JPS63318517A - Method and equipment for transmitting color image - Google Patents

Method and equipment for transmitting color image

Info

Publication number
JPS63318517A
JPS63318517A JP15324587A JP15324587A JPS63318517A JP S63318517 A JPS63318517 A JP S63318517A JP 15324587 A JP15324587 A JP 15324587A JP 15324587 A JP15324587 A JP 15324587A JP S63318517 A JPS63318517 A JP S63318517A
Authority
JP
Japan
Prior art keywords
light
writing
optical system
primary colors
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15324587A
Other languages
Japanese (ja)
Inventor
Takashi Kurokawa
隆志 黒川
Tetsuharu Abe
阿部 徹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15324587A priority Critical patent/JPS63318517A/en
Publication of JPS63318517A publication Critical patent/JPS63318517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To directly transmit a color image including color information only by one optical fiber as light itself by multiplexing respective image data of the three primary colors with the wavelength of light and transmitting the multiplied data. CONSTITUTION:White light projected from a light source 1 is radiated to a diffraction grating 3 by a lens 2, divided from single color beams respectively having wavelengths lambda1-lambdan and the divided single color beams are radiated to respective points corresponding to n picture elements on a reading face of a space optical modulator 5. On the other hand, three light sources 7R, 7G, 7B are periodically and alternately lighted by pulses and light dispersed from an object 6 forms its image on a reading face of the modulator 5. Image patterns projected from the object correspondingly to the dispersed beams of the three primary colors are converted into light intensity components having wavelengths lambda1-lambdan corresponding to respective picture elements and the beams are condensed by a lens 2'' and made incident upon an optical fiber 2. Consequently, two-dimensional color image information can be directly transmitted by one optical fiber 10 without being converted into an electric signal.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、1本の光ファイバと光学部品を用いて長距
離のカラー画像伝送を行う方法とその装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for transmitting color images over long distances using a single optical fiber and optical components.

(従来の技術) 画像情報を時系列の電気信号に変換することなく、直接
、光の形で光ファイバにより伝送する方法としては、特
願昭61−293477号のように、画像の各画素に異
なる波長の光を対応させ、それらの光を1本の光ファイ
バで同時に伝送する方法が知られている。この方法にお
いては、異なる波長の光を2次元的に配列させ、波長と
画素の空間的な位置を1対1に対応させている。従って
、この方法では、画像のパターンを伝送することはでき
るが、色の情報を送ることは困難である。また、前記発
明においては信号を中継増幅する機構がないので、光フ
ァイバの伝搬損失のために数Km以上の距離を伝送する
ことは困難である。
(Prior art) As a method of directly transmitting image information in the form of light through an optical fiber without converting it into a time-series electrical signal, as in Japanese Patent Application No. 61-293477, there is a method of transmitting image information directly to each pixel of an image. A method is known in which lights of different wavelengths are matched and simultaneously transmitted through a single optical fiber. In this method, lights of different wavelengths are arranged two-dimensionally, and the wavelengths and spatial positions of pixels are made to correspond one-to-one. Therefore, although it is possible to transmit image patterns using this method, it is difficult to transmit color information. Further, in the above invention, since there is no mechanism for relaying and amplifying the signal, it is difficult to transmit the signal over a distance of several kilometers or more due to the propagation loss of the optical fiber.

(発明が解決しようとする問題点) 本発明は、このような背景のもとになされたもので、前
記方法を改良して、色の情報も含めたカラー画像を1本
の光ファイバで直接、光の状態のまま、かつ中継増幅す
ることにより長距離伝送することが可能な方法およびそ
の装置を提供することにある。
(Problems to be Solved by the Invention) The present invention was made against this background, and by improving the above method, it is possible to directly produce a color image including color information through a single optical fiber. The object of the present invention is to provide a method and an apparatus for transmitting optical signals over long distances by repeating and amplifying them while maintaining the optical state.

(問題点を解決するための手段) 本発明は、交互に点滅する物体からの3原色の散乱光を
空間光変調器への書き込み光とし、また発光源からの光
を波長の異なる複数個の光線に分割して、各光線を2次
元的に配列して、前記空間光変調器への読み出し光とし
て前記書き込み光により変調し、この変調された光を1
本の光ファイバの一端に集光することにより、3原色の
各々の画像データを光の波長で多重化して伝送し、次に
光ファイバの他端から出射した光を、入射側と同数の波
長成分に分割し、各光線を空間光変調器の書き込み光と
し、3原色の交互に点滅する光を読み出し光として前記
書き込み光により変調することにより、物体のカラー画
像伝送を行う。また増幅においては、伝搬してきたファ
イバからの出射光を送信側と同数の波長成分に分割し、
かつ各光線を同一に整列して原画像パターンをもつ書き
込み光として空間光変調器に照射し、一方、高強度の波
長の異なる複数個の光線を前記空間光変調器の各画素に
対応させて読み出す。
(Means for Solving the Problems) The present invention uses scattered light of three primary colors from an object that blinks alternately as writing light to a spatial light modulator, and also uses light from a light emitting source as a plurality of lights having different wavelengths. The light beams are divided into light beams, each light beam is arranged two-dimensionally, and the light beams are modulated by the write light as read light to the spatial light modulator, and this modulated light is
By focusing the light on one end of the optical fiber, the image data of each of the three primary colors is multiplexed and transmitted by the wavelength of the light, and then the light emitted from the other end of the optical fiber is transmitted with the same number of wavelengths as the input side. A color image of an object is transmitted by dividing the light beam into components, using each light beam as a writing light of a spatial light modulator, and modulating the writing light with alternating blinking light of three primary colors as readout light. In addition, in amplification, the light emitted from the propagating fiber is divided into the same number of wavelength components as on the transmitting side.
The light beams are arranged in the same manner and irradiated onto the spatial light modulator as writing light having an original image pattern, while a plurality of high intensity light beams having different wavelengths are made to correspond to each pixel of the spatial light modulator. read out.

装置的には、送信部は、物体の3原色光を書き込み光と
す葛光学系と、発光源からの光を波長の異なる複数個の
光線に分割して、各光線を2次元的に配列して読み出し
光とする光学系と、前記読み出し光を前記書き込み光に
よって変調する空間光変調器と、前記変調された光を光
ファイバに集光する光学系とをもって構成し、受信部は
、光ファイバから出射された光を波長の異なる複数個の
光線に分割して、各光線を2次元的に配列して書き込み
光とする光学系と、3原色光を読み出し光とする光学系
と、前記読み出し光を前記書き込み光によって変調する
空間光変調器と、前記変調された光を結像させる光学系
とをもって構成する。
In terms of equipment, the transmitter includes a Kuzu optical system that uses the three primary colors of the object as writing light, and a system that divides the light from the light source into multiple light beams with different wavelengths and arranges each light beam two-dimensionally. a spatial light modulator that modulates the reading light with the writing light; and an optical system that focuses the modulated light onto an optical fiber; an optical system that divides light emitted from a fiber into a plurality of light beams with different wavelengths and arranges each light beam two-dimensionally as writing light; an optical system that uses three primary color lights as read light; The device includes a spatial light modulator that modulates read light with the write light, and an optical system that forms an image of the modulated light.

(実施例) 以下、図面を参照して、本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1の実施例の構成図であって、1は
光源、2.2’、2”、2′″はレンズ、3.3′は回
折格子、4.4′は複数本の光ファイバを一端は1次元
状(線状)に並べ、他端は2次元状に配列したファイバ
束、5は空間光変調器、6はそのイメージを送ろうとす
る物体、7R。
FIG. 1 is a block diagram of the first embodiment of the present invention, in which 1 is a light source, 2.2', 2'', 2'' are lenses, 3.3' is a diffraction grating, and 4.4' is a A fiber bundle in which a plurality of optical fibers are arranged one-dimensionally (linearly) at one end and two-dimensionally at the other end, 5 is a spatial light modulator, 6 is an object to which the image is to be sent, and 7R.

7G、7Bはそれぞれ赤、緑、青の光を発する光源、1
0は光ファイバである。
7G and 7B are light sources that emit red, green, and blue light, respectively; 1
0 is an optical fiber.

次に動作原理を説明する。Next, the operating principle will be explained.

まずキセノンランプ等の光源1から出射された白色光は
レンズ2により回折格子3に照射され、波長λ1からλ
7の単色光に分割される。この0本のそれぞれ波長の異
なる光をレンズを用いてファイバ束4の横一列にならん
だ0本の光ファイバに1対1に対応させて入射する。フ
ァイバ束4の他端は2次元状になっているので、λ1か
らλ、の波長の0本の光は2次元的に配列されて空間光
変調器5の読み出し面のn個の画素の対応する各点に照
射される。
First, white light emitted from a light source 1 such as a xenon lamp is irradiated onto a diffraction grating 3 by a lens 2, and the wavelength is changed from λ1 to λ.
It is divided into 7 monochromatic lights. These 0 lights, each having a different wavelength, are incident on the 0 optical fibers arranged in a horizontal row of the fiber bundle 4 in a one-to-one correspondence using a lens. Since the other end of the fiber bundle 4 has a two-dimensional shape, zero lights with wavelengths from λ1 to λ are arranged two-dimensionally and correspond to n pixels on the readout surface of the spatial light modulator 5. Each point is irradiated.

一方、物体6は三つの光源7R,7G、7Bによってレ
ンズ系を通して照明される。このとき前記光源は同時に
点灯するのではなく、周期的に交互にパルス点灯する。
On the other hand, the object 6 is illuminated through the lens system by three light sources 7R, 7G, and 7B. At this time, the light sources are not turned on simultaneously, but are periodically and alternately pulsed.

物体6から散乱された光はレンズによって前記空間光変
調器5の書き込み面に結像されるが、ある時刻には赤の
光による散乱像が、また次の時刻には緑の光による散乱
像が、またその次の時刻には青の光による散乱像がとい
うように周期的に、3原色の光による散乱像が空間光変
調器5の書き込み面に結像されることになる。
The light scattered from the object 6 is imaged by the lens on the writing surface of the spatial light modulator 5, and at one time a scattered image is formed by red light, and at the next time a scattered image is formed by green light. However, at the next time, a scattered image of the three primary colors of light is periodically formed on the writing surface of the spatial light modulator 5, such as a scattered image of the blue light.

従って空間光変調器5の読み出し面に入射したファイバ
束4からの光は各時刻において3原色の物体からの散乱
光による像によって、各画素ごとに変調を受ける。空間
光変調器5としては、例えば第3図に示すような液晶ラ
イトバルブなどを用いることができる。第3図において
21は液晶層、22、22’は透明電極、23は光伝導
層、2jは反射膜、25はガラス基板、26は偏光膜で
ある。書き込み光が当たらない部分では液晶層にかかる
電圧が小さいので、読み出し光は液晶層を往復するとき
偏光方向が90°回転するので反射されない。一方、書
き込み光が当たった部分では光伝導層の抵抗が下がり、
液晶層に電圧がかかるので、読み出し光の偏光方向は変
わらず、読み出し光は反射される。
Therefore, the light from the fiber bundle 4 that is incident on the readout surface of the spatial light modulator 5 is modulated for each pixel at each time by the image of the scattered light from the object of the three primary colors. As the spatial light modulator 5, for example, a liquid crystal light valve as shown in FIG. 3 can be used. In FIG. 3, 21 is a liquid crystal layer, 22 and 22' are transparent electrodes, 23 is a photoconductive layer, 2j is a reflective film, 25 is a glass substrate, and 26 is a polarizing film. Since the voltage applied to the liquid crystal layer is small in areas where the writing light does not strike, the polarization direction of the reading light is rotated by 90 degrees as it travels back and forth through the liquid crystal layer, so it is not reflected. On the other hand, the resistance of the photoconductive layer decreases in the area that is hit by the writing light.
Since a voltage is applied to the liquid crystal layer, the polarization direction of the read light does not change and the read light is reflected.

このようにして書き込み光で結像された画像パターンは
、書き込み光とは異なる波長の読み出し光によって読み
出すことができる。また書き込み光が弱くとも、強い光
で読み出せばパターン光の増幅をしたことになる。
The image pattern imaged by the writing light in this manner can be read out by the reading light having a wavelength different from that of the writing light. Furthermore, even if the writing light is weak, reading with strong light means that the pattern light has been amplified.

前記の空間光変調器の機能によって、物体からの3原色
の散乱光に対応する画像パターンは、ファイバ束4から
の各画素に対応したλ、からλ7の光の強弱に変換され
、この光はレンズによって光ファイバ10に集光されて
ファイ只内に入射する。
By the function of the spatial light modulator described above, the image pattern corresponding to the three primary colors of scattered light from the object is converted into the intensity of light from λ to λ7 corresponding to each pixel from the fiber bundle 4, and this light is The light is focused onto the optical fiber 10 by a lens and enters the fiber.

物体からの赤、緑、青に対応する画像パターンは、その
画素に対応したn個の波長の光となって、色ごとに同時
にファイバ内を伝搬し他端から出射される。
The image pattern corresponding to red, green, and blue from the object becomes light with n wavelengths corresponding to the pixels, which simultaneously propagate within the fiber for each color and are emitted from the other end.

この出射光をレンズ2′″および回折格子3′を用いて
波長λ1からλ7の1本の光線に分割し、光ファイバ束
4と全く同一のファイバ束4′の線状端に入射し、他端
の2次元状端面から3原色に対応した画像パターンを取
り出す。この3原色に対応した画像パターン光は空間光
変調器5′に書き込み光として照射される。
This emitted light is split into a single beam with a wavelength of λ1 to λ7 using a lens 2'''' and a diffraction grating 3', and is incident on the linear end of a fiber bundle 4' that is exactly the same as the optical fiber bundle 4. An image pattern corresponding to the three primary colors is taken out from the two-dimensional end face of the end.The image pattern light corresponding to the three primary colors is irradiated onto the spatial light modulator 5' as writing light.

一方、空間光変調器5′の背面には三つの光源7R’ 
、7G’ 、7B’からの赤、緑、青の光が周期的に交
互に読み出し光として照射される。従って、この読み出
し光の色の順番を前記3原色に対応した画像パターンの
書き込み光に同期させれば、3原色の画像パターンを再
構成することになる。この再構成された画像パターンは
、例えばスクリーン8に投射させて見ることができる。
On the other hand, there are three light sources 7R' on the back of the spatial light modulator 5'.
, 7G', and 7B' are periodically and alternately irradiated with red, green, and blue light as readout light. Therefore, if the order of the colors of this readout light is synchronized with the writing light of the image pattern corresponding to the three primary colors, the image pattern of the three primary colors will be reconstructed. This reconstructed image pattern can be viewed by being projected onto the screen 8, for example.

この3原色パターンの時間的周期を100Hz以上にす
れば、カラーの動画も伝送できることになる。なお送信
側における3原色の光と、受信側における3原色の光の
点滅周期の同期については、画像を送り始める最初にス
タートパルスを送ることによってタイミングを合わせる
ことができる。
If the temporal period of the three primary color patterns is set to 100 Hz or more, color moving images can also be transmitted. Note that the timing of the flashing cycles of the three primary colors of light on the transmitting side and the three primary colors of light on the receiving side can be synchronized by sending a start pulse at the beginning of transmitting an image.

第2図は三つの光源を用いる代わりに一つの白色光源7
′、7“と色フィルタ9.9′を使用する例を示す。円
盤状の色フィルタ9は赤、緑、青の各光線を透過する三
つの部分に分割されこれを回転させることによって、空
間光変調器5への書き込み光(送信側)または読み出し
光(受信側)の光線を周期的に3原色の光線とする。前
記の部分以外は第1図と構成、動作とも同じである。
Figure 2 shows one white light source 7 instead of using three light sources.
', 7'' and color filters 9 and 9' are shown. The disc-shaped color filter 9 is divided into three parts that transmit red, green, and blue rays, and by rotating them, the spatial The writing light (on the transmitting side) or the reading light (on the receiving side) to the optical modulator 5 is periodically made into light beams of three primary colors.The configuration and operation are the same as in FIG. 1 except for the above-mentioned parts.

次に第4図により、画像信号の増幅中継方法について説
明する。第4図において、31は光源、32はレンズ、
33.33’は回折格子、34.34’は複数本の光フ
ァイバを一端は1次元状(線状)に並べ、他端は2次元
状に配列したファイド束、35は空間光変調器、38は
ハーフミラ−である。光ファイバ10内を伝搬してきた
画信号はレンズ32および回折格子33′を用いて再び
波長λ8からλ7の1本の光線に分割されて光ファイバ
束34′の線状端に入射し、他端の2次元状端面から2
次元的に配列されて空間光変調器35に書き込まれる。
Next, a method for amplifying and relaying image signals will be explained with reference to FIG. In FIG. 4, 31 is a light source, 32 is a lens,
33.33' is a diffraction grating, 34.34' is a Fido bundle in which a plurality of optical fibers are arranged one-dimensionally (linearly) at one end and two-dimensionally at the other end, 35 is a spatial light modulator, 38 is a half mirror. The image signal that has propagated within the optical fiber 10 is split again into one light beam with wavelengths λ8 to λ7 using the lens 32 and the diffraction grating 33', and enters the linear end of the optical fiber bundle 34', and the other end. 2 from the two-dimensional end face of
The light is arranged dimensionally and written into the spatial light modulator 35.

一方、光源31から出射された白色光は、レンズ32に
より回折格子33に照射され、波長λ1からλ7の単色
光に分割されてファイバ束34を透過して、λ、からλ
7の波長の1本の光がハーフミラ−38で反射して、空
間光変調器35の読み出し面のn個の画素の対応する各
点に照射される。この読み出し光は前記書き込み光の画
像パターンによって変調されて反射した後、ハーフミラ
−38を透過して、レンズによって集光され光ファイバ
10′内を伝搬していく。この過程において、読み出し
光の強度を、書き込み光の強度よりも十分強くすれば、
画信号の増幅がなされたことになる。
On the other hand, the white light emitted from the light source 31 is irradiated onto the diffraction grating 33 by the lens 32, and is split into monochromatic lights with wavelengths λ1 to λ7, which are transmitted through the fiber bundle 34 and are transmitted from λ to λ.
One beam of wavelength 7 is reflected by the half mirror 38 and irradiated to each corresponding point of the n pixels on the readout surface of the spatial light modulator 35. This read light is modulated by the image pattern of the write light and reflected, then passes through the half mirror 38, is focused by a lens, and propagates within the optical fiber 10'. In this process, if the intensity of the read light is made sufficiently stronger than the intensity of the write light,
This means that the image signal has been amplified.

(発明の効果) 以上説明したように、本発明においては、2次元のカラ
ー画像情報を電気信号に変換することなく、直接1本の
光ファイバで伝送することができ、かつ途中で画像信号
の増幅を行うことができるので、長距離の伝送も可能と
なる。また装置はレンズ、回折格子、空間光変調器など
の光学部品のみで構成され、広帯域の電子機器を必要と
せずにカラー動画像を伝送できるなどの利点がある。
(Effects of the Invention) As explained above, in the present invention, two-dimensional color image information can be directly transmitted through a single optical fiber without converting it into an electrical signal, and the image signal can be transmitted along the way. Since it can be amplified, long-distance transmission is also possible. Furthermore, the device is composed only of optical components such as lenses, diffraction gratings, and spatial light modulators, and has the advantage of being able to transmit color moving images without the need for broadband electronic equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の一実施例の構成を示す図、 第3図は本発明で用いられる空間光変調素子の一例を示
す図、 第4図は本発明における中継部の構成図である。 ■・・・光源       2.2’ 、2“、2−・
・・レンズ3.3′・・・回折格子   4.4′・・
・ファイバ束5.5′・・・空間光変調器 6・・・物
体7.7′・・・白色光源 7R,7R’・・・赤の光を発する光源7G、 7G’
・・・緑の光を発する光源7B、 7B’・・・青の光
を発する光源8・・・スクリーン    9.9′・・
・色フィルタ10、10’・・・光ファイバ 21・・
・液晶層22、22’・・・透明電極  23・・・光
伝導層24・・・反射膜      25・・・ガラス
基板26・・・偏光膜      31・・・光源32
・・・レンズ      33.33’・・・回折格子
34、34’・・・ファイバ束 35・・・空間光変調
器38・・・ハーフミラ− 特許出願人   日本電信電話株式会社第2図 q、q’−−−きフィルタ 第3図 23−−一一尤伏導層 24−−−一反村膜 25−−−−h’ラス畜跋 26−−−−偏尤月吏
FIGS. 1 and 2 are diagrams showing the configuration of an embodiment of the present invention. FIG. 3 is a diagram showing an example of a spatial light modulation element used in the present invention. FIG. 4 is a diagram showing the configuration of a relay section in the present invention. It is a diagram. ■...Light source 2.2', 2", 2-.
... Lens 3.3'... Diffraction grating 4.4'...
- Fiber bundle 5.5'...Spatial light modulator 6...Object 7.7'...White light sources 7R, 7R'...Light sources 7G, 7G' that emit red light
...Light sources 7B, 7B' that emit green light...Light sources 8 that emit blue light...Screen 9.9'...
・Color filters 10, 10'...optical fiber 21...
- Liquid crystal layer 22, 22'... Transparent electrode 23... Photoconductive layer 24... Reflective film 25... Glass substrate 26... Polarizing film 31... Light source 32
...Lens 33.33'...Diffraction grating 34, 34'...Fiber bundle 35...Spatial light modulator 38...Half mirror Patent applicant Nippon Telegraph and Telephone Corporation Fig. 2 q, q '--Filter Fig. 3 23--11 bias conductive layer 24--1 film 25--h' lath base 26-----bias bias layer 24----

Claims (1)

【特許請求の範囲】 1、交互に点滅する物体からの3原色の散乱光を空間光
変調器への書き込み光とし、また発光源からの光を波長
の異なる複数個の光線に分割して、各光線を2次元的に
配列して、前記空間光変調器への読み出し光として前記
書き込み光により変調し、この変調された光を1本の光
ファイバの一端に集光することにより、3原色の各々の
画像データを光の波長で多重化して伝送し、次に光ファ
イバの他端から出射した光を、入射側と同数の波長成分
に分割し、各光線を空間光変調器の書き込み光とし、3
原色の交互に点滅する光を読み出し光として前記書き込
み光により変調することにより、物体のカラー画像伝送
を行うことを特徴とするカラー画像伝送の方法。 2、送信側における物体からの3原色の散乱光と、受信
側における3原色の生成方法において、3原色に対応し
た三つの光源を用いるか、または白色光源と色フィルタ
を用いることを特徴とする特許請求の範囲第1項記載の
カラー画像伝送の方法。 3、交互に点滅する物体からの3原色の散乱光を空間光
変調器への書き込み光とし、また発光源からの光を波長
の異なる複数個の光線に分割して、各光線を2次元的に
配列して、前記空間光変調器への読み出し光として前記
書き込み光により変調し、この変調された光を1本の光
ファイバの一端に集光することにより、3原色の各々の
画像データを光の波長で多重化して伝送し、光ファイバ
内を伝搬してきたファイバからの出射光を送信側と同数
の波長成分に分割し、かつ各光線を同一に整列して原画
像パターンをもつ書き込み光として空間光変調器に照射
し、一方、高強度の波長の異なる複数個の光線を前記空
間光変調器の各画素に対応させて読み出すことにより増
幅して、その光線をさらに別の光ファイバに入射させ、
次に光ファイバの他端から出射した光を、入射側と同数
の波長成分に分割し、各光線を空間光変調器の書き込み
光とし、3原色の交互に点滅する光を読み出し光として
前記書き込み光により変調することにより、物体のカラ
ー画像伝送を行うことを特徴とするカラー画像伝送の方
法。 4、送信部は、物体の3原色光を書き込み光とする光学
系と、発光源からの光を波長の異なる複数個の光線に分
割して、各光線を2次元的に配列して読み出し光とする
光学系と、前記読み出し光を前記書き込み光によって変
調する空間光変調器と、前記変調された光を光ファイバ
に集光する光学系とからなり、受信部は、光ファイバか
ら出射された光を波長の異なる複数個の光線に分割して
、各光線を2次元的に配列して書き込み光とする光学系
と、3原色光を読み出し光とする光学系と、前記読み出
し光を前記書き込み光によって変調する空間光変調器と
、前記変調された光を結像させる光学系とからなること
を特徴とするカラー画像伝送の装置。 5、特許請求の範囲第4項記載のカラー画像伝送の装置
において、物体の3原色光を書き込み光とする光学系は
、物体を照射する赤、緑、青の三つの光源と、物体から
の散乱光を空間光変調器に結像するための光学系とから
なることを特徴とするカラー画像伝送の装置。 6、特許請求の範囲第4項記載のカラー画像伝送の装置
において、物体の3原色光を書き込み光とする光学系は
、物体を照明する白色光源と、赤、緑、青の3色の色フ
ィルタと、物体からの散乱光を空間光変調器に結像する
ための光学系とからなることを特徴とするカラー画像伝
送の装置。 7、送信部は、物体の3原色光を書き込み光とする光学
系と、発光源からの光を波長の異なる複数個の光線に分
割して、各光線を2次元的に配列して読み出し光とする
光学系と、前記読み出し光を前記書き込み光によって変
調する空間光変調器と、前記変調された光を光ファイバ
に集光する光学系とからなり、光ファイバ伝送路の途中
に設置された増幅部が、光ファイバから出射された光を
波長の異なる複数個の光線に分割して、各光線を2次元
的に配列して書き込み光とする光学系と、発光源からの
光を波長の異なる複数個の光線に分割して、各光線を2
次元的に配列して読み出し光とする光学系と、前記読み
出し光を前記書き込み光によっ変調する空間光変調器と
、前記変調された光を光ファイバに集光する光学系とか
らなり、受信部は、光ファイバから出射された光を波長
の異なる複数個の光線に分割して、各光線を2次元的に
配列して書き込み光とする光学系と、3原色光を読み出
し光とする光学系と、前記読み出し光を前記書き込み光
によって変調する空間光変調器と、前記変調された光を
結像させる光学系とからなることを特徴とするカラー画
像伝送の装置。
[Claims] 1. Scattered light of three primary colors from an object that blinks alternately is used as writing light to a spatial light modulator, and light from a light emitting source is divided into a plurality of light beams with different wavelengths, By arranging each light beam two-dimensionally, modulating it with the writing light as readout light to the spatial light modulator, and focusing this modulated light on one end of one optical fiber, three primary colors can be obtained. Each image data is multiplexed by optical wavelength and transmitted, and then the light emitted from the other end of the optical fiber is divided into the same number of wavelength components as the input side, and each light beam is used as the writing light of the spatial light modulator. Toshi, 3
A method of color image transmission, characterized in that a color image of an object is transmitted by using alternating flashing light of primary colors as read light and modulating it with the writing light. 2. The method for generating the three primary colors of scattered light from an object on the transmitting side and the three primary colors on the receiving side is characterized in that three light sources corresponding to the three primary colors are used, or a white light source and a color filter are used. A method of color image transmission according to claim 1. 3. The scattered light of the three primary colors from the object that flashes alternately is used as the writing light to the spatial light modulator, and the light from the light emitting source is divided into multiple light beams with different wavelengths, and each light beam is converted into two-dimensional light. The image data of each of the three primary colors is modulated by the writing light as readout light to the spatial light modulator, and the modulated light is focused on one end of one optical fiber. Writing light that multiplexes light at its wavelength and transmits it, divides the light emitted from the fiber that has propagated within the optical fiber into the same number of wavelength components as on the transmitting side, and aligns each light beam in the same way to form the original image pattern. On the other hand, a plurality of high-intensity light beams with different wavelengths are read out corresponding to each pixel of the spatial light modulator, amplified, and the light beams are further connected to another optical fiber. incident,
Next, the light emitted from the other end of the optical fiber is divided into the same number of wavelength components as the input side, each light beam is used as the writing light of the spatial light modulator, and the light that flashes alternately in the three primary colors is used as the readout light for the writing. A color image transmission method characterized by transmitting a color image of an object by modulating it with light. 4. The transmitter includes an optical system that uses the three primary colors of the object as writing light, and splits the light from the light source into multiple light beams with different wavelengths, and arranges each light beam two-dimensionally to generate readout light. a spatial light modulator that modulates the reading light with the writing light; and an optical system that focuses the modulated light onto an optical fiber; An optical system that divides light into a plurality of light beams with different wavelengths and arranges each light beam two-dimensionally as a writing light, an optical system that uses three primary color lights as readout light, and an optical system that uses the readout light as the write light. A color image transmission device comprising a spatial light modulator that modulates light, and an optical system that forms an image of the modulated light. 5. In the color image transmission device according to claim 4, the optical system that uses the three primary colors of the object as writing light includes three light sources of red, green, and blue that illuminate the object, and a light source that emits light from the object. A color image transmission device comprising: an optical system for imaging scattered light onto a spatial light modulator. 6. In the color image transmission device according to claim 4, the optical system that uses the three primary colors of the object as writing light includes a white light source that illuminates the object and three colors of red, green, and blue. A color image transmission device comprising a filter and an optical system for imaging scattered light from an object onto a spatial light modulator. 7. The transmitter includes an optical system that uses the three primary colors of the object as writing light, and a light emitting source that divides the light into multiple light beams with different wavelengths and arranges each light beam two-dimensionally to generate readout light. A spatial light modulator that modulates the reading light with the writing light, and an optical system that focuses the modulated light onto an optical fiber, and is installed in the middle of an optical fiber transmission line. The amplification unit splits the light emitted from the optical fiber into multiple light beams with different wavelengths, arranges each light beam two-dimensionally, and generates writing light. Divide each ray into two different rays.
The receiver comprises an optical system that is arranged dimensionally to produce readout light, a spatial light modulator that modulates the readout light with the write light, and an optical system that focuses the modulated light onto an optical fiber. The part consists of an optical system that divides the light emitted from the optical fiber into multiple light beams with different wavelengths and arranges each light beam two-dimensionally as writing light, and an optical system that uses three primary color lights as read light. 1. A color image transmission device comprising: a spatial light modulator that modulates the reading light with the writing light; and an optical system that forms an image of the modulated light.
JP15324587A 1987-06-22 1987-06-22 Method and equipment for transmitting color image Pending JPS63318517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15324587A JPS63318517A (en) 1987-06-22 1987-06-22 Method and equipment for transmitting color image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15324587A JPS63318517A (en) 1987-06-22 1987-06-22 Method and equipment for transmitting color image

Publications (1)

Publication Number Publication Date
JPS63318517A true JPS63318517A (en) 1988-12-27

Family

ID=15558232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15324587A Pending JPS63318517A (en) 1987-06-22 1987-06-22 Method and equipment for transmitting color image

Country Status (1)

Country Link
JP (1) JPS63318517A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189529A (en) * 2003-12-25 2005-07-14 Nippon Telegr & Teleph Corp <Ntt> Polarization control element and method for driving the same
JP2005294944A (en) * 2004-03-31 2005-10-20 Topcon Corp Optical image transmitting system, optical image transmitting apparatus, optical image transmitting apparatus and optical image receiving method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005189529A (en) * 2003-12-25 2005-07-14 Nippon Telegr & Teleph Corp <Ntt> Polarization control element and method for driving the same
JP2005294944A (en) * 2004-03-31 2005-10-20 Topcon Corp Optical image transmitting system, optical image transmitting apparatus, optical image transmitting apparatus and optical image receiving method
JP4549714B2 (en) * 2004-03-31 2010-09-22 株式会社トプコン Optical image transmission system, optical image transmission device, optical image reception device, and optical image transmission method

Similar Documents

Publication Publication Date Title
KR101428819B1 (en) Projection device for the holographic reconstruction of scenes
US3783185A (en) Multi-color acoustooptic modulator
KR100297424B1 (en) Color image generation system and its application
CA2246698C (en) Confocal microscope
WO2018117736A1 (en) Apparatus for displaying holographic images and method of controlling the same
JPS62195975A (en) Limiter of blank space between picture elements for image bar apparatus
KR970006558B1 (en) Light image direct transmission method and device
US20020034015A1 (en) Projection type image display apparatus
JPH05203908A (en) Single light valve full color projection display device
EP1163545B1 (en) Projection system
EP0035500A1 (en) Laser-based image recording system
KR100636089B1 (en) Reflection type color projector
US6902276B2 (en) Color projector apparatus and method
RU2095762C1 (en) Method for recording and displaying of three- dimensional picture of object and device for recording and displaying of three-dimensional picture of object
JPH07140886A (en) Optical element and image display device
JPS63318517A (en) Method and equipment for transmitting color image
US4105290A (en) Optical color communication system
JP3441073B2 (en) Color display
US3743376A (en) Holographic beam coupler
US3739173A (en) Interlaced multiplexing electro optical system
JP3785768B2 (en) Image forming system and projection display device
US2099889A (en) Television system
RU2119184C1 (en) Process of formation and reproduction of three-dimensional image and device for its implementation
JPS63148725A (en) Method and device for image transmission
US3429641A (en) Projection system