JPS6332391Y2 - - Google Patents
Info
- Publication number
- JPS6332391Y2 JPS6332391Y2 JP1985004818U JP481885U JPS6332391Y2 JP S6332391 Y2 JPS6332391 Y2 JP S6332391Y2 JP 1985004818 U JP1985004818 U JP 1985004818U JP 481885 U JP481885 U JP 481885U JP S6332391 Y2 JPS6332391 Y2 JP S6332391Y2
- Authority
- JP
- Japan
- Prior art keywords
- cooling water
- bearing
- sleeve
- main shaft
- water passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000498 cooling water Substances 0.000 claims description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 230000000694 effects Effects 0.000 description 7
- 238000001816 cooling Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Description
【考案の詳細な説明】
(産業上の利用分野)
本考案は、マグネツトポンプに関し、特に、マ
グネツトポンプの軸受部の冷却構造の改善に関
し、インペラを支持する前軸受の冷却水量を増加
するために後軸受近傍にバイパス流路を設けたこ
とにより軸受の耐久性を向上したマグネツトポン
プに関する。[Detailed description of the invention] (Field of industrial application) The present invention relates to magnetic pumps, and in particular, to improving the cooling structure of the bearing part of magnetic pumps, increasing the amount of cooling water in the front bearing that supports the impeller. The present invention relates to a magnetic pump in which the durability of the bearing is improved by providing a bypass flow path near the rear bearing.
(従来技術)
従来の技術は、第2図(特開昭58−133497号参
照)に示すように、インペラ3とスリーブ5とが
一体となつた回転体を支持する軸受部の冷却構造
は、インペラ側に設けた前軸受7とスリーブ遊端
に設けた後軸受8との内周面(主軸との間の摺動
面)にラセン状の冷却水通路を形成する溝を設
け、圧送流体の一部をインペラ先端部Aより缶体
10とスリーブ5を覆う筒状体13との間に形成
される冷却水流路11をへて流通させ、後軸受8
及び前軸受7のラセン状の溝中に流入させ、軸受
8,7及び主軸6を輸送液で冷却し、インペラ3
とボス22との間を通して、ポンプの吸入側Eに
循環返送していた。(Prior art) As shown in Fig. 2 (see Japanese Patent Laid-Open No. 133497/1983), the conventional technology has a cooling structure for a bearing that supports a rotating body in which an impeller 3 and a sleeve 5 are integrated. Grooves that form spiral cooling water passages are provided on the inner circumferential surfaces (sliding surfaces between them and the main shaft) of the front bearing 7 provided on the impeller side and the rear bearing 8 provided on the free end of the sleeve. A portion of the water flows from the impeller tip A through the cooling water flow path 11 formed between the can body 10 and the cylindrical body 13 covering the sleeve 5, and flows through the rear bearing 8.
The liquid flows into the spiral groove of the front bearing 7, and the bearings 8, 7 and the main shaft 6 are cooled with the transport liquid, and the impeller 3
and the boss 22, and was circulated back to the suction side E of the pump.
(考案が解決しようとする問題点)
缶体底部近傍の後軸受8はスラスト力、ラジア
ル力共に小さいため発熱も少なく、従来の冷却水
量で十分冷却されるが、インペラ3側の前軸受7
はスラスト力、ラジアル力が共に集中するため、
前軸受7とスラストワツシヤ19または前軸受7
と主軸6との摺動面での摩擦による発熱量が多
く、摺動面に必要とされる冷却水による液膜構成
が困難となり、ドライ状態の摺動になる欠点があ
つた。このドライ状態は異常摩耗を誘発するため
前軸受7と対応する主軸6の対応面の摩耗が著し
くなり、これを解決するために、前軸受の冷却水
量を増加し、発熱及びドライ状態を防ぐ必要があ
る。(Problem to be solved by the invention) The rear bearing 8 near the bottom of the can body generates little heat because both thrust force and radial force are small, and is sufficiently cooled with the conventional amount of cooling water, but the front bearing 7 on the impeller 3 side
Because thrust force and radial force are both concentrated,
Front bearing 7 and thrust washer 19 or front bearing 7
A large amount of heat is generated due to friction on the sliding surface between the main shaft 6 and the main shaft 6, making it difficult to form a liquid film with the cooling water required on the sliding surface, resulting in dry sliding. This dry condition induces abnormal wear, resulting in significant wear on the corresponding surfaces of the front bearing 7 and the corresponding main shaft 6. To solve this problem, it is necessary to increase the amount of cooling water for the front bearing to prevent heat generation and the dry condition. There is.
(問題点を解決するための手段)
この考案は以上の欠点を解決するための手段と
して考えられたもので、駆動マグネツトの回転に
ともなう従動マグネツトの磁力回転により液体を
吸入圧送するマグネツトポンプおいて、セラミツ
ク、金属、合成樹脂等よりなる一体構造のインペ
ラとスリーブとが、一端が有底筒状缶体の底部に
支持されるとともに、他端がポンプ吸入側のケー
シングの内面に設けられたボス部で支持された静
止する主軸に、缶体底部近傍及びインペラ側に位
置する2つの前後軸受により回転自在に支持さ
れ、軸受の内面に主軸とスリーブとの間の冷却水
通路に通ずるラセン状の冷却水通路が設けられる
とともに、缶体底部近傍の軸受とスリーブとの接
触面のいずれか一方、好ましくはスリーブ側に、
缶体底部の冷却水流路とスリーブ内面の冷却水通
路とを連絡するバイパス流路を設けたマグネツト
ポンプである。なお、バイパス流路は後軸受と接
するスリーブの内面に設けるのがよい。(Means for Solving the Problems) This invention was devised as a means to solve the above-mentioned drawbacks, and it uses a magnetic pump or pump that sucks in and pumps liquid through the magnetic rotation of a driven magnet as the driving magnet rotates. The impeller and sleeve are integrally made of ceramic, metal, synthetic resin, etc., and one end is supported at the bottom of the bottomed cylindrical can body, and the other end is provided on the inner surface of the casing on the pump suction side. The stationary main shaft supported by the boss is rotatably supported by two front and rear bearings located near the bottom of the can body and on the impeller side, and a helical shape is formed on the inner surface of the bearing leading to the cooling water passage between the main shaft and the sleeve. A cooling water passage is provided, and one of the contact surfaces between the bearing and the sleeve near the bottom of the can body, preferably on the sleeve side,
This is a magnetic pump equipped with a bypass passage that connects the cooling water passage at the bottom of the can and the cooling water passage on the inner surface of the sleeve. Note that the bypass flow path is preferably provided on the inner surface of the sleeve that contacts the rear bearing.
(実施例)
以下第1図に基づき、本考案の一実施態様につ
いて、詳細に説明する。1はポンプ本体、2は本
体の一側に設けた吸入口、3はインペラ、4は吐
出口を示す。(Example) An embodiment of the present invention will be described in detail below with reference to FIG. 1 is a pump main body, 2 is an inlet provided on one side of the main body, 3 is an impeller, and 4 is a discharge port.
本考案においては、インペラ3とスリーブ5と
をアルミナ磁器、ジルコニア磁器、あるいは炭化
珪素等のセラミツクス又は金属あるいは合成樹脂
等の材料よりなる一体構造とし、このスリーブ5
の貫通孔5A中に主軸6を挿入し、この主軸6を
インペラ3の内面に固定した前軸受7と、スリー
ブ5の内壁面に固定した後軸受8とにより支持
し、インペラ3とスリーブ5とを主軸6に回転自
在に保持する。スリーブ5の外周囲には従動マグ
ネツト9が固定され筒状体13で液密に被嵌され
る。主軸6の後端部6Aは好ましくは前記スリー
ブ5と同材質よりなる有底筒状缶体(キヤン)1
0により支持され、この缶体10と筒状体13と
の間に矢印で示すような冷却水流路11が形成さ
れる。前記の従動マグネツト9と対向して平行に
配置された駆動マグネツト12がモーター(図示
せず)に連結された駆動軸14に固定された駆動
体15に固定されて、駆動マグネツト12の駆動
回転により従動マグネツト9が従動回転せられ、
スリーブ5とインペラ3とが回動される。16は
駆動体15の外側を覆うケーシング、17はイン
ペラ3を包囲して収納するケーシングであり、ポ
ンプ吐出側ケーシング17と駆動体側ケーシング
16とはボルト18により一体に固着される。1
9は前軸受7のスラストを受ける前方スラストワ
ツシヤー、20は後軸受8のスラストを受ける後
方スラストワツシヤー、21は前記缶体10の遊
端とケーシング17との間を液密にシールするO
リング、22は前方スラストワツシヤー19を支
承するケーシング17の内面に設けられたボス
部、23はそのリブ部を示す。 In the present invention, the impeller 3 and the sleeve 5 are made into an integral structure made of ceramics such as alumina porcelain, zirconia porcelain, or silicon carbide, or materials such as metal or synthetic resin.
The main shaft 6 is inserted into the through hole 5A, and the main shaft 6 is supported by a front bearing 7 fixed to the inner surface of the impeller 3 and a rear bearing 8 fixed to the inner wall surface of the sleeve 5. is rotatably held on the main shaft 6. A driven magnet 9 is fixed to the outer periphery of the sleeve 5 and is fitted in a cylindrical body 13 in a fluid-tight manner. The rear end portion 6A of the main shaft 6 preferably has a bottomed cylindrical can 1 made of the same material as the sleeve 5.
A cooling water flow path 11 is formed between the can body 10 and the cylindrical body 13 as shown by the arrow. A drive magnet 12, which is disposed in parallel and opposite to the driven magnet 9, is fixed to a drive body 15 fixed to a drive shaft 14 connected to a motor (not shown), and is driven by rotation of the drive magnet 12. The driven magnet 9 is driven and rotated,
Sleeve 5 and impeller 3 are rotated. 16 is a casing that covers the outside of the drive body 15; 17 is a casing that surrounds and houses the impeller 3; the pump discharge side casing 17 and the drive body side casing 16 are fixed together with bolts 18; 1
9 is a front thrust washer that receives the thrust of the front bearing 7; 20 is a rear thrust washer that receives the thrust of the rear bearing 8; and 21 is an O that provides a fluid-tight seal between the free end of the can body 10 and the casing 17.
The ring 22 indicates a boss portion provided on the inner surface of the casing 17 that supports the front thrust washer 19, and 23 indicates a rib portion thereof.
さらに、第1図A及びBに示すように後軸受8
とスリーブ5との間に比較的通路断面の大きいバ
イパス流路24を形成し、ポンプインペラ3の吐
出口4より矢印Aの如く吐出流体の一部が冷却水
流路11を通り、後方スラストワツシヤー20と
後軸受8との間B及び後軸受8中のラセン状の冷
却水通路8A中を通り、スリーブ5と主軸6との
間に形成される冷却水通路25Cを経て前軸受7
のラセン状の冷却水通路7Aと、前方スラストワ
ツシヤー19と前軸受7との間Dを経てポンプ吸
入側Eに循環するように冷却水通路が形成されて
いる。 Furthermore, as shown in FIGS. 1A and 1B, the rear bearing 8
A bypass passage 24 having a relatively large passage cross section is formed between the pump impeller 3 and the sleeve 5, and a part of the fluid discharged from the discharge port 4 of the pump impeller 3 passes through the cooling water passage 11 as shown by arrow A, and is transferred to the rear thrust washer. The front bearing 7
A cooling water passage is formed so as to circulate to the pump suction side E through a spiral cooling water passage 7A and a space D between the front thrust washer 19 and the front bearing 7.
本考案は特に後軸受8とスリーブ5との間にバ
イパス流路24を設け、冷却水の一部をこのバイ
パス流路24を通じて冷却水通路25に送り、前
軸受7には必ず冷却水がゆくように構成してい
る。 In particular, the present invention provides a bypass passage 24 between the rear bearing 8 and the sleeve 5, and sends a portion of the cooling water to the cooling water passage 25 through the bypass passage 24, so that the cooling water always reaches the front bearing 7. It is configured as follows.
すなわち、後軸受での圧力降下をなくしC地点
での圧力を冷却水流路11での圧力まで上昇さ
せ、しかる後に、C−D−E間の差圧を増大させ
前軸受7の冷却水量を増大するように構成してい
る。 That is, the pressure drop at the rear bearing is eliminated and the pressure at point C is increased to the pressure at the cooling water flow path 11, and then the differential pressure between C-D-E is increased to increase the amount of cooling water in the front bearing 7. It is configured to do so.
また他の作用としてB−C間差圧は低下するた
め後軸受8と主軸6との間を通過する冷却水量は
低下するが後軸受8に加わる面圧は微少のため後
軸受8と主軸6との摺動面に設けられたスパイラ
ル溝8Aによる自己潤滑で十分な冷却が行われ摩
耗は防止される。 In addition, as another effect, the differential pressure between B and C decreases, so the amount of cooling water passing between the rear bearing 8 and the main shaft 6 decreases, but since the surface pressure applied to the rear bearing 8 is small, the pressure between the rear bearing 8 and the main shaft 6 decreases. Self-lubrication by the spiral groove 8A provided on the sliding surface provides sufficient cooling and prevents wear.
本考案の効果を比較するために、第2図に示す
ようなバイパス溝のない従来のマグネツトポンプ
と、第1図に示す本考案のマグネツトポンプにつ
いて比較試験を行つた。 In order to compare the effect of the present invention, a comparative test was carried out between a conventional magnet pump having no bypass groove as shown in FIG. 2 and the magnet pump of the present invention shown in FIG.
試験条件
ポンプ口径 φ40×40mm
吐出圧 1.4Kgf/cm2
流量 0.12m3/min
バイパス溝面 30mm2(15mm2×2本)
試験結果は第3図に示す通りである。第3図に
おいて、実線のデータは従来ポンプの成績で、バ
イパス通路のないもの、点線のデータは本考案の
バイパス通路付のものの成績を示す。Test conditions Pump diameter: φ40×40mm Discharge pressure: 1.4Kgf/cm 2 Flow rate: 0.12m 3 /min Bypass groove surface: 30mm 2 (15mm 2 × 2 tubes) The test results are shown in Figure 3. In FIG. 3, the solid line data shows the performance of the conventional pump without a bypass passage, and the dotted line data shows the performance of the pump with the bypass passage of the present invention.
第3図の結果より明らかなとおりバイパス通路
による効果によりC−E間の差圧ΔHが1.7倍とな
り、前方軸受の冷却水量が増加した。特にD部で
の圧力が従来構造であると−0.16Kgf/cm2と負圧
であつたが、バイパス流路を設けた効果により、
+0.10Kgf/cm2となり、流体の気化が生じにくく
なり、摺動表面のドライ運転(冷却水のない運
転)の防止ができた。 As is clear from the results in Fig. 3, the effect of the bypass passage increased the differential pressure ΔH between C and E by 1.7 times, and the amount of cooling water in the front bearing increased. In particular, with the conventional structure, the pressure at section D was negative at -0.16Kgf/ cm2 , but due to the effect of providing a bypass flow path,
+0.10Kgf/cm 2 , making it difficult for fluid to vaporize and preventing dry operation (operation without cooling water) on the sliding surface.
また、後部軸受は差圧が小さくなり、冷却水量
は多少減少するが、スラスト荷重、ラジアル荷重
は共に前軸受に比べ小さく、発熱も少なく、軸受
のラセン状の冷却水通路による自己循環のみで充
分冷却できた。 In addition, the differential pressure in the rear bearing is smaller and the amount of cooling water is slightly reduced, but both the thrust load and radial load are smaller than in the front bearing, and there is less heat generation, so self-circulation through the bearing's spiral cooling water passage is sufficient. I was able to cool it down.
そして、本考案のバイパス流路を設けることに
より、前後軸受の摩耗は全く観察されなかつた。 By providing the bypass flow path of the present invention, no wear on the front and rear bearings was observed.
(考案の効果および用途)
(1) 冷却水の循環量を著しく増大できるので軸受
及び主軸の摩擦による摩耗が少ない。(Effects and applications of the invention) (1) The circulation amount of cooling water can be significantly increased, so there is less wear due to friction of the bearing and main shaft.
従つて、冷却効果が増大し、かつ、軸受のラ
セン状冷却水通路の目詰まりが防止でき、軸受
及び主軸の寿命を著しく延長でき、ポンプが長
時間連続運転できる。 Therefore, the cooling effect is increased, the spiral cooling water passage of the bearing can be prevented from clogging, the life of the bearing and the main shaft can be significantly extended, and the pump can be operated continuously for a long time.
(2) 従来法によると、第3図に示すように、前後
軸受7,8による圧力損失のため、D点での圧
力が負圧となり、摩擦による温度上昇と相乗
し、沸点の低い流体又は蒸気圧の高い流体では
摺動面で流体が気化し、冷却水のないドライ状
態で摺動し、前側の軸受7で異常摩耗が生ずる
問題があつた。(2) According to the conventional method, as shown in Figure 3, due to the pressure loss caused by the front and rear bearings 7 and 8, the pressure at point D becomes negative pressure, which combines with the temperature rise due to friction, causing the fluid with a low boiling point or Fluid with high vapor pressure vaporizes on the sliding surface, causing sliding in a dry state without cooling water, causing abnormal wear on the front bearing 7.
本考案では後軸受8とスリーブ5との接触面
のいずれか一方の摺動面にバイパス流路24を
設けたので、スリーブ5と主軸6との間の冷却
水通路25Cの圧力が上昇するためC−E間の
差圧が増大し、前軸受7と主軸6との間を通過
する冷却水量が増大し、前軸受7に異常摩耗を
生ずる惧を防止できる実用上大なる効果があ
る。 In the present invention, since the bypass passage 24 is provided on one of the sliding surfaces of the contact surfaces between the rear bearing 8 and the sleeve 5, the pressure in the cooling water passage 25C between the sleeve 5 and the main shaft 6 increases. The differential pressure between C and E increases, the amount of cooling water passing between the front bearing 7 and the main shaft 6 increases, and this has a great practical effect of preventing abnormal wear on the front bearing 7.
第1図は本考案のマグネツトポンプの縦断面
図、第2図は従来構造のマグネツトポンプの縦断
面図、第3図は従来構造のマグネツトポンプと本
考案のポンプとの比較試験特性図である。
1……ポンプ本体、2……吸入口、3……イン
ペラ、4……吐出口、5……スリーブ、5A……
スリーブの貫通孔、6……主軸、6A……主軸の
後端部、7……前軸受、8……後軸受、9……従
動マグネツト、10……有底筒状缶体、11……
冷却水通路、12……駆動マグネツト、13……
筒状体、14……駆動軸、15……駆動体、1
6,17……ケーシング、18……ボルト、19
……前方スラストワツシヤー、20……後方スラ
ストワツシヤー、21……Oリング、22……ボ
ス部、23……リブ部、24……バイパス流路、
25……冷却水通路。
Fig. 1 is a longitudinal sectional view of the magnetic pump of the present invention, Fig. 2 is a longitudinal sectional view of the conventional magnetic pump, and Fig. 3 is a comparative test characteristic of the conventional magnetic pump and the pump of the present invention. It is a diagram. 1... Pump body, 2... Suction port, 3... Impeller, 4... Discharge port, 5... Sleeve, 5A...
Through hole in sleeve, 6... Main shaft, 6A... Rear end of main shaft, 7... Front bearing, 8... Rear bearing, 9... Driven magnet, 10... Bottomed cylindrical can body, 11...
Cooling water passage, 12... Drive magnet, 13...
Cylindrical body, 14... Drive shaft, 15... Drive body, 1
6, 17...Casing, 18...Bolt, 19
...Front thrust washer, 20... Rear thrust washer, 21... O ring, 22... Boss part, 23... Rib part, 24... Bypass flow path,
25...Cooling water passage.
Claims (1)
が磁力回転するマグネツトポンプにおいて、一
体構造のインペラとスリーブとが、一端が有底
筒状缶体の底部に支持されるとともに、他端が
ポンプ吸水側のケーシングの内面に設けられた
ボス部で支持された静止する主軸に、前記缶体
底部近傍及びインペラ側に位置する2つの軸受
により回転自在に支持され、主軸とスリーブと
の間には冷却水通路が設けられているととも
に、軸受の主軸の摺動面にラセン状の冷却水通
路が設けられ、さらに、前記缶体底部近傍の軸
受とスリーブとの接触面のいずれか一方に、缶
体底部の冷却水通路と、主軸とスリーブとの間
の冷却水通路とを連絡するバイパス流路を設け
たことを特徴とするマグネツトポンプ。 2 軸受と内接するスリーブの内側にバイパス流
路を設けた実用新案登録請求の範囲第1項記載
のマグネツトポンプ。 3 軸受が炭素製品よりなる実用新案登録請求の
範囲第1項記載のマグネツトポンプ。[Claims for Utility Model Registration] 1. A magnetic pump in which a driven magnet is magnetically rotated by rotation of a driving magnet, in which an impeller and a sleeve are integrally constructed, one end of which is supported at the bottom of a bottomed cylindrical can, A stationary main shaft whose other end is supported by a boss provided on the inner surface of the casing on the water suction side of the pump is rotatably supported by two bearings located near the bottom of the can body and on the impeller side, and the main shaft and sleeve are A cooling water passage is provided between them, and a spiral cooling water passage is provided on the sliding surface of the main shaft of the bearing. A magnetic pump characterized in that, on one side, a bypass passage is provided that connects a cooling water passage at the bottom of the can and a cooling water passage between the main shaft and the sleeve. 2. The magnetic pump according to claim 1, which is a registered utility model, in which a bypass flow path is provided inside the sleeve that is inscribed with the bearing. 3. The magnetic pump according to claim 1, in which the bearing is made of a carbon product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985004818U JPS6332391Y2 (en) | 1985-01-19 | 1985-01-19 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985004818U JPS6332391Y2 (en) | 1985-01-19 | 1985-01-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61122393U JPS61122393U (en) | 1986-08-01 |
JPS6332391Y2 true JPS6332391Y2 (en) | 1988-08-29 |
Family
ID=30480754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1985004818U Expired JPS6332391Y2 (en) | 1985-01-19 | 1985-01-19 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6332391Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2543689Y2 (en) * | 1991-12-27 | 1997-08-13 | 協磁股▲分▼有限公司 | Bushing structure for use in magnetically driven centrifugal pump |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5720868U (en) * | 1980-07-11 | 1982-02-03 |
-
1985
- 1985-01-19 JP JP1985004818U patent/JPS6332391Y2/ja not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5720868U (en) * | 1980-07-11 | 1982-02-03 |
Also Published As
Publication number | Publication date |
---|---|
JPS61122393U (en) | 1986-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5201642A (en) | Magnetic drive pump | |
US5399074A (en) | Motor driven sealless blood pump | |
US4013384A (en) | Magnetically driven centrifugal pump and means providing cooling fluid flow | |
JPH07224785A (en) | Magnetic driving centrifugal pump | |
JP2002250300A (en) | Electrically driven coolant pump | |
JPH0772558B2 (en) | Molecular pump | |
US5569024A (en) | Pump for delivering hot, corrosive media | |
USRE37233E1 (en) | Integral motor centrifugal pump | |
US6135728A (en) | Centrifugal pump having an axial thrust balancing system | |
TW200535343A (en) | Pump | |
JPS6332391Y2 (en) | ||
US20040062635A1 (en) | Water pump and impeller therefor | |
US6048168A (en) | Lubricated ceramic/hybrid anti-friction bearing centrifugal pump | |
US3827833A (en) | Rotor cooling device in an oscillation type compressor | |
JPH10311293A (en) | Canned motor pump | |
JPH01267392A (en) | Turbo vacuum pump | |
US2468246A (en) | Rotary pump for liquefied gases | |
CN207349161U (en) | Miniature dynamic sealing circulation pump suitable for conveying the medium containing granule foreign | |
JP3942428B2 (en) | Canned motor pump | |
JP2729637B2 (en) | Screw centrifugal pump | |
CN208845370U (en) | A kind of centrifugal pump with water-cooled pump cover and sealing gland | |
JPH08166000A (en) | Magnet pump | |
US3373690A (en) | Electrically driven power pump | |
JP2630773B2 (en) | Screw centrifugal pump | |
US2997959A (en) | Pump |