JPS6332243A - Flow rate sensing device for heat exchanger - Google Patents

Flow rate sensing device for heat exchanger

Info

Publication number
JPS6332243A
JPS6332243A JP61174012A JP17401286A JPS6332243A JP S6332243 A JPS6332243 A JP S6332243A JP 61174012 A JP61174012 A JP 61174012A JP 17401286 A JP17401286 A JP 17401286A JP S6332243 A JPS6332243 A JP S6332243A
Authority
JP
Japan
Prior art keywords
temperature
comparator
amount
output
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61174012A
Other languages
Japanese (ja)
Other versions
JPH0340327B2 (en
Inventor
Yozo Kagami
各務 要三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP61174012A priority Critical patent/JPS6332243A/en
Publication of JPS6332243A publication Critical patent/JPS6332243A/en
Publication of JPH0340327B2 publication Critical patent/JPH0340327B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve an accuracy of sensing operation when an operation is started and to enable rapid heating to be performed up to a normal heating condition by a method wherein sensed outputs from a first and a second temperature sensing means are inputted to a comparator and an amount of water is calculated in reference to an output from the comparator, a heating calorie of a gas burner and a thermal efficiency of an endothermic unit part. CONSTITUTION:Endothermic unit parts 10 and 10 of a heat exchanger 1 are heated. Since a heating calorie under a combustion in a gas burner B is high and fins 12 and 12 are present in the endothermic unit parts 10 and 10, a temperature of the endothermic unit part 10 is increased. The corresponding endothermic unit part 10 of the first and second temperature sensing means 22 and 23 is positioned at the upper- most upstream side and after a heat exchanger 1 is started to operate, a variation in temperature is sensed at first. A sensed output from the sensed first and second temperature sensing means 22 and 23 is inputted to a comparator 3, an amount of passed water in a water circuit 2 is calculated by a calculation device 4 in reference to an amount of combustion and a thermal efficiency of the gas burner B and then inputted to an output device. With this arrangement, a time required to attain a normal heated condition is shortened and an accuracy of sensing when the operation is started to operate is increased.

Description

【発明の詳細な説明】 (利用分野及び発明の概要) 本発明は、熱交換器用流量検知装置、特に、水回路を加
熱してその時の温度変化により流量を検知する装置に関
し、加熱源のフィードフォワード制御の流量検知装置と
して利用できる。
Detailed Description of the Invention (Field of Application and Summary of the Invention) The present invention relates to a flow rate detection device for a heat exchanger, particularly a device that heats a water circuit and detects the flow rate based on the temperature change at that time. It can be used as a flow rate detection device for forward control.

又、この発明は、熱交換器の加熱源によって加熱される
被加熱管を通過する被加熱流体の温度上昇度合を検知す
ることにより、この検知装置の始動時の応答性を高めよ
うとするものである。
Further, the present invention aims to improve the responsiveness of this detection device at the time of startup by detecting the degree of temperature rise of the heated fluid passing through the heated tube heated by the heat source of the heat exchanger. It is.

(従来技術及びその問題点) 熱交換器の水回路の流量を検知し、この検知流量と設定
湯温との関係から、加熱源としてのバーナの燃焼量を予
め所定の値に制御するものとして、すでに、特願昭58
−173335号公報に開示のものがある。
(Prior art and its problems) The flow rate of the water circuit of the heat exchanger is detected, and the combustion amount of the burner as a heating source is controlled to a predetermined value based on the relationship between the detected flow rate and the set hot water temperature. , has already applied for a special application in 1982.
There is one disclosed in Japanese Patent No.-173335.

このものは、第7図の如く、熱交換器(りの水回路(2
)の入口側に第1感熱素子(21a)と傍熱型又は自己
加熱型の第2蝶熱素子(21b)とを−・定間隔を置い
て配設し、前記第1感熱素子(21a)を第2感熱素子
(21b)の上流側に位置させ、これら二つの第1.第
2感熱素子(21a) 。
This is a heat exchanger (water circuit (2), as shown in Figure 7).
), a first heat-sensitive element (21a) and a second heat-sensitive element (21b) of indirect heating type or self-heating type are arranged at regular intervals, and the first heat-sensitive element (21a) is located upstream of the second heat-sensitive element (21b), and these two first... Second heat sensitive element (21a).

r21b)からの出力を比較器(3)に入力させ、この
比較器(3)からの増幅出力によってガスバーナ(B)
への回路に挿入したガス比例弁(31)が駆動されるよ
うになっている。
The output from the r21b) is input to the comparator (3), and the amplified output from the comparator (3) is used to control the gas burner (B).
A gas proportional valve (31) inserted into the circuit to is driven.

この従来例のものでは、水回路(2)の通水量が増すと
第2感熱素子(21b)のヒーター(H)による加熱度
合が少なくなることから第2感熱素子(21b)の検知
部・度が低くなり、逆に、通水量が少なくなると検知温
度が高くなって、第1感熱素子(21a)の検知温度と
第2感熱素子(21b)の検知温度とを比較器(3)に
よって比較演算すれば水量の変化を検出できる。従って
、この比較器(3)の出力を所定の水力に変換してガス
比例弁(31)に入力させると、水回路(2)の通水量
の変化に応じてガスバーナ(B)の燃焼量を制御できる
こととなり、通水量が変化しても出湯温度を設定温度に
維持できる。従って、このものは、第1.第2感熱素子
(2+a) 、 (21b)及び比較器(3)と増幅器
の組合わせがガス比例弁(3りの駆動装置として機能し
、第1.第2感熱素子(21a) 、 (21b)及び
比較器(3)ノ組合わせが流量検知装置として機能する
In this conventional example, as the amount of water flowing through the water circuit (2) increases, the degree of heating by the heater (H) of the second heat-sensitive element (21b) decreases. On the other hand, when the flow rate of water decreases, the detected temperature increases, and the comparator (3) performs a comparison calculation between the detected temperature of the first heat-sensitive element (21a) and the detected temperature of the second heat-sensitive element (21b). Changes in water volume can then be detected. Therefore, by converting the output of this comparator (3) into a predetermined hydraulic power and inputting it to the gas proportional valve (31), the combustion amount of the gas burner (B) can be adjusted according to the change in the amount of water flowing through the water circuit (2). This means that the hot water temperature can be maintained at the set temperature even if the water flow rate changes. Therefore, this one is the first one. The combination of the second heat sensitive element (2+a), (21b) and the comparator (3) and the amplifier functions as a drive device for the gas proportional valve (3), and the first and second heat sensitive elements (21a), (21b) and comparator (3) function as a flow rate detection device.

ところが、この従来のものでは、第2感熱素子(21b
)が常に動作状態にあることを前提にするもので、流量
検知部では器具の点火初期においては十分な精度の流量
検知が行えない。
However, in this conventional device, the second heat sensitive element (21b
) is always in operation, and the flow rate detection unit cannot detect the flow rate with sufficient accuracy at the initial stage of ignition of the appliance.

器具始動時に第2感熱素子(21b)が同時に検知状態
となるが、ヒーター(H)が定常発熱状態になるまでに
一定の時間を要し、この立ち上がり時間中においては、
第2感熱素子(21b)と第1感熱素子(21a)の検
知温度の差が通水量と比例しないものとなるからである
。この傾向は、第1感熱素子(21a)  、第2感熱
素子(2l b)を水回路(2)の管壁外部に取付けた
時に一層著しく、この場合には、ヒーター(H)が定常
加熱状態になったとしても第1感熱素子(21a)と第
2感熱素子(21b)の検知温度の差が水量と正確に比
例しないものとなる。
When the appliance is started, the second heat-sensitive element (21b) simultaneously enters the detection state, but it takes a certain amount of time for the heater (H) to reach a steady state of heat generation, and during this start-up time,
This is because the difference in detected temperatures between the second heat-sensitive element (21b) and the first heat-sensitive element (21a) is not proportional to the amount of water flowing. This tendency becomes even more remarkable when the first heat-sensitive element (21a) and the second heat-sensitive element (2l b) are attached to the outside of the pipe wall of the water circuit (2), and in this case, the heater (H) is in a steady heating state. Even if it is, the difference in the detected temperatures between the first heat sensitive element (21a) and the second heat sensitive element (21b) will not be accurately proportional to the amount of water.

(技術的課題) 本発明は、熱交換器(1)を通る水回路(2)の一部を
加熱してこの加熱部の温度変化をとらえて水量を検知す
るものにおいて、立上がり時の検知精度を高めるため、
水量検知の為の加熱域が定常加熱状態まで急加熱できる
ようにすることをその技術的課題とする。
(Technical Problem) The present invention detects the amount of water by heating a part of the water circuit (2) that passes through the heat exchanger (1) and detecting the temperature change in this heated part, and the detection accuracy at the time of startup. In order to increase
The technical challenge is to enable the heating area for water volume detection to be rapidly heated to a steady state.

(技術的手段) 上記技術的課題を解決するために講じた本発明の技術的
手段は、熱交換器(1)の最上流側に位置し且吸熱管(
11)とフィン(12) 、 (12)とからなる吸熱
単位部(10)への入口部に第1温度検知手段(22)
を設けるとともに前記吸熱単位部(10)からの出口部
に第2温度検知手段(23)を設け、これら第1.第2
温度検知手段(22) 、 (23)からの検知出力を
比較器(3)に入力させ、更に、この比較器(3)から
の出力とガスバーナ(B)の燃焼量及び吸熱中位部(1
0)の熱効率から水量を演算する演算装置(4)を具備
させたことである。
(Technical means) The technical means of the present invention taken to solve the above-mentioned technical problem is that the heat exchanger (1) is located at the most upstream side and the heat absorption pipe (
A first temperature detection means (22) is provided at the entrance to the endothermic unit (10) consisting of the heat absorbing unit (11) and the fins (12).
and a second temperature detection means (23) is provided at the outlet from the endothermic unit (10). Second
The detection outputs from the temperature detection means (22) and (23) are input to the comparator (3), and the output from the comparator (3), the combustion amount of the gas burner (B), and the endothermic middle part (1
0) is provided with an arithmetic device (4) that calculates the amount of water from the thermal efficiency.

(第1図参照) (作用) 本発明の上記技術的手段は次のように作用する。(See Figure 1) (effect) The above technical means of the present invention operates as follows.

熱交換器(1)が運転状態になると、ガスバーナ(B)
が燃焼状態となり、熱交換器(1)の吸熱単位部(10
) 、 (10)が加熱される。この時、ガスバーナ(
B)の燃焼による加熱量は従来のヒーター(H)等のそ
れに比べて極端に大きく、しかも、吸熱単位部(10)
 、 (10)にはフィン(12)、(12)を具備さ
せであることから、ガスバーナ(B)の燃焼熱量は吸熱
単位部(10)に伝達され、速やかにこの吸熱単位部(
10)が昇温される。又、第1、第2温度検知手段(2
2) 、 (23)の対応する吸熱単位部(10)は最
上流側に位置することから、熱交換器(1)の動作開始
後、最先に温度変化が検知される。
When the heat exchanger (1) is in operation, the gas burner (B)
enters a combustion state, and the endothermic unit (10
), (10) are heated. At this time, use the gas burner (
The amount of heat generated by combustion in B) is extremely large compared to that of conventional heaters (H), and moreover, the heat absorption unit (10)
, (10) is equipped with fins (12), (12), the amount of combustion heat of the gas burner (B) is transferred to the endothermic unit (10), and the heat absorption unit (10) is immediately transferred to the endothermic unit (10).
10) is heated. Moreover, the first and second temperature detection means (2
2) Since the corresponding endothermic units (10) of (23) are located on the most upstream side, temperature changes are detected first after the heat exchanger (1) starts operating.

このようにして、検知された第1.第2温度検知手段(
22) 、 (23)の検知出力が比較器(3)に入力
され、この比較器(3)からの出力とガスバーナ(B)
の燃焼量及び熱効率から、演算装置(4)により水回路
(2)の通水量が演算され、出力装置に入力される。
In this way, the detected first . Second temperature detection means (
22) The detection outputs of (23) are input to the comparator (3), and the output from this comparator (3) and the gas burner (B)
The amount of water flowing through the water circuit (2) is calculated by the calculation device (4) from the combustion amount and thermal efficiency of the water, and is inputted to the output device.

(効果) 本発明は−1−記構酸であるから次の特有の効果を有す
る。
(Effects) Since the present invention is a -1-synthetic acid, it has the following unique effects.

通水量を検知するために設けられた第1.第2温度検知
手段(22) 、 (23)間の吸熱単位部(10)は
ガスバーナ(B)の燃焼排気によって高カロリーで加熱
されるものであり、しかも、吸熱単位部(10)の急熱
効率は吸熱管(11)のみのものに比べて高効率となる
から、この部分が定常加熱状態になるまでの時間が短縮
され、立ち上がり時の検知精度が高くなる。言い換えれ
ば、検知状態になるまでの立ち−Lがり時間が極く短い
ものとなる。又、最上流側に位置する吸熱単位部(10
)による急熱を検知対象とするものであるから、この点
でもト記効果が優れたものとなる。
The first point is provided to detect the amount of water flowing. The endothermic unit (10) between the second temperature detection means (22) and (23) is heated with high calories by the combustion exhaust of the gas burner (B), and the rapid heating efficiency of the endothermic unit (10) is high. Since the efficiency is higher than that of only the heat absorbing tube (11), the time required for this part to reach a steady heating state is shortened, and the detection accuracy at the time of start-up is increased. In other words, the rise-L rise time until the detection state is reached is extremely short. In addition, the endothermic unit (10
) is the object of detection, so the above effect is excellent in this respect as well.

次に、第1.第2温度検知手段(22) 、 (23)
を水回路(2)の管壁に添設するだけであるから。
Next, the first. Second temperature detection means (22), (23)
This is because it is simply attached to the pipe wall of the water circuit (2).

これらの取付構造が簡単になる。These mounting structures become simpler.

(実施例) 以下、本発明の実施例を第2図〜第4図の図面に基づい
て説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings of FIGS. 2 to 4.

第2図、第3図に示す第1実施例のものは。The first embodiment shown in FIGS. 2 and 3.

第3図の如く、複数の吸熱単位部(10)、(10)を
平面的に配列連通させた第1.第2吸熱部(la)、 
(lb)を上下2段に並設してこれら第1.第2吸熱部
(la) 、 (lb)相互を連通させ、ガスバーナ(
B)の排気流に対して上流側に位置する第1吸熱部(l
a)の最上流側の吸熱単位部(10)の入口側と出口側
にそれぞれ第1.第2温度検知手段(22) 、 (2
3)を添設するとともに、前記第1吸熱部(la)を水
回路(2)の回路において第2吸熱部(lb)の上流側
に位置させたものである。
As shown in FIG. 3, the first unit has a plurality of endothermic units (10), (10) arranged and communicated in a plane. second heat absorption part (la),
(lb) are arranged in parallel in two stages, upper and lower. The second heat absorption parts (la) and (lb) are communicated with each other, and the gas burner (
B) The first heat absorption part (l
The first. Second temperature detection means (22), (2
3), and the first heat absorbing part (la) is located upstream of the second heat absorbing part (lb) in the water circuit (2).

又、ガスバーナ(B)へのガス回路には、ガス比例弁(
31)が挿入されており、このガス比例弁(31)は出
力制御装置(5)によって制御される。
In addition, the gas circuit to the gas burner (B) is equipped with a gas proportional valve (
31) is inserted, and this gas proportional valve (31) is controlled by an output control device (5).

この出力制御装置(5)には緩点火装置を具備させてあ
り、ガスバーナ(B)の点火初期は必ず一定の燃焼量状
態を経て設定燃焼状態に移行する。このため、この出力
制御装置(5)には点火初期ガス量設定手段(51)が
あり、点火初期においては、ガス比例弁(31)は、一
定時間点火初期ガス量設定手段(51)によって決定さ
れる一定の開度に設定される。その後、出力制御装置(
5)によって、演算装置(4)からの出力に応じた開度
に設定され、出湯温度は設定温度に保たれる。
This output control device (5) is equipped with a slow ignition device, and at the initial stage of ignition of the gas burner (B), the gas burner (B) always passes through a constant combustion amount state and then shifts to a set combustion state. For this reason, this output control device (5) includes an ignition initial gas amount setting means (51), and at the initial stage of ignition, the gas proportional valve (31) is set for a certain period of time by the ignition initial gas amount setting means (51). The opening is set to a certain degree. After that, the output control device (
5), the opening degree is set according to the output from the arithmetic device (4), and the outlet temperature is maintained at the set temperature.

この為、第1.第2温度検知手段(22) 、 (23
)からの出力が比較器(3)に入力され、この比較器(
3)の出力が演算装置(4)に入力されることは既述し
たとおりであり1点火初期ガス量設定手段(51)によ
り設定される燃焼量と吸熱単位部(10)の熱効率とか
ら、水回路(2)を通る水量が演算され、この出力に対
応した出力が出力制御装置(5)からガス比例弁(31
)に入力されて−F記のように動作する。
For this reason, 1. Second temperature detection means (22), (23
) is input to the comparator (3), and this comparator (
As mentioned above, the output of 3) is input to the calculation device (4), and from the combustion amount set by the 1 ignition initial gas amount setting means (51) and the thermal efficiency of the endothermic unit (10), The amount of water passing through the water circuit (2) is calculated, and an output corresponding to this output is sent from the output control device (5) to the gas proportional valve (31).
) and operates as described in -F.

次に、第4図に示す第2実施例のものは、第3温度検知
手段(24)を最上流側に位置する吸熱単位部(10)
の下方近傍に設け、この検知出力を演算装置(0に入力
させたもの〒ある。
Next, in the second embodiment shown in FIG.
There is one in which the detection output is input to an arithmetic unit (0).

このものでは、第1.第2温度検知手段(22)、 (
23)が入力された比較器(3)からの出力と吸熱単位
部(10)の熱効率及び第3温度検知手段(24)の検
知温度から、演算装置(0によって流量が演算される。
In this one, the first. Second temperature detection means (22), (
23) is inputted, the thermal efficiency of the endothermic unit (10), and the detected temperature of the third temperature detection means (24), the flow rate is calculated by the calculation device (0).

この場合、第3温度検知手段(24)の検知温度は燃焼
量と比例することから、ガスバーナ(B)の燃焼量が変
化する条件下でも、水回路(2)を通る水の量が検知で
きることとなる。従って、給湯器の湯を使用している最
中に水量が変化した場合にも、第1.第2温度検知手段
(22) 、 (23)の温度差と、ガス量に比例する
第3温度検知手段(24)の出力、さらに!±、熱効率
の関係から水量が演算できることとなり、出湯温度を設
定温度に維持できることとなる。
In this case, since the temperature detected by the third temperature detection means (24) is proportional to the amount of combustion, the amount of water passing through the water circuit (2) can be detected even under conditions where the amount of combustion of the gas burner (B) changes. becomes. Therefore, even if the amount of water changes while using hot water from the water heater, the first The temperature difference between the second temperature detection means (22) and (23) and the output of the third temperature detection means (24) which is proportional to the gas amount, and more! The amount of water can be calculated from the relationship between ± and thermal efficiency, and the hot water temperature can be maintained at the set temperature.

ガス流量に対応する信号としては、比例弁への入力信号
を採用することもできる。
As the signal corresponding to the gas flow rate, an input signal to a proportional valve can also be adopted.

次に、第5図に示す第3実施例のものは、上記第1.第
2実施例のフィードフォワード制御とフィードバック制
御とを組合わせたもので、熱交換器(1)の出口側に第
4検知手段(25)を設け、この出力によって出湯温度
を設定温度に維持しようとするものである。このため、
温度設定手段(6)からの出力と前記第4検知手段(2
5)の出力を比較器(70)に入力させ、この比較器(
70)からの入力させ、この比較器(70)からの出力
を切替スイッチ(B1)を介して駆動回路(B2)に入
力させ、この駆動回路(82)からの出力をガス比例弁
(31)に入力させている。
Next, the third embodiment shown in FIG. 5 is similar to the first embodiment described above. This is a combination of the feedforward control and feedback control of the second embodiment, and a fourth detection means (25) is provided on the outlet side of the heat exchanger (1), and this output is used to maintain the hot water temperature at the set temperature. That is. For this reason,
The output from the temperature setting means (6) and the fourth detection means (2)
5) is input to the comparator (70), and this comparator (
70), the output from the comparator (70) is input to the drive circuit (B2) via the changeover switch (B1), and the output from the drive circuit (82) is input to the gas proportional valve (31). is input.

又、第1.第2温度検知手段(22) 、 (23)及
びyix装置(4)からなる流量検知装置の出力は。
Also, 1st. The output of the flow rate detection device consisting of the second temperature detection means (22), (23) and the yix device (4) is:

温度設定手段(6)の出力とともに他方の比較器(30
)に入力されており、この比較器(30)によって、フ
ィードホワード用出力が得られるようになっており、こ
の比較器(30)の出力が切替スイッチ(61)を介し
て駆動回路(62)に入力される。
The output of the temperature setting means (6) and the other comparator (30
), and this comparator (30) provides a feedforward output, and the output of this comparator (30) is sent to the drive circuit (62) via a changeover switch (61). is input.

前記切替スイッチ(61)は初期においては比較器(3
0)側の出力を駆動回路(82)に入力させるべく比較
器(30)から駆動回路(62)への回路を導通させる
が、熱交換器(1)の出力が一定の条件に達したとき、
切替駆動回路(7)によって切替スイッチ(6!〕の可
動接点は比較器(70)側に切替られるようになってい
る。このため、切替駆動回路(7)は第4検知手段(2
5)からの出力と温度設定手段(6)からの出力を比較
して、第4検知手段(25)の検知温度が設定温度以下
でこの設定温度から−・定温度(Δt)低い温度に達し
た時点で切替のための出力が生じるようになっている。
The changeover switch (61) is initially set to the comparator (3).
In order to input the output on the 0) side to the drive circuit (82), the circuit from the comparator (30) to the drive circuit (62) is made conductive, but when the output of the heat exchanger (1) reaches a certain condition. ,
The movable contact of the changeover switch (6!) is switched to the comparator (70) side by the changeover drive circuit (7).Therefore, the changeover drive circuit (7) switches the movable contact of the changeover switch (6!) to the comparator (70) side.
5) and the output from the temperature setting means (6), the detected temperature of the fourth detection means (25) reaches a temperature lower than the set temperature by - constant temperature (Δt). At this point, an output for switching is generated.

尚、タイマー(8)は常閉出力接点を具備するもので、
ガスバーナ(B)の点火時において、比較器(30)と
比較器(70)からの出力を駆動回路(82)に人力さ
せないようにしている。このタイマー(8)の設定時間
は緩点火時間(T)と一致し、この緩点火時間(T)経
過後においてはその出力接点は閉成Sれる。又、切替ス
イッチ(81)とガス比例弁(31)の連動関係により
緩点火時の燃焼量は予め所定の値に固定されており、比
較器(30) 、比較器(70)からの出力が駆動回路
(82)に入力されない条件で、ガスバーナ(B)への
ガス量が一定の値に設定されている。
In addition, the timer (8) is equipped with a normally closed output contact,
When the gas burner (B) is ignited, the outputs from the comparator (30) and the comparator (70) are not manually applied to the drive circuit (82). The set time of this timer (8) coincides with the slow ignition time (T), and after the slow ignition time (T) has elapsed, its output contact is closed. Furthermore, due to the interlocking relationship between the changeover switch (81) and the gas proportional valve (31), the combustion amount during slow ignition is fixed in advance at a predetermined value, and the output from the comparator (30) and the comparator (70) The amount of gas to the gas burner (B) is set to a constant value under conditions that no input is made to the drive circuit (82).

この実施例のものでは、第6図の如く、器具の運転開始
時の緩点火時間(T)の間ではガスバーナ(B)の燃焼
ガス量は一定となり、この条件下で水量を演算し、タイ
マー(8)の設定時間が経過すると、比較器(30)か
らの出力によりフィードホワード制御が進行し、第4検
知手段(25)の検知温度が設定温度よりもΔtだけ低
い温度になると、切替駆動回路(7)の出力によりフィ
ードバック制御に切替り、温調される。
In this embodiment, as shown in Fig. 6, the amount of combustion gas in the gas burner (B) is constant during the slow ignition time (T) at the start of operation of the appliance, and the amount of water is calculated under this condition, and the timer When the set time (8) has elapsed, the feedforward control proceeds based on the output from the comparator (30), and when the detected temperature of the fourth detection means (25) becomes a temperature lower than the set temperature by Δt, the switching drive is started. The temperature is controlled by switching to feedback control based on the output of the circuit (7).

この場合、設定温度よりもΔを低い温度でフィードホワ
ード制御が停止せしめられるから、出湯温度がこの制御
中に設定温度以上になる、所謂、オーバーシュート現象
が防止できることから、出湯温度が速やかに設定温度に
近づき、しかも、安定なフィードバック制御が行なえる
。尚、このフィードホワード制御とフィードバック制御
の組み合わせには、他の流量検知装置を用いても同様の
作用が得られる。
In this case, the feedforward control is stopped at a temperature Δ lower than the set temperature, so it is possible to prevent the so-called overshoot phenomenon in which the hot water temperature exceeds the set temperature during this control, so the hot water temperature can be set quickly. The temperature can be approximated and stable feedback control can be performed. Note that the same effect can be obtained by using other flow rate detection devices in combination of this feedforward control and feedback control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明する図面、第2図は第1実
施例の説明図、第3図は第1.第2吸熱部(Ia) 、
 (lb)の説明図、第4図は第2実施例の説明図、第
5図、第6図は第3実施例の説明図、第7図は従来例の
説明図であり、図中、(1)・・・熱交換器 (10)
・・・吸熱単位部(11)・・・吸熱管  (12)・
・・フィン(2)・・・水回路
FIG. 1 is a detailed diagram of the present invention, FIG. 2 is an explanatory diagram of the first embodiment, and FIG. 3 is a diagram of the first embodiment. Second heat absorption part (Ia),
(lb), FIG. 4 is an explanatory diagram of the second embodiment, FIGS. 5 and 6 are explanatory diagrams of the third embodiment, and FIG. 7 is an explanatory diagram of the conventional example. (1)...Heat exchanger (10)
... Endothermic unit (11) ... Endothermic tube (12)
...Fin (2)...Water circuit

Claims (1)

【特許請求の範囲】[Claims] 熱交換器(1)を通る水回路(2)の一部を加熱してこ
の加熱部の温度変化をとらえて水量を検知するものにお
いて、熱交換器(1)の最上流側に位置し且吸熱管(1
1)とフィン(12)、(12)とからなる吸熱単位部
(10)への入口部に第1温度検知手段(22)を設け
るとともに前記吸熱単位部(10)からの出口部に第2
温度検知手段(23)を設け、これら第1、第2温度検
知手段(22)、(23)からの検知出力を比較器(3
)に入力させ、さらに、この比較器(3)からの出力と
ガスバーナ(B)の燃焼量及び吸熱単位部(10)の熱
効率から水量を演算する演算装置(4)を具備させた熱
交換器用流量検知装置
In a device that heats a part of the water circuit (2) that passes through the heat exchanger (1) and detects the amount of water by capturing the temperature change in this heating section, it is located on the most upstream side of the heat exchanger (1) and Heat absorption tube (1
A first temperature sensing means (22) is provided at the inlet to the endothermic unit (10) consisting of the heat absorbing unit (10) and fins (12), and a second temperature detecting means (22) is provided at the outlet from the endothermic unit (10).
Temperature detection means (23) is provided, and the detection outputs from these first and second temperature detection means (22) and (23) are sent to a comparator (3).
), and is further equipped with an arithmetic device (4) that calculates the amount of water from the output from the comparator (3), the combustion amount of the gas burner (B), and the thermal efficiency of the endothermic unit (10). flow rate detection device
JP61174012A 1986-07-23 1986-07-23 Flow rate sensing device for heat exchanger Granted JPS6332243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61174012A JPS6332243A (en) 1986-07-23 1986-07-23 Flow rate sensing device for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61174012A JPS6332243A (en) 1986-07-23 1986-07-23 Flow rate sensing device for heat exchanger

Publications (2)

Publication Number Publication Date
JPS6332243A true JPS6332243A (en) 1988-02-10
JPH0340327B2 JPH0340327B2 (en) 1991-06-18

Family

ID=15971097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61174012A Granted JPS6332243A (en) 1986-07-23 1986-07-23 Flow rate sensing device for heat exchanger

Country Status (1)

Country Link
JP (1) JPS6332243A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011120899B4 (en) * 2011-12-12 2015-08-20 Karlsruher Institut für Technologie Method and use of a device for determining the mass flow of a fluid

Also Published As

Publication number Publication date
JPH0340327B2 (en) 1991-06-18

Similar Documents

Publication Publication Date Title
KR0142396B1 (en) Hot-water supplier
JPS6332243A (en) Flow rate sensing device for heat exchanger
JP2001324217A (en) Gas water heater
KR930005461B1 (en) Gas boiler control method
JP2803367B2 (en) Hot water mixing equipment
JPH0749237Y2 (en) Combustion gas passage blockage detection device
JPS625272B2 (en)
JP2552586B2 (en) Inlet water temperature detection method and hot water supply control method in water heater
JPS5854570Y2 (en) Hot water heat dissipation device
JPH0325026Y2 (en)
JPH035812Y2 (en)
JP2514593B2 (en) Optimal temperature controller for cogeneration system
JP2988877B2 (en) Instant water heater
JPS62288445A (en) Method of controlling supply hot water temperature in hot water supplier and device therefor
JP3454995B2 (en) Water heater with fin blockage detection device
JPS61147055A (en) Fluid heating device
KR920008028B1 (en) Temperature control apparatus for boiling water
KR950000934B1 (en) Heating method of gas boiler
JPH052895B2 (en)
JPH034811B2 (en)
JPS63123951A (en) Device for detecting blockage of heat exchanger fins in water heater
JPH0330755Y2 (en)
JPH0373791B2 (en)
JPH09280657A (en) Heat exchanger
JPH02169923A (en) Electricity supply control device for ignition heater