JPS63319247A - Production of ceramic molded body - Google Patents

Production of ceramic molded body

Info

Publication number
JPS63319247A
JPS63319247A JP62154296A JP15429687A JPS63319247A JP S63319247 A JPS63319247 A JP S63319247A JP 62154296 A JP62154296 A JP 62154296A JP 15429687 A JP15429687 A JP 15429687A JP S63319247 A JPS63319247 A JP S63319247A
Authority
JP
Japan
Prior art keywords
molded body
slurry
methylstyrene
ceramic powder
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62154296A
Other languages
Japanese (ja)
Other versions
JPH08736B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Junko Takeda
武田 淳子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62154296A priority Critical patent/JPH08736B2/en
Publication of JPS63319247A publication Critical patent/JPS63319247A/en
Publication of JPH08736B2 publication Critical patent/JPH08736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To produce the title molded body which permits defatting at relatively low temp. and contains no breakage by molding a slurry contg. ceramic powder, a specified binder, and an alcohol, then defatting and calcining. CONSTITUTION:A binder consisting of poly(alpha-ethyl styrene) is prepd. by adding oxygen to a polymer having several thousands-several millions mol.wt. obtd. by the living anion polymn. of alpha-methyl styrene at <=50 deg.C in vacuum or in inert gas atmosphere in the presence of an organolithium compd. (e.g. butyl Li). Then, a slurry is prepd. by mixing 100pts.wt. ceramic powder, 5-50pts.wt. said binder, 0-50pts.wt. plasticizer (e.g. phthalic diester), and 0.1-10 times by weight (basing on the amt. of the ceramic powder) 1-20C alcohol (e.g. methanol). Then, the slurry is molded, then defatted, sintered or coagulated by fusion.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミック成形体の製造方法に関し、詳しくは
、焼結或いは融結処理前の成形体の成形に際して用いる
スラリーの性状を改良した、得られる成形物の性質を向
上し、しかも比較的低温で完全に脱脂が行われるセラミ
ック成形体の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a ceramic molded body, and more specifically, to a method for producing a ceramic molded body, and more specifically, to a method for producing a ceramic molded body, the present invention relates to a method for manufacturing a ceramic molded body, and more specifically, to a method for producing a ceramic molded body, and more particularly, to a method for producing a ceramic molded body, the present invention relates to a method for manufacturing a ceramic molded body, and more specifically, to a method for manufacturing a ceramic molded body, and in particular, to a method for producing a ceramic molded body, the present invention relates to a method for producing a ceramic molded body, and more specifically, to a method for producing a ceramic molded body, and in particular to a method for producing a ceramic molded body, the present invention relates to a method for producing a ceramic molded body, and more specifically, to a method for producing a ceramic molded body, and more specifically, to a method for producing a ceramic molded body, the present invention relates to a method for producing a ceramic molded body, and more specifically, to The present invention relates to a method for producing a ceramic molded body, which improves the properties of the molded product and allows complete degreasing at a relatively low temperature.

〔従来の技術〕[Conventional technology]

複雑な形状や高寸法精度が要求されるセラミック製品の
製造法としては、予め成形した成形体を焼成するいわゆ
る常圧焼結法、反応焼結法などの技術を利用することが
工業的に行なわれている。
Industrial methods for manufacturing ceramic products that require complex shapes and high dimensional accuracy include the so-called pressureless sintering method, which involves firing preformed compacts, and the reaction sintering method. It is.

ここで成形体を成形する手段としては、例えばアルミナ
やフェライトなどのセラミック粉末に、必要に応じてバ
インダーの他に焼結促進剤を加えた組成物を湿式プレス
法、ドクターブレード法、押出成形法、射出成形法など
の乾式あるいは湿式法で所望の形状に成形することが行
われている。
Here, methods for forming the compact include a wet pressing method, a doctor blade method, an extrusion molding method, and a composition prepared by adding a sintering accelerator in addition to a binder to ceramic powder such as alumina or ferrite, if necessary. Molding into a desired shape is performed by a dry or wet method such as injection molding.

比較的低温で脱脂が可能な方法として本発明者らは、既
にポリα−メチルスチレンを使用する方法(特開昭60
−51657号公報)を提案している。
The present inventors have already developed a method using polyα-methylstyrene (Japanese Unexamined Patent Application Publication No. 1983-1990) as a method that allows degreasing at a relatively low temperature.
-51657).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、脱脂前の成形物を湿式法、特にスラリー
状の樹脂とセラミック粉末と溶媒の混合物を用いて製造
する際のスラリーの流れ性が不良であり、成形物の成形
が困難であるとか、ペースト状にしてセラミック板の上
にペーストをのせ多層状の成形物を製造する際にペース
トの流動性が不良でうまく塗布できない等の問題があっ
た。
However, when manufacturing molded products before degreasing using a wet method, especially using a mixture of slurry-like resin, ceramic powder, and solvent, the flowability of the slurry is poor, making it difficult to mold the molded products, or using paste. When manufacturing a multilayer molded product by placing the paste on a ceramic plate, there were problems such as poor fluidity of the paste and difficulty in applying it properly.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記問題を解決する方法について鋭意検討
し、本発明を完成した。
The present inventors have intensively studied methods for solving the above problems and have completed the present invention.

即ち、本発明はセラミック粉末に熱可塑性樹脂をバイン
ダーとして混合し、成形したのち脱脂し、焼結或いは融
結するセラミック成形体の製造方法において、熱可塑性
樹脂がリビングアニオン重合法で重合して得た活性末端
を有する重合体に酸素を付加せしめたポリα−メチルス
チレンであり、セラミック粉末とポリα−メチルスチレ
ンを少なくともアルコール類を含有する溶媒中で混合し
てスラリー状として成形することを特徴とするセラミッ
ク成形体の製造方法である。
That is, the present invention provides a method for producing a ceramic molded body in which ceramic powder is mixed with a thermoplastic resin as a binder, molded, degreased, and sintered or fused. Poly-α-methylstyrene is made by adding oxygen to a polymer with active terminals, and is characterized by mixing ceramic powder and poly-α-methylstyrene in a solvent containing at least alcohol and forming it into a slurry. This is a method for manufacturing a ceramic molded body.

本発明において、バインダーとして用いるポリα−メチ
ルスチレンとしては、α−メチルスチレンの単独重合体
の他に、ポリα−メチルスチレンの分解特性を失ねなす
、しかも活性末端が生きている状態で重合する、即ち、
リビングアニオン重合可能な程度他の共重合性の単量体
との共重合体も使用できる。例えば、他の共重合性の単
量体として、スチレン及びその誘導体、或いはブタジェ
ン等のジエン類を数%〜数十%含有するように重合する
こともできる。
In the present invention, the polyα-methylstyrene used as a binder may be a homopolymer of α-methylstyrene, or a polymer that can be polymerized in a state in which the decomposition properties of polyα-methylstyrene are not lost and the active terminals are still alive. do, i.e.
Copolymers with other copolymerizable monomers to the extent that living anionic polymerization is possible can also be used. For example, it can be polymerized to contain several percent to several tens of percent of styrene and its derivatives, or dienes such as butadiene, as other copolymerizable monomers.

本発明において重要なのは、α−メチルスチレン或いは
、他の共重合性の単量体をブチルリチウム、エチルリチ
ウム、メチルリチウム等の有機リチウム或いはナトリウ
ムナフタレン等の有機ナトリウムを用いてリビングアニ
オン重合し、次いで活性末端が生きている時に酸素を付
加させたポリα−メチルスチレンを用いる点にある。
What is important in the present invention is that α-methylstyrene or other copolymerizable monomer is subjected to living anion polymerization using organic lithium such as butyllithium, ethyllithium, methyllithium, or organic sodium such as sodium naphthalene, and then The key point is to use polyα-methylstyrene to which oxygen is added while the active end is alive.

ここでリビングアニオン重合の方法については特に制限
はなく、公知の通常の方法が採用できる。
There is no particular restriction on the method of living anionic polymerization, and any known ordinary method can be employed.

重合温度としては50″C以下、好ましくは30°C以
下であり、真空下或いは窒素等の不活性ガス雰囲気下ベ
ンゼン、トルエン等の芳香族炭化水素の存在下、或いは
不存在下に反応される。重合に際しジグライム等を活性
化剤として利用するとか、α−メチルスチレンと他の共
重合性の単量体をランダム的に或いはブロック的に反応
することもできる。
The polymerization temperature is 50"C or less, preferably 30C or less, and the reaction is carried out in vacuum or in an inert gas atmosphere such as nitrogen in the presence or absence of an aromatic hydrocarbon such as benzene or toluene. During polymerization, diglyme or the like may be used as an activator, or α-methylstyrene and other copolymerizable monomers may be reacted randomly or in a block manner.

酸素としては、窒素等の不活性ガスとの混合物でも例え
ば空気でも使用できるが充分に脱水したものを使用する
。その使用量としては、酸素として活性末端の等モル倍
以上用いられる。
As oxygen, a mixture with an inert gas such as nitrogen or, for example, air can be used, but oxygen that has been sufficiently dehydrated is used. The amount used is equal to or more times the mole of active terminals as oxygen.

使用するα−メチルスチレンの重合体の分子量としては
特に制限はないが、通常数千〜数百万のものが適当であ
る。またα−メチルスチレンの2〜8量体を混合物して
用いることもできる。
There is no particular restriction on the molecular weight of the α-methylstyrene polymer used, but a range of several thousand to several million is usually appropriate. Further, a mixture of α-methylstyrene dimers to octamers can also be used.

本発明においてまた重要なのはバインダーである上記α
−メチルスチレンの重合体とセラミック粉末を混合する
際に溶媒として少なくともアルコール類を含有する溶媒
を使用することにあり、アルコール類としてはOH基を
分子中に1個以上含有する化合物であり、多価アルコー
ルであってもかまわない。アルコール類としては通常炭
素数1〜20程度のものが使用でき、メタノール、エタ
ノール、プロパツール、ブタノール、ヘキサノール等の
脂肪族アルコールが一般的であるが、もちろんシクロヘ
キサノール、テルピネオール等の脂環族アルコール、フ
ェノール、ベンジルアルコール等の芳香族アルコール等
も使用できる。
Also important in the present invention is the binder α
- When mixing the methylstyrene polymer and the ceramic powder, a solvent containing at least alcohols is used, and the alcohols are compounds containing one or more OH groups in the molecule. It does not matter if it is a alcohol. As alcohols, those having about 1 to 20 carbon atoms can be used, and aliphatic alcohols such as methanol, ethanol, propatool, butanol, and hexanol are common, but of course alicyclic alcohols such as cyclohexanol and terpineol can be used. , phenol, aromatic alcohols such as benzyl alcohol, etc. can also be used.

本発明においては、上記アルコールに加えてα−メチル
スチレンの重合体の良溶媒であるベンゼン、トルエン、
キシレン、エチルベンゼン等の芳香族炭化水素化合物、
シクロヘキサン、デカリン等の脂環族炭化水素化合物、
テトラヒドロフラン等のエーテルを併用するのが好まし
い。
In the present invention, in addition to the above-mentioned alcohol, benzene, toluene, which is a good solvent for α-methylstyrene polymer,
Aromatic hydrocarbon compounds such as xylene and ethylbenzene,
Alicyclic hydrocarbon compounds such as cyclohexane and decalin,
It is preferable to use an ether such as tetrahydrofuran.

なお、アルコール類の使用量としては、種類およびセラ
ミックの種類により異なるが、好ましくはアルコール類
の体積を使用するセラミック粉末の0.1〜10倍程度
とするのが適当であり、良溶媒を使用する場合はその量
比は使用する溶剤の種類によって異なるが、良溶剤であ
る上述の溶剤をα−メチルスチレンの重合体が均一に溶
解する程度に用いるとよい。また、必要ならば、先ずα
−メチルスチレンの重合体を良溶媒に溶解し、セラミッ
ク粉末をアルコール類に分散し、次いで両者を混合する
こともできる。
The amount of alcohol used varies depending on the type and type of ceramic, but it is appropriate that the volume of alcohol be approximately 0.1 to 10 times the volume of the ceramic powder used, and a good solvent should be used. If so, the ratio thereof varies depending on the type of solvent used, but it is preferable to use the above-mentioned solvent which is a good solvent to the extent that the α-methylstyrene polymer is uniformly dissolved. Also, if necessary, first α
- It is also possible to dissolve the methylstyrene polymer in a good solvent, disperse the ceramic powder in alcohol, and then mix the two.

混合は、ボールミル、ホモジナイザー等の比較的強く混
合できる装置を用いるのが好ましい。又混合の際の温度
としては特に制限はなく、常温で行えば充分である。
For mixing, it is preferable to use a device capable of relatively strong mixing, such as a ball mill or a homogenizer. There are no particular restrictions on the temperature during mixing, and room temperature is sufficient.

本発明においては、上記α−メチルスチレンの重合体の
他に、必要に応じ可塑剤、例えば、フタル酸ジエステル
、流動パラフィン、スチレン或いはα−メチルスチレン
のオリゴマー等を併用できる。これらの使用割合は、セ
ラミック粉100重量部に対してポリα−メチルスチレ
ンを5〜50重量部、可塑剤を0〜50重量部使用する
のが一般的である。
In the present invention, in addition to the above-mentioned α-methylstyrene polymer, a plasticizer such as phthalic acid diester, liquid paraffin, styrene or α-methylstyrene oligomer can be used in combination, if necessary. Generally, the proportions of these materials are 5 to 50 parts by weight of polyα-methylstyrene and 0 to 50 parts by weight of plasticizer per 100 parts by weight of ceramic powder.

本発明の方法はどのような成形法にも適用可能であるが
、特にセラミック粉とバインダーとを適当な溶媒中で混
合して流動化し、ドクターブレード法などでシート化す
る方法、混合流動化したペーストを基板に塗布し脱脂し
た後、焼結或いは融解する方法などの種々の湿式法に適
用することができる。
The method of the present invention can be applied to any molding method, but in particular, it can be applied to a method in which ceramic powder and a binder are mixed in a suitable solvent and fluidized, and then formed into a sheet by a doctor blade method, etc. Various wet methods can be applied, such as a method in which a paste is applied to a substrate, degreased, and then sintered or melted.

以下、実施例を示し本発明をさらに説明する。The present invention will be further explained below with reference to Examples.

実施例1 ポリα−メチルスチレン[トルエンとα−メチルスチレ
ン2/1容量比溶液で0°Cでブチルリチウム濃度0.
001Mで2時間撹拌して重合し、次いでモレキュラー
シーブス3Aで充分に乾燥した酸素をリビングアニオン
の赤色が消えるまで装入(11の溶液に対しII!、の
酸素を気相に装入した。)して合成し、多量のメタノー
ル中で析出させて得た数平均分子量15万のもの] 3
5wt%、α−メチルスチレンオリゴマー(三井東圧化
学■製、MS−730)15wt%を含むトルエン溶液
60gに、予め2−メチルヘキサノール20g、)ルエ
ン40gとセラミック成型用超微粒アルミナ100gを
良く混合したスラリーを加え混合し、さらにボールミル
で3時間混合した。
Example 1 Poly α-methylstyrene [a 2/1 volume ratio solution of toluene and α-methylstyrene at 0°C with a butyllithium concentration of 0.
Polymerization was carried out by stirring at 0.001M for 2 hours, and then oxygen sufficiently dried with 3A molecular sieves was charged until the red color of living anions disappeared (II! of oxygen was charged into the gas phase for 11 of the solution). Synthesized with a number average molecular weight of 150,000 obtained by precipitating in a large amount of methanol] 3
In 60 g of a toluene solution containing 5 wt% of α-methylstyrene oligomer (manufactured by Mitsui Toatsu Chemical ■, MS-730), 20 g of 2-methylhexanol, 40 g of luene, and 100 g of ultrafine alumina for ceramic molding were thoroughly mixed in advance. The resulting slurry was added and mixed, and further mixed in a ball mill for 3 hours.

ペースト状のスラリーは容器を傾斜すること容易に取り
出せた。このスラリーをテフロンシート上に流し厚さ1
mInのシートとした。
The pasty slurry could be easily removed by tilting the container. Pour this slurry onto a Teflon sheet to a thickness of 1
It was made into a sheet of mIn.

乾燥後シートを切断して切断面を観察したところアルミ
ナは均一に分散していた。
After drying, the sheet was cut and the cut surface was observed to find that the alumina was uniformly dispersed.

また、シートを10 X 10cmに切断し、直径5+
nn+の穴をパツキンカッターであけたものを400°
Cで脱脂したが、シート及び穴の形状に欠陥は生じなか
った。
Also, cut the sheet into 10 x 10 cm and make a diameter of 5+
400° of the nn+ hole drilled with a patch cutter
Although it was degreased with C, no defects were caused in the shape of the sheet and holes.

この脱脂シートを1400°Cで焼結して欠陥のないア
ルミナの焼結体を得た。
This degreased sheet was sintered at 1400°C to obtain a defect-free alumina sintered body.

比較例1 2−メチルヘキサノールを同じ重さのトルエンに代え、
しかもポリα−メチルスチレンとして酸素を用いること
なくメタノールを添加することで失活して得た重合体(
数平均分子量16万)を用いた他は実施例1と同様にし
たところ、ボールミルで混合したスラリーは容器を傾斜
するだけでは取り出せず流動性が不良であり、これから
製造したシートは明らかに不均一であった。また、得ら
れたシートの切断面も不均一であり、穴をあける際にシ
ートの一部が破壊し、脱脂後は全部で5ケ所が破壊して
いた。
Comparative Example 1 2-methylhexanol was replaced with toluene of the same weight,
Furthermore, a polymer obtained by deactivating polyα-methylstyrene by adding methanol without using oxygen (
When the same procedure as in Example 1 was carried out except that a slurry with a number average molecular weight of 160,000 was used, the slurry mixed in a ball mill could not be taken out by simply tilting the container, and the fluidity was poor, and the sheet produced from it was clearly non-uniform. Met. Further, the cut surface of the obtained sheet was also non-uniform, with some parts of the sheet broken when holes were made, and a total of five places broken after degreasing.

実施例2 2−メチルヘキサノールおよびトルエンをそれぞれテル
ピネオール、デカリンに代え、実施例1と同様にした。
Example 2 The same procedure as in Example 1 was carried out except that 2-methylhexanol and toluene were replaced with terpineol and decalin, respectively.

得られたシートの断面は均一であり、脱脂後の成型体の
形状に問題はなく、焼結後の欠陥もなかった。
The cross section of the obtained sheet was uniform, there was no problem with the shape of the molded product after degreasing, and there were no defects after sintering.

実施例3 重合をα−メチルスチレンの10%をスチレンに代え、
しかも酸素に代えて同様の方法で乾燥した空気を用いた
他は実施例1と同様にした。得られた重合体の数平均分
子量は18万であった。以下同様の操作で得られたシー
トは脱脂後の成型体の形状に異常はなく、更に1400
°Cで焼結して均一な焼結体を得た。
Example 3 In the polymerization, 10% of α-methylstyrene was replaced with styrene,
Moreover, the procedure was the same as in Example 1 except that air dried in the same manner was used instead of oxygen. The number average molecular weight of the obtained polymer was 180,000. There were no abnormalities in the shape of the molded product after degreasing, and the sheets obtained by the same operation were further heated to 1400
A uniform sintered body was obtained by sintering at °C.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を実施することにより、セラミックとバイ
ンダーとの混合物スラリーの流れ性が良好であるため成
形が容易であり、脱脂前の成型物が均一であり、比較的
低温で脱脂が可能であり、加工、脱脂、焼結或いは融結
の際に破壊することなくセラミック成形体が製造でき、
工業的に極めて価値がある。
By carrying out the method of the present invention, molding is easy because the slurry of the mixture of ceramic and binder has good flowability, the molded product is uniform before degreasing, and degreasing can be performed at a relatively low temperature. , ceramic molded bodies can be produced without breaking during processing, degreasing, sintering or fusion,
It is extremely valuable industrially.

Claims (1)

【特許請求の範囲】[Claims] 1、セラミック粉末に熱可塑性樹脂をバインダーとして
混合し、成形したのち脱脂し、焼結或いは融結するセラ
ミック成形体の製造方法において、熱可塑性樹脂がリビ
ングアニオン重合法で重合して得た活性末端を有する重
合体に酸素を付加せしめたポリα−メチルスチレンであ
り、セラミック粉末とポリα−メチルスチレンを少なく
ともアルコール類を含有する溶媒中で混合してスラリー
状として成形することを特徴とするセラミック成形体の
製造方法。
1. In a method for producing a ceramic molded body in which ceramic powder is mixed with a thermoplastic resin as a binder, molded, degreased, and sintered or fused, active terminals obtained by polymerizing the thermoplastic resin by a living anionic polymerization method are used. A ceramic made by adding oxygen to a polymer having a poly(α-methylstyrene), which is formed by mixing ceramic powder and poly(α-methylstyrene) in a solvent containing at least an alcohol and forming a slurry. Method for manufacturing a molded object.
JP62154296A 1987-06-23 1987-06-23 Method for manufacturing ceramic molded body Expired - Lifetime JPH08736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62154296A JPH08736B2 (en) 1987-06-23 1987-06-23 Method for manufacturing ceramic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62154296A JPH08736B2 (en) 1987-06-23 1987-06-23 Method for manufacturing ceramic molded body

Publications (2)

Publication Number Publication Date
JPS63319247A true JPS63319247A (en) 1988-12-27
JPH08736B2 JPH08736B2 (en) 1996-01-10

Family

ID=15581033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62154296A Expired - Lifetime JPH08736B2 (en) 1987-06-23 1987-06-23 Method for manufacturing ceramic molded body

Country Status (1)

Country Link
JP (1) JPH08736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287331A (en) * 1992-04-04 1993-11-02 Dowa Mining Co Ltd Production of high-density ito sintered compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287331A (en) * 1992-04-04 1993-11-02 Dowa Mining Co Ltd Production of high-density ito sintered compact

Also Published As

Publication number Publication date
JPH08736B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
JPH07233228A (en) Method for in situ continuous anionic dispersion polymerization
WO1997033923A1 (en) Process for the preparation of vinylic polymers, polymerization initiator for vinylic monomers, and styrene resin composition
JPH06199921A (en) Production of polymer
JP2975454B2 (en) Functional star polymer
US4220738A (en) Process for producing block copolymer from conjugated diene and vinyl aromatic
JPS63319247A (en) Production of ceramic molded body
JP4276819B2 (en) Method and apparatus for continuous production of elastomer-modified monovinyl aromatic compounds
US4087484A (en) Process for producing transparent block copolymer resin
WO2005082959A1 (en) Improved method for the production of impact polystyrene
JPS63319246A (en) Production of ceramic molded body
TW474951B (en) Anionic copolymerization of conjugated dienes and vinyl arenes in the presence of alkyl ethers of tetrahydropyranyl methanol
JPH0562606B2 (en)
JP2503024B2 (en) Method for manufacturing ceramic molded body
US5990236A (en) Preparation of impact-resistant polystyrene
US4028484A (en) Alfin polymerized rubber
JPH0832596B2 (en) Method for manufacturing ceramic molded body
CN103965410A (en) Method for preparing ABS resin by using Nd-SIBR as flexibilizer and by using in-situ mass method
JPS63303853A (en) Production of ceramic molded body
JPS5810411B2 (en) How to find out how to get started
JPS63319248A (en) Production of sintered ceramic
JP2003213059A (en) Styrenic resin material
JPS62101617A (en) Production of composite resin
CN103965409A (en) Method for preparing high impact polystyrene resin by using Nd-SIBR as flexibilizer and by using in-situ mass method
US3860551A (en) Method of making stable emulsions of immiscible solutions of thermoplastic polymers and ethylenically unsaturated monomers
JPH0772110B2 (en) Method for manufacturing ceramic sintered body