JPS6332107A - Turning system of turbine - Google Patents

Turning system of turbine

Info

Publication number
JPS6332107A
JPS6332107A JP17563686A JP17563686A JPS6332107A JP S6332107 A JPS6332107 A JP S6332107A JP 17563686 A JP17563686 A JP 17563686A JP 17563686 A JP17563686 A JP 17563686A JP S6332107 A JPS6332107 A JP S6332107A
Authority
JP
Japan
Prior art keywords
turbine
turning
oil supply
rotation speed
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17563686A
Other languages
Japanese (ja)
Inventor
Yoshio Kusayama
草山 義男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17563686A priority Critical patent/JPS6332107A/en
Publication of JPS6332107A publication Critical patent/JPS6332107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE: To enable a turbine to be started at a high increasing rate of rotational frequency by varying the rotational frequency for its turning and the preset value of feed oil temperature during its turning according to a target rotational frequency increasing rate which is determined through judging from the stopping time of the turbine. CONSTITUTION:The oil temperature in the oil feeding and draining systems 1, 2 of a turbine is controlled by means of a control device (PID) 4 in such a way that the quantity of cooling water fed to an oil cooler is regulated. Corresponding to the stopping time of the turbine, a target rotational frequency increasing rate and a feed oil temperature set value are selected. That is, when the stopping time is within a fixed period of time, the rotational frequency increasing rate is set at a high value, and at the same time, the rotational frequency for its turning is also set at a high value, and then, the bearing oil temperature is set at a high temperature. Hereby, the turbine can be started at a high increasing rate of rotational frequency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は運転状態に応じて軸受給油温度と変更するター
ビンのターニング方式に係り、特に起動時間短縮から高
回転数上昇率で起動することが要求されることのあるタ
ービンのターニング方式に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a turbine turning method that changes the bearing oil supply temperature according to the operating condition, and in particular, the present invention relates to a turbine turning method that changes the bearing oil supply temperature depending on the operating condition, and in particular, it is possible to start at a high rotation speed increase rate by shortening the startup time. This article relates to turbine turning methods that may be required.

〔従来の技術〕[Conventional technology]

火力発電プラントを例にして、タービン軸受給排油系統
及び給油の温度制御系統を示すと概略第1図の通りであ
る。
Taking a thermal power plant as an example, a turbine bearing oil supply/drainage system and an oil supply temperature control system are schematically shown in FIG. 1.

同図において1がタービンの給油系統であり。In the figure, numeral 1 indicates the oil supply system for the turbine.

2が排油系統、3が給油を冷却する冷却水系統である。2 is an oil drainage system, and 3 is a cooling water system that cools the oil supply.

4は軸受給油温度制御装置で設定温度を与えれば給油温
度を該値に維持する通常の温度コンさ トローラである。これらの系統及び装置のもとてタービ
ンの軸受給油温度は従来タービンの運転状態に応・じて
第2図の通り管理されているのが通例である。すなわち
次の通りであり 1)タービン停止後のターニング結合から次回起動時の
ターニング離脱までのターニング運転中の給油温度は、
ターニング回転数2rpm  (通常ターニング回転数
は起動、停止モードに関係な(,2rpm程度一定)に
対し軸受部の油膜形成を最適にするためタービンの起動
・停止モードに関係なく32℃程度一定の制御している
(温度が高くなると油の粘度が下がるためびびり振動の
原因等になる。)。
Reference numeral 4 denotes a bearing oil supply temperature control device, which is a normal temperature controller that maintains the oil supply temperature at a set temperature when a set temperature is applied. In these systems and devices, the turbine bearing oil supply temperature is conventionally controlled as shown in FIG. 2 according to the operating condition of the turbine. That is, the following is as follows: 1) The oil supply temperature during turning operation from the turning engagement after the turbine is stopped to the turning disengagement at the next startup is:
Turning speed: 2 rpm (Normally, turning speed is independent of start and stop modes (constant around 2 rpm), but in order to optimize the formation of an oil film on the bearing, the turning speed is controlled to be constant at around 32 degrees Celsius regardless of the turbine start and stop modes. (As the temperature rises, the viscosity of the oil decreases, causing chatter and vibration.)

2)ターニング離脱からタービン定格回転数到達までの
タービン回転数上昇中の給油温度は、ターニング時の給
油温度32℃から定格回転数時の給油温度46℃(後述
)間を直線的に変化させるのを温度制御の目樟値として
いるが、実際は制御により冷却水弁が全閉していても図
の如くタービン軸受損失による排油温度の上昇が少ない
ことから(油タンク等で特に加熱は行っていない。)設
定温度に対し実油温度は追いつかず、かなり遅れたもの
となっている。一方、定格回転数とするための条件に3
8℃があることから制御により、定格回転数到達時に該
温度が得られないならばその条件を満足させる回転数上
昇率以上の上昇率は選べない。
2) The oil supply temperature while the turbine rotation speed is increasing from leaving the turning to reaching the turbine rated rotation speed is changed linearly between the oil supply temperature at turning of 32℃ and the oil supply temperature at the rated rotation speed of 46℃ (described later). is used as a target value for temperature control, but in reality, even if the cooling water valve is fully closed by control, the temperature of the drained oil does not rise due to turbine bearing loss as shown in the figure (no heating is done in the oil tank, etc.). (No.) The actual oil temperature cannot catch up with the set temperature and is quite behind. On the other hand, the conditions for achieving the rated rotation speed are 3.
Since the temperature is 8° C., if the temperature cannot be obtained when the rated rotational speed is reached by control, a rotational speed increase rate higher than that which satisfies that condition cannot be selected.

3)併入から解列の負荷運転中を含んだタービン定格回
転数運転中の給油温度は、タービンの起動停止モードに
関係なく46℃程度一定に制御している。
3) The oil supply temperature during operation of the turbine at the rated rotational speed, including load operation from merging to decoupling, is controlled to be constant at about 46° C. regardless of the startup/stop mode of the turbine.

4)解列、タービントリップからターニング給金までの
タービン回転数降下中の給油温度は、定格回転数時の給
油温度46℃からタービン時の給油温度32℃間を直線
的に変化させるのを温度制御の目標値とし一応満足に制
御している。
4) The oil supply temperature while the turbine rotation speed is decreasing from parallel separation and turbine trip to turning feed is determined by changing linearly between the oil supply temperature at rated rotation speed of 46°C and the oil supply temperature at turbine time of 32°C. This is the target value for control, and it is controlled satisfactorily.

タービンのターニング方式も1)に示す如く、タービン
起動停止モードに関係なく常時2rPIl+ターニング
であり特に変わった方式は取っていない。
As shown in 1), the turbine turning method is always 2rPIl+turning regardless of the turbine start/stop mode, and no particularly unusual method is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、昨今のタービンの運用に対するニーズ
である毎回起動停止、起動損失低減からの起動時間短縮
という点について十分配慮がされていない。すなわち、
タービンを高回転数上昇率で起動しようとしてタービン
軸受給油温度設定をターニング時の32℃から定格回転
数時の46℃に向け、設定変更し、タービンを起動して
も設定温度に対し実油温度が追いつかず定格までの回転
数上昇が行えないという点である。
The above-mentioned conventional technology does not give sufficient consideration to the current needs for turbine operation, such as shortening the startup time by starting and stopping each time and reducing startup loss. That is,
In an attempt to start the turbine at a high rotation speed increase rate, the turbine bearing oil supply temperature setting was changed from 32℃ at turning to 46℃ at rated rotation speed, and even when the turbine was started, the actual oil temperature was lower than the set temperature. The problem is that the engine speed cannot catch up and the rotation speed cannot be increased to the rated value.

これを対策する方法としては1次の方法が考えられるが
、いずれの場合も列記する問題があり良策といいがたい
The first method can be considered as a countermeasure to this problem, but in either case, there are problems listed below and it is difficult to say that it is a good solution.

1、給油系に専用の給油が温装置をっけ加温するること
か考えられるが、この方法は設備が非常に複雑になり経
済的な問題があると同時に実績に乏しく信頼性からも不
利である。
1. It may be possible to use a dedicated oil supply system to heat the heating device, but this method requires very complicated equipment and has economical problems, as well as lack of experience and disadvantages in terms of reliability. It is.

2、高回転数上昇率(一般的には360rpm程度)で
起動した場合でも定格回転数到達時に規定の実油温度が
得られる点までターニング時給油温度を下記のいずれか
の考慮をはらって常に上げて置く(37℃程度)方法が
考えられるがいずれも列記する問題がある。
2. Even when starting at a high rotation speed increase rate (generally around 360 rpm), always adjust the oil supply temperature during turning to the point where the specified actual oil temperature is obtained when the rated rotation speed is reached, taking into account one of the following: A possible method is to raise the temperature (about 37°C), but each method has the following problems.

a)油温度上昇により油の粘度が下がることがら高圧油
でタービン軸をジヤツキアップして平滑なターニング運
転が行えるように給油するジャッキング油ポンプを軸受
給油ポンプとは別に設置する方法が考えられるが、この
方法も設備が非常に複雑になり経済的な間コがあると同
時に、このポンプは一般的に輸入品を使用するという背
景から調達および保全のしやすさという点で問題がある
a) Since the viscosity of the oil decreases as the oil temperature rises, one possible method is to install a jacking oil pump separately from the bearing oil supply pump, which uses high-pressure oil to jack up the turbine shaft and supply oil for smooth turning operation. However, this method also requires very complicated equipment and requires economical time, and at the same time, there are problems in terms of ease of procurement and maintenance since the pumps are generally imported products.

b)第3図に「給油温度と回転数変化に対する油膜厚さ
の関係」を示すが、高油温のまま低回転数でターニング
を実施すると最少必要油膜厚さを確保出来ず、軸と軸受
は金属接触を紹き損傷をきたすことから油の粘度が下が
る分掌時5〜6 rpmの高回転数ターニングとして油
模形を計る方法が考えられるが、高回転数ターニングは
通常回転数ターニングに対して下記の点で不利であり、
年間を通して常時高回転数のターニングするのは問題が
ある。
b) Figure 3 shows the relationship between oil film thickness and changes in oil supply temperature and rotational speed. If turning is performed at low rotational speed with high oil temperature, the minimum required oil film thickness cannot be secured, and the shaft and bearing Since this introduces metal contact and causes damage, it is possible to measure the oil model as high rotational speed turning of 5 to 6 rpm during separation when the viscosity of the oil decreases, but high rotational speed turning is different from normal rotational speed turning. It is disadvantageous in the following points,
There is a problem with constantly turning at high rpm throughout the year.

通常回転数に対し、高回転数ターニングの方が不利な理
由 1)軸受に異物が混入した時(油中の夾雑物)、タービ
ン軸の回転エネルギーが大きいため軸受損傷が大きくな
る。
Reasons why turning at high rotational speeds is more disadvantageous than normal rotational speeds 1) When foreign matter gets mixed into the bearing (contaminants in oil), the rotational energy of the turbine shaft is large, resulting in greater damage to the bearing.

2)発電機回転子胴部のスロットにおさめられた界磁コ
イルの自重による移動回数が増大し層間の銅と銅との擦
り合せによる銅粉の発生が格段に増加する。
2) The number of times the field coil, which is housed in the slot in the generator rotor body, moves due to its own weight increases, and the generation of copper powder due to the rubbing of copper between layers increases significantly.

第4図は、大容量機に最も多く採用されているギヤピッ
クアップ形回転子スロットの断面図であり、1がウェッ
ジ、2がクリページブロック、3がスロットライナ、4
がターン絶縁、5が複数の層から構成された各ターン(
2分割導体)、モして6が通風孔であるが、銅粉の発生
は5の各ターンの複数の眉間の銅と銅との相対的なずれ
がターニング時の自重による動きから生じることで起る
ものである。したがって、定格回転数等では遠心力でロ
ックされ相対すベリがなく、銅粉の発生は起こらない。
Figure 4 is a cross-sectional view of a gear pickup type rotor slot that is most commonly used in large capacity machines, with 1 being a wedge, 2 being a clipage block, 3 being a slot liner, and 4 being a wedge.
is the turn insulation, and 5 is each turn composed of multiple layers (
2-split conductor), 6 is a ventilation hole, and the generation of copper powder is due to the relative deviation between the coppers between the eyebrows of each turn of 5, which is caused by the movement due to its own weight during turning. It happens. Therefore, at the rated rotation speed, etc., they are locked by centrifugal force and there is no mating, and no copper powder is generated.

尚、銅粉の増加は接地事故の原因となる。(実際に事故
が報告されているケースもある。) 3)一般的に、タービン軸とターニング装置のギヤーの
結果が外れやすい。
Note that an increase in copper powder may cause grounding accidents. (Actually, accidents have been reported in some cases.) 3) In general, the results of the turbine shaft and turning device gears tend to come out of alignment.

本発明の目的は、タービンが通常の回転数上昇率で起動
する場合はターニング中のタービン軸受給油温度を通常
設定としタービンが高回転数上昇率で起動する場合に限
りターニング中のタービン軸受給油温度を高く設定させ
るタービンのターニング方式を提供することにある。
The object of the present invention is to set the turbine bearing oil supply temperature during turning to the normal setting when the turbine starts at a normal rotation speed increase rate, and to set the turbine bearing oil supply temperature during turning only when the turbine starts at a high rotation speed increase rate. The object of the present invention is to provide a turbine turning method that allows the turbine to be set at a high level.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、複数段階にターニング回転数を切り替える
ことが可能なターニング装置を使用し。
The above purpose uses a turning device that can switch the turning speed in multiple stages.

タービン停止時間から次回タービン起動時の起動モード
を推定し、(タービンの起動モードは通常タービンケー
シングメタル温度から決定され、これによりタービン回
転数上昇率も決定される。又、次回起動時のモード推定
はケーシングメタル温度冷却曲線を使用し、現時点から
の停止時間で温度降下量を推定し容易に出来る。
The startup mode for the next turbine startup is estimated from the turbine stop time. This can be easily done by using the casing metal temperature cooling curve and estimating the amount of temperature drop from the current stop time.

回転数上昇率が高上昇率の場合(タービン停止後8時間
以内の起動時等)は、ターニング中軸受給油温度設定を
高温度設定にすると共に油膜形成上、ターニング回転数
も高回転数とし、又逆に回転数上昇率が通常上昇率の場
合(タービン停止後8時間以上経過後の起動時等)は軸
受給油温度数、定を通常設定とすると共にターニング回
転数モ通常回転数とすることで達成される。
If the rotation speed increase rate is high (such as when starting up within 8 hours after stopping the turbine), set the bearing oil supply temperature during turning to a high temperature setting and also set the turning rotation speed to a high rotation speed to prevent oil film formation. Conversely, if the rate of increase in rotational speed is the normal rate of increase (such as when starting the turbine 8 hours or more after it has stopped), set the bearing oil temperature and constant to the normal setting, and set the turning rotational speed to the normal rotational speed. is achieved.

〔作用〕[Effect]

次回タービン起動時の回転数上昇率が、高回転数上昇率
の場合、ターニング中給油温度を高温度設定とし、ター
ニング回転数を高回転数とするが、これらはそれぞれ次
の働きがある。
If the rotational speed increase rate at the next turbine startup is a high rotational speed increase rate, the oil supply temperature during turning is set to a high temperature and the turning rotational speed is set to a high rotational speed, but each of these functions has the following functions.

1)ターニング中給油温度を高温度設定とすると定格回
転数時の給油温度との差が小さくことからタービンを高
回転数上昇率で起動できる(タービン停止時間が長時間
になるとタービンが冷えることから高温度設定としても
給油温度は上がらない。ただこの場合は、タービンの回
転数上昇率も熱応力の観点から高回転数上昇率の起動は
不可であり、高温度設定の必要性もない。
1) If the oil supply temperature during turning is set to a high temperature, the difference from the oil supply temperature at the rated rotation speed is small, so the turbine can be started at a high rotation speed increase rate (because the turbine will cool down if the turbine is stopped for a long time) Even if the temperature is set to a high temperature, the oil supply temperature does not rise.However, in this case, it is impossible to start the turbine at a high rate of increase in rotational speed from the viewpoint of thermal stress, and there is no need to set a high temperature.

)。).

2)ターニング回転数も高回転数とすると回転によるポ
ンプ作用効果で発生油圧を増加させ油膜形成させること
から、比較的高油温でのターニングができる。
2) If the turning rotation speed is also set to a high rotation speed, the generated oil pressure is increased due to the pump action effect due to rotation and an oil film is formed, so turning can be performed at a relatively high oil temperature.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて説明する。第1図及び
第5図〜第6図に本発明が適用された一実施例を示す。
Hereinafter, the present invention will be explained based on examples. An embodiment to which the present invention is applied is shown in FIG. 1 and FIGS. 5 and 6.

まず第1図は前述の通りタービン軸受給排油系統及び給
油の温度制御系統であるが、5は、本発明になるターニ
ング中の給油温度制御設定切替回路を示している。
First, as mentioned above, FIG. 1 shows the turbine bearing oil supply/discharge system and the oil supply temperature control system, and 5 shows the oil supply temperature control setting switching circuit during turning according to the present invention.

次に第5図は本発明になるターニング装置の概略図であ
り、駆動源として交流電動機を使用し極数切り換えによ
って二段階にターニング回転数を変更できる設備になっ
ている。本図において、1はタービン軸との結合用ギヤ
ー、2は二連式のターニング装置駆動用電動機、3は電
動機の極数切り替え用接触器であり、3つの接触器のい
ずれを投入するかでターニング回転数が選択できる。
Next, FIG. 5 is a schematic diagram of a turning device according to the present invention, which uses an AC motor as a drive source and is capable of changing the turning speed in two stages by changing the number of poles. In this figure, 1 is a gear for coupling with the turbine shaft, 2 is a two-unit electric motor for driving a turning device, and 3 is a contactor for switching the number of poles of the motor. Turning speed can be selected.

さらに第6図は次回タービン起動時のタービン回転数上
昇率が高回転数上昇率の場合に給油温度設定を高温度設
定にすると共に高回転数ターニングに自動的に切り替え
る(タービン回転数上昇率が通常回転数上昇率の場合に
は給油温度設定を通常温度設定にすると共に通常回転数
ターニングを選択する)シーケンスロジックを示す。
Furthermore, Fig. 6 shows that when the turbine rotation speed increase rate at the next turbine startup is high, the oil supply temperature setting is set to a high temperature and the system automatically switches to high rotation speed turning (the turbine rotation speed increase rate is high). In the case of the normal rotation speed increase rate, the oil supply temperature setting is set to the normal temperature setting and the normal rotation speed turning is selected.) The sequence logic is shown below.

本図において、1はANDロジック、2はORロジック
、3はNOTORロジックは時限動作タイマー、5はキ
ープリレー、6は第4図3の接触器であって、7は8の
ターニング指令信号が初めて成立した時に、4の時限動
作タイマーがカウントアツプする間、(10秒程度)強
制的に低回転数ターニングを選択する回路(ターニング
開始を高回転数ターニングであると、特にターニング結
合が外れやすく、低回転数ターニングとする方が好まし
い。)。
In this figure, 1 is an AND logic, 2 is an OR logic, 3 is a NOTOR logic is a timed operation timer, 5 is a keep relay, 6 is a contactor shown in Fig. 4 and 3, and 7 is a turning command signal of 8 for the first time. A circuit that forcibly selects low rotational speed turning (for about 10 seconds) while the timed operation timer in step 4 counts up when it is established (if turning is started at high rotational speed turning, the turning coupling is particularly likely to come off, It is preferable to turn at a low rotation speed.)

9は、ターニング指令信号が成立し規定時間経過後(4
の時限動作タイマーカウントアツプ)タービン通常回転
数上昇率起動が選択されている場合に通常回転数ターニ
ングを選択する回路、10は高回転数上昇率が選択され
た場合に高回転数ターニングを選択する回路、又11は
第1図5の回路であり前記と同様に油温度設定を切り替
える回路である。尚、12はタービン停止時間から決定
される次回タービン起動時の回転数上昇率に見合つて出
力される接点があり、具体的には第7図のタービンケー
シングメタル温度冷却曲線から次回タービン起動時のメ
タル温度を求め、タービン起動時のメタル温度から決定
されるあらかじめ決められた回転数上昇率になっている
。5のキープリレーは、いったん高回転数上昇率が選択
されたら通常回転数上昇率が選択されるまでこの信号を
保持する(余計な0N−OF Fの繰り返しを防止する
)回路である。
9 is after the turning command signal is established and the specified time has elapsed (4
10 is a circuit that selects normal rotational speed turning when the turbine normal rotational speed increase rate startup is selected (timed operation timer count up), and 10 selects high rotational speed turning when a high rotational speed increase rate is selected. The circuit 11 is the circuit shown in FIG. 1 and 5, and is a circuit for switching the oil temperature setting in the same manner as described above. In addition, there is a contact point 12 that outputs an output corresponding to the rotation speed increase rate at the next turbine startup determined from the turbine stop time. Specifically, from the turbine casing metal temperature cooling curve in Figure 7, the output is determined from the turbine casing metal temperature cooling curve at the next turbine startup. The metal temperature is determined, and the rotation speed increase rate is determined in advance from the metal temperature when the turbine is started. The keep relay 5 is a circuit that holds this signal once the high rotational speed increase rate is selected until the normal rotational speed increase rate is selected (to prevent unnecessary ON-OFF repetitions).

本実施例によれば、極めて経済的な方法で(?!!動機
そのものが7〜8kWの小型であることから2速式にし
ても十数万円で、他の方法にくらべ費用は断然安い。)
二段階ターニングが可能となり、高回転数ターニングを
最少に押さえて軸の油膜形成を確実に行うという効果が
ある。
According to this example, it is an extremely economical method (?! Because the motive power itself is small with a power of 7 to 8 kW, even a two-speed type will cost over 100,000 yen, which is by far the cheapest method compared to other methods. .)
Two-stage turning is possible, which has the effect of minimizing high-speed turning and ensuring the formation of an oil film on the shaft.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、タービン8時間停止等の暖機状態に於
いて従来より高回転数上昇率でタービンを起動すること
を比較的簡便な方法で可能にすると共に、ターニング回
転数として不利な高回転数ターニングを最少に押さえる
効果がある。
According to the present invention, in a warm-up state such as when the turbine has been stopped for 8 hours, it is possible to start the turbine at a higher rotation speed increase rate than before in a relatively simple manner. This has the effect of minimizing rotational speed turning.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はタービン軸受給排油系統及び給油の温度制御系
統図、第2図はタービン起動特性図、第3図は給油温度
と回転数変化に対する油膜厚さの関係を示す線図、第4
図は発電機ギヤピックアップ形回転子スロットの断面図
、第5図はターニング装置の概念図、第6図は高回転数
と通常回転数ターニングの切り替えシーケンスロジック
図、第7図はタービンケーシングメタル温度冊却曲線で
ある。 高1図 筋3図 も4図 もS図 対設電源 も61¥1
Figure 1 is a diagram of the turbine bearing oil supply/drainage system and oil supply temperature control system, Figure 2 is a turbine startup characteristic diagram, Figure 3 is a diagram showing the relationship between oil supply temperature and oil film thickness with respect to changes in rotation speed, and Figure 4
The figure is a cross-sectional view of the generator gear pickup type rotor slot, Figure 5 is a conceptual diagram of the turning device, Figure 6 is a switching sequence logic diagram between high rotation speed and normal rotation speed turning, and Figure 7 is the turbine casing metal temperature. It is a bookkeeping curve. High 1 figure, 3 figure, 4 figure, S figure attached power supply 61 yen

Claims (1)

【特許請求の範囲】[Claims] 1、ターニング装置とタービン軸受給油温度をタービン
の運転状態に応じて変更するため給油温度制御装置を備
えたタービンにおいて、複数段階にターニング回転数を
切り替えることを可能とするターニング装置を使用し、
該ターニング回転数の切り替えとターニング中給油温度
の制御設定値変更をタービン停止時間から決定される次
回タービン起動時の目標回転数上昇率、又は回転上昇率
等タービン起動のパラメータを決定するタービンケーシ
ングメタル温度あるいはそれと同等の信号に応じて行う
ことを特徴とするタービンのターニング方式。
1. Turning device and turbine bearing In a turbine equipped with an oil supply temperature control device for changing the oil supply temperature according to the operating state of the turbine, a turning device that can switch the turning rotation speed in multiple stages is used,
Turbine casing metal that determines parameters for starting the turbine, such as the target rotation speed increase rate at the next turbine startup, which is determined from the turbine stop time, or the rotation increase rate, for switching the turning rotation speed and changing the control setting value of the oil supply temperature during turning. A turbine turning method characterized by turning in response to temperature or an equivalent signal.
JP17563686A 1986-07-28 1986-07-28 Turning system of turbine Pending JPS6332107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17563686A JPS6332107A (en) 1986-07-28 1986-07-28 Turning system of turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17563686A JPS6332107A (en) 1986-07-28 1986-07-28 Turning system of turbine

Publications (1)

Publication Number Publication Date
JPS6332107A true JPS6332107A (en) 1988-02-10

Family

ID=15999548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17563686A Pending JPS6332107A (en) 1986-07-28 1986-07-28 Turning system of turbine

Country Status (1)

Country Link
JP (1) JPS6332107A (en)

Similar Documents

Publication Publication Date Title
KR100337688B1 (en) Power supply method to induction motor
DE102007015236B4 (en) Control device integrated generator motor
US4413218A (en) Automatic load seeking control for a multitorque motor
RU2012122211A (en) STARTER GENERATOR OF A GAS TURBINE ENGINE AND METHOD OF ITS CONTROL
JP2000134994A (en) Command and control system method for multiturbo generator
EP3540224B1 (en) Electric pump apparatus
CN104155883A (en) Starting control method for static frequency converter (SFC) of pump storage group
JPS6332107A (en) Turning system of turbine
US5477115A (en) Apparatus and method for controlling start-up of electrically-powered machines
CN100538220C (en) cooling device and control method
JP3571205B2 (en) Turbine bearing oil temperature control device
JPS62255505A (en) Turning device for turbine
CA2147949C (en) Controlling start-up of electrically-powered equipment such as a compressor
KR100206657B1 (en) Cooling device of a generator
JPS6259447B2 (en)
JP3470837B2 (en) Power plant start / stop device
JPH0643804B2 (en) Lubrication temperature control device
JP2002238294A (en) Synchronization closing control apparatus and method of induction generator
RU81603U1 (en) SUBMERSIBLE MOTOR WITH OVERHEAT PROTECTION SYSTEM
EP3780378B1 (en) Resistive soft starter for electromotor
JP2612369B2 (en) Power source device
JP2905415B2 (en) Turbine bearing oil temperature control device
CN114826091A (en) Controller and driving circuit for motor
JPH04121100A (en) Variable speed pumped-storage power station
US2182976A (en) Motor control system