of the fourth lens is adjusted. By controlling the amount of positive distortion that occurs, the first
The final amount of distortion is controlled by skillfully adjusting the balance with the negative distortion generated in the negative lens groups from the lens to the third lens. If condition 2 is not met, it becomes difficult to realize the above-mentioned point. Furthermore, if the upper limit of condition (2) is exceeded, there will be a drawback that the occurrence of positive spherical aberration will increase too much. Condition (3) is related to condition (2) and relates to correction of spherical aberration and chromatic aberration occurring within the first lens group. conditions
(3) If the lower limit of , chromatic aberration remains, and even if the upper limit of condition (3) is exceeded, the radius of curvature of the object side surface of the fourth lens becomes too small, and high-order positive spherical aberration and chromatic aberration still remain. However, good performance cannot be maintained. Condition (4) relates to the radius of curvature of the bonding surface between the seventh lens and the eighth lens. Condition (4) sets the bonding surface to act more strongly on the axial light beam than on the off-axis light beam, and in conjunction with conditions (6) and (7) described later, mainly axial chromatic aberration It is also effective in correcting spherical aberration. If the lower limit of condition (4) is exceeded, the effect of correcting longitudinal chromatic aberration and spherical aberration will be weakened, and the chromatic aberration of magnification of the off-axis light beam will increase, which is not preferable. If the upper limit is exceeded, the effect of correcting longitudinal chromatic aberration and spherical aberration will be excessive, which is undesirable. Condition (5) relates to the radius of curvature of the bonding surface between the ninth lens and the tenth lens. Condition (5) is also the condition described below.
In relation to (6) and (7), it contributes to correction of longitudinal chromatic aberration, as well as correction of lateral chromatic aberration of off-axis light beams and correction of coma aberration. If the lower limit of condition (5) is exceeded, it is effective in correcting lateral chromatic aberration and coma aberration, but large positive axial chromatic aberration occurs, which is undesirable. When the upper limit of condition (5) is exceeded, the effect of correcting lateral chromatic aberration and coma aberration is weakened, and the bonding surface loses its meaning. Condition (6) relates to the difference in refractive index between the glass material used for the positive lens and the glass material used for the negative lens in the first lens group. As described above, since the lens of the present invention uses a strong negative lens group as the first lens group, the Petzval sum tends to decrease, and field curvature and astigmatism worsen. Condition (6) is to correct this decrease in the Petzval sum. If this condition (6) is not met, the effect of correcting the decrease in Petzval's sum will be weakened, and field curvature and astigmatism will worsen and cannot be corrected, which is not preferable. At the same time, the effect of correcting various aberrations on each bonding surface in the aforementioned first lens group is undesirably weakened. Condition (7) relates to the difference in Abbe number between the glass material used for the positive lens and the glass material used for the negative lens in the first lens group. As described above, the bonding surfaces of the seventh lens and the eighth lens, and the bonding surfaces of the ninth lens and the tenth lens in the lens group contribute to the correction of axial chromatic aberration and lateral chromatic aberration, respectively. If condition (7) is not met, the effect of correcting each chromatic aberration on each bonding surface will be lost,
Unable to maintain good performance. Note that, if necessary, it is possible to insert a parallel plane plate as a filter between the sixth lens and the seventh lens, and this is within the scope of the present invention. Examples of the present invention will be shown below. Here, f is the focal length of the entire system, f B is the back focus, r is the radius of curvature of each lens surface, d is the lens thickness or lens spacing,
n is the d-line refractive index of each lens, and ν is the Abbe number of each lens. Example 1

【表】 実施例 2【table】 Example 2

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1のレンズ構成図、第
2図は実施例1の諸収差図、第3図は本発明の実
施例2のレンズ構成図、第4図は実施例2の諸収
差図である。
FIG. 1 is a lens configuration diagram of Example 1 of the present invention, FIG. 2 is a diagram of various aberrations of Example 1, FIG. 3 is a lens configuration diagram of Example 2 of the present invention, and FIG. 4 is a lens configuration diagram of Example 2. It is a diagram of various aberrations.

Claims (1)

【特許請求の範囲】 1 物体側より順に、共に物体側に凸面を向けた
負メニスカスレンズの第1レンズと第2レンズ、
負レンズの第3レンズ及び正レンズの第4レンズ
から成る第レンズ群と、正レンズの第5レンズ
と負レンズの第6レンズとの貼合わせレンズから
成る第レンズ群と、正レンズの第7レンズと負
レンズの第8レンズとの貼合わせレンズ及び負レ
ンズの第9レンズと正レンズの第10レンズとの貼
合わせレンズから成る第レンズ群とから構成さ
れ、下記の条件を満足することを特徴とする魚眼
レンズ。 (1) 3<|f〓|/f<6、f〓<0 (2) 0.2<d6/f<0.7 (3) 0.75<r6/r7<1.15 (4) −1.9<r13/f<−1.5 (5) 2<r16/f<3.5 (6) 〓N−〓P>0.18 (7) 〓P−〓N>20 ただし f:全系の焦点距離 fI:第レンズ群の焦点距離 d6:第3レンズと第4レンズの空気間隔 r6:第3レンズの像側の面の曲率半径 r7:第4レンズの物体側の面の曲率半径 r13:第7レンズと第8レンズとの貼合わせ面の
曲率半径 r16:第9レンズと第10レンズとの貼合わせ面の
曲率半径 〓N:第レンズ群中の負レンズの屈折率の平均
値 〓P:第レンズ群中の正レンズの屈折率の平均
値 〓P:第レンズ群中の正レンズのアツベ数の平
均値 〓N:第レンズ群中の負レンズのアツベ数の平
均値
[Claims] 1. In order from the object side, a first lens and a second lens of a negative meniscus lens both having convex surfaces facing the object side;
a third lens group consisting of a negative third lens and a positive fourth lens; a third lens group consisting of a bonded lens of a positive fifth lens and a negative sixth lens; and a seventh positive lens. It is composed of a laminated lens consisting of a lens and an eighth lens which is a negative lens, and a laminated lens consisting of a ninth lens which is a negative lens and a tenth lens which is a positive lens, and is required to satisfy the following conditions. Features a fisheye lens. (1) 3<|f〓|/f<6, f〓<0 (2) 0.2<d 6 /f<0.7 (3) 0.75<r 6 /r 7 <1.15 (4) −1.9<r 13 / f<−1.5 (5) 2<r 16 /f<3.5 (6) 〓 N −〓 P >0.18 (7) 〓 P −〓 N >20 where f: Focal length of the entire system f I : Focal length of the 1st lens group Focal length d 6 : Air distance between the third and fourth lenses r 6 : Radius of curvature of the image side surface of the third lens r 7 : Radius of curvature of the object side surface of the fourth lens r 13 : Between the seventh lens and Radius of curvature of the bonding surface with the 8th lens r 16 : Radius of curvature of the bonding surface with the 9th lens and the 10th lens 〓 N : Average value of the refractive index of the negative lens in the 1st lens group 〓 P : The 1st lens Average value of the refractive index of the positive lens in the group〓 P : Average value of the Atsube number of the positive lens in the 1st lens group〓 N : Average value of the Atsube number of the negative lens in the 1st lens group
JP893884A 1984-01-20 1984-01-20 Fisheye lens Granted JPS60153018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP893884A JPS60153018A (en) 1984-01-20 1984-01-20 Fisheye lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP893884A JPS60153018A (en) 1984-01-20 1984-01-20 Fisheye lens

Publications (2)

Publication Number Publication Date
JPS60153018A JPS60153018A (en) 1985-08-12
JPS633286B2 true JPS633286B2 (en) 1988-01-22

Family

ID=11706606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP893884A Granted JPS60153018A (en) 1984-01-20 1984-01-20 Fisheye lens

Country Status (1)

Country Link
JP (1) JPS60153018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9645364B2 (en) 2015-03-31 2017-05-09 Fujifilm Corporation Imaging lens and imaging apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4464212B2 (en) 2004-06-30 2010-05-19 Hoya株式会社 Fisheye lens system
KR101302271B1 (en) 2005-12-02 2013-09-02 가부시키가이샤 니콘 Fish-eye lens and imaging device
JP5694835B2 (en) * 2011-04-13 2015-04-01 日東光学株式会社 Projection lens system and projector apparatus
WO2018150522A1 (en) * 2017-02-16 2018-08-23 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Lens system, image pickup device, mobile body, and system
JPWO2022244840A1 (en) * 2021-05-20 2022-11-24

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9645364B2 (en) 2015-03-31 2017-05-09 Fujifilm Corporation Imaging lens and imaging apparatus

Also Published As

Publication number Publication date
JPS60153018A (en) 1985-08-12

Similar Documents

Publication Publication Date Title
JPS6119005B2 (en)
JPH10111454A (en) Wide angle lens
JPS6128974B2 (en)
JPH06235858A (en) High performance photographic lens
JP4565262B2 (en) Fisheye lens
JPS6154202B2 (en)
JPH0412448B2 (en)
JPS6134125B2 (en)
JPS6113206B2 (en)
JPH0235964B2 (en)
JP2000028919A (en) Middle telephotographic lens
JPS633286B2 (en)
JPS6140086B2 (en)
JPH06337348A (en) Gauss type lens
JPS6149646B2 (en)
US5631777A (en) Photographing lens for lens-fitted film unit or fixed focus lens camera
JPS6139647B2 (en)
JPS5965820A (en) Telephoto lens system
JP3088112B2 (en) Zoom lens
JPS6213651B2 (en)
JPH0718972B2 (en) Large aperture ratio photographic lens
JPS648805B2 (en)
JPS6162013A (en) Zoom lens
JPH0574806B2 (en)
JPH0225488B2 (en)