JPS63318312A - Bearing device - Google Patents

Bearing device

Info

Publication number
JPS63318312A
JPS63318312A JP15062287A JP15062287A JPS63318312A JP S63318312 A JPS63318312 A JP S63318312A JP 15062287 A JP15062287 A JP 15062287A JP 15062287 A JP15062287 A JP 15062287A JP S63318312 A JPS63318312 A JP S63318312A
Authority
JP
Japan
Prior art keywords
shaft
pressure
lubricating fluid
bearing
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15062287A
Other languages
Japanese (ja)
Inventor
Teruo Maruyama
照雄 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15062287A priority Critical patent/JPS63318312A/en
Publication of JPS63318312A publication Critical patent/JPS63318312A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To obtain a bearing device in which the relative shift of a rotational shaft to the change of load in an axial direction is small, by forming a projection at the opposite face to a thrust bearing. CONSTITUTION:When a rotary shaft 1 is rotated to generate pumping pressure through spiral grooves 8, pressure in the shaft end side of lubricating fluid film 7a between cylindrical opposing faces is increased and the rotary shaft 1 is equally pressurized along the full circumference by the pumping pressure. As a result, swing rotation is prevented and the stable rotation of the rotary shaft 1 is secured. And the pumping pressure is supplied to a gap between opposing faces 5a, 5b in an axial direction, and through this gap, it passes a through hole 10 bored it the center of the shaft of a bearing member 2 to flow out. The gap is kept constantly by lubricating fluid pressure supplied between the opposing faces 5a, 5b in the axial direction so that the rotary shaft 1 is held in a constant position.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は軸受装置に関し、特に流体軸受装置において、
軸の端面とこれに対向する面の間に潤滑流体膜を形成し
たスラスト軸受を備えている軸受装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a bearing device, particularly in a hydrodynamic bearing device.
The present invention relates to a bearing device including a thrust bearing in which a lubricating fluid film is formed between an end surface of a shaft and a surface facing the end surface thereof.

従来の技術 従来から、流体膜によるスラスト軸受機能を備えた軸受
装置として、第5図に示すような推力軸受が知られてい
る。第5図において、31は回転軸、32は回転軸31
の端部な間際をあけて取囲むように配置された軸受部材
であり、これら回転軸31と軸受部材32の対向周面3
3a、33b間、及び対向端面34a、346間に空気
や油などの潤滑流体膜35が形成され、かつ回転軸31
側の対向周面33ILに、回転軸31の回転によって潤
滑流体を軸端に向かって圧送するスパイラルグループ3
6が形成されている。
2. Description of the Related Art Conventionally, a thrust bearing as shown in FIG. 5 has been known as a bearing device having a thrust bearing function using a fluid film. In FIG. 5, 31 is a rotating shaft, and 32 is a rotating shaft 31.
These bearing members are arranged so as to surround the ends of the rotating shaft 31 and the bearing member 32 with a gap between them, and
A lubricating fluid film 35 such as air or oil is formed between 3a and 33b and between the opposing end surfaces 34a and 346, and the rotating shaft 31
A spiral group 3 that pumps lubricating fluid toward the shaft end by rotation of the rotary shaft 31 is provided on the opposite circumferential surface 33IL on the side.
6 is formed.

この推力軸受においては、対向周面33a、33b間に
おいて、回転軸31の偏芯回松時の潤滑流体膜5のくさ
び作用によって動圧軸受が構成されるとともに、スパイ
ラルグループ3Gによるボンピング圧力にてこの動圧粕
受における高速回転時の不安定現象が回避され、さらに
前記ボンピング圧力にて対向端面34a、34b間の潤
滑流体膜35に高圧が印加されて負荷能力の大きなスラ
スト軸受が形成される。
In this thrust bearing, a dynamic pressure bearing is formed between the opposing circumferential surfaces 33a and 33b by the wedge action of the lubricating fluid film 5 when the rotating shaft 31 rotates eccentrically, and by the pumping pressure by the spiral group 3G. An unstable phenomenon during high-speed rotation in this dynamic pressure slag bearing is avoided, and high pressure is applied to the lubricating fluid film 35 between the opposing end surfaces 34a and 34b by the pumping pressure, forming a thrust bearing with a large load capacity. .

又、本発明者は、特開昭56−22215号公報におい
て、回転部材と軸端面の間の相対移動面間に潤滑流体膜
を形成するとともにその相対移動面に円周方向の凹凸に
て形成される溝を設けて第1のスラスト軸受を構成し、
かつこの第1のスラスト軸受とは逆方向の力を発生する
第2のスラスト軸受を設け、これらのスラスト軸受の潤
滑流体膜に発生する圧力でもって回転部材を中立位置に
支持するようにし、かつ第1のスラスト軸受より第2の
スラスト軸受の軸受有効面積を大きくした軸受装置を提
案した。
Further, in Japanese Patent Application Laid-Open No. 56-22215, the present inventor has proposed a method in which a lubricating fluid film is formed between a relative movement surface between a rotating member and a shaft end face, and the relative movement surface is formed with irregularities in the circumferential direction. forming a first thrust bearing;
A second thrust bearing is provided which generates a force in a direction opposite to that of the first thrust bearing, and the rotating member is supported in a neutral position by the pressure generated in the lubricating fluid film of these thrust bearings, and We have proposed a bearing device in which the effective bearing area of the second thrust bearing is larger than that of the first thrust bearing.

発明が解決しようとする開運、貞 ところで、前記推力軸受では、スパイラルグループによ
り発生する対向周面33a、33b間の潤滑流体膜35
における圧力分布は、第6図に示すように軸端に向かっ
て略直線的に圧力が増加し、対向端面34a、34b間
の潤滑流体膜35の圧力は一様にその最大圧力となって
いる。そのため、対向端面34a、34t+間の間隙δ
が変化してもその潤滑流体膜35の圧力変化は小さい。
However, in the thrust bearing, the lubricating fluid film 35 between the opposing circumferential surfaces 33a and 33b generated by the spiral group.
In the pressure distribution, as shown in FIG. 6, the pressure increases substantially linearly toward the shaft end, and the pressure of the lubricating fluid film 35 between the opposing end surfaces 34a and 34b is uniformly at its maximum pressure. . Therefore, the gap δ between the opposing end surfaces 34a and 34t+
Even if the pressure changes, the pressure change in the lubricating fluid film 35 is small.

従って、例えば回転軸31に軸方向に作用する外力Fが
変化した場合、回転$11131と軸受部材32の軸方
向の相対変位が大さく、又外力Fが元に復帰した場合の
復元力も小さく、回転軸31と軸受部材32の相対位置
を一定に保持した状態で支持することが困難であるとい
う間mがあった。
Therefore, for example, when the external force F acting on the rotating shaft 31 in the axial direction changes, the relative displacement in the axial direction between the rotation $11131 and the bearing member 32 is large, and the restoring force when the external force F returns to its original state is also small. There was a problem that it was difficult to support the rotating shaft 31 and the bearing member 32 while keeping their relative positions constant.

一方、特開昭56−22215号公報に開示された軸受
装置によると、軸方向の負荷が変化しても軸方向の変位
が撓めて小さい状態で支持することが可能であるが、軸
に第2のスラスト軸受を形成するための鍔等を設け、か
つ互いに逆方向の力を発生するために2つの溝を形成す
る必要があり、製作コストが高(、高価となるという間
mがあった。
On the other hand, according to the bearing device disclosed in Japanese Patent Application Laid-Open No. 56-22215, it is possible to support the shaft in a state where the axial displacement is small by bending even if the axial load changes. It is necessary to provide a flange to form the second thrust bearing, and to form two grooves to generate forces in opposite directions, resulting in high manufacturing costs. Ta.

本発明は上記従来の問題点を解消し、流体軸受において
軸方向の負荷変化に対して回転軸の相対変位が小さくか
つ変位に対する復元力も大きく、しかも構成及び加工が
簡単で低コストの軸受装置を提供rることを目的とする
The present invention solves the above-mentioned conventional problems, and provides a low-cost bearing device in which the relative displacement of the rotating shaft is small in response to load changes in the axial direction in a hydrodynamic bearing, the restoring force against displacement is large, and the structure and processing are simple. The purpose is to provide.

問題、αを解決するための手段 本発明は上記目的を達成するため、軸とこの紬に相対回
転自在に嵌合する部材の互いに対向する円筒面間に潤滑
流体膜を形成するとともに、いずれか一方の円筒面に、
軸の相対回転によって前記潤滑流体を一方向に圧送する
作用を有する浅い溝を形成し、前記軸の端面とこれに対
向する面の間に潤滑流体膜を形成してスラスト軸受を形
成し、このスラスト軸受のいずれかの面に、中心部に位
置する円状突出部または外周部に位置する円環状突出部
を形成し、円状突出部の場合は対向面の外周部に、円環
状突出部の場合は対向面の中心部に前記浅い溝の作用に
よって高圧状態とされた潤滑流体を供給するとともに、
円状突出部の中心部近傍又は円環状突出部の外周部を低
圧側に連通させたことを特徴とする。
Means for Solving the Problem, α In order to achieve the above object, the present invention forms a lubricating fluid film between the mutually opposing cylindrical surfaces of a member fitted to the shaft and the pongee so as to be relatively rotatable, and also On one cylindrical surface,
A thrust bearing is formed by forming a shallow groove that has the effect of pumping the lubricating fluid in one direction by the relative rotation of the shaft, and forming a lubricating fluid film between the end surface of the shaft and the surface opposite thereto. A circular protrusion located at the center or an annular protrusion located at the outer periphery is formed on either surface of the thrust bearing, and in the case of a circular protrusion, a circular protrusion is formed on the outer periphery of the opposing surface In this case, a lubricating fluid under high pressure is supplied to the center of the opposing surface by the action of the shallow groove, and
It is characterized in that the vicinity of the center of the circular protrusion or the outer periphery of the circular protrusion is communicated with the low pressure side.

作用 本発明によれば、紬の相対回転に伴って浅い溝の作用に
より円筒面間の潤滑流体が高圧状態とされて軸端に向か
って供給され、軸端の対向面間の間隙を通って低圧側に
流出する。このとき、軸端の対向面間に、潤滑流体圧力
によって所定の間隙が形成されるとともに、袖と軸受部
材間に作用する外力が変化して両者が相対変位し、それ
に伴って間隙が変化した場合、対向面に円状突出部又は
円環状突出部が形成されていることによって圧力分布が
者しく変化し、その結果相対変位に対して大きな復元力
が作用する。従って、紬と軸受部材間に作用する軸方向
の外力が変化しても袖と軸受部材の軸方向の隙間は大き
く変化せず、紬又は軸受部材を一定位置に支持すること
ができる。
According to the present invention, as the pongee moves relative to each other, the lubricating fluid between the cylindrical surfaces is brought into a high pressure state by the action of the shallow grooves and is supplied toward the shaft end, passing through the gap between the opposing surfaces at the shaft end. It flows out to the low pressure side. At this time, a predetermined gap was formed between the opposing surfaces of the shaft end due to the lubricating fluid pressure, and the external force acting between the sleeve and the bearing member changed, causing a relative displacement between the two, and the gap changed accordingly. In this case, the pressure distribution changes significantly due to the circular protrusion or the annular protrusion formed on the opposing surface, and as a result, a large restoring force acts against the relative displacement. Therefore, even if the external force in the axial direction acting between the pongee and the bearing member changes, the axial gap between the sleeve and the bearing member does not change significantly, and the pongee or the bearing member can be supported at a constant position.

実施例 以下、本発明の一実施例を第1図〜第3図を参照しなが
ら説明する。1は回転軸で、2はこの回転軸1の一端部
の外周面と一端面を間隙をあけて取囲むように配設され
た固定の軸受部材である。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3. 1 is a rotating shaft, and 2 is a fixed bearing member disposed so as to surround the outer peripheral surface and one end surface of one end of the rotating shaft 1 with a gap therebetween.

これら回転軸1と軸受部材2の互いに径方向に対向する
円筒対向面3a、3b間及び軸方向に対向する軸方向対
向面5a、Sb間の間隙にはエア又はオイル等の潤滑流
体膜7a、7bが形成され、それぞれラノフル軸受4と
スラスト軸受6を構成している。前記回転軸1の外周の
円筒対向面3aには、複数条のスパイラルグループ8が
形成されている。このスパイラルグループ8は、具体例
としては深さが数μ陽〜数10μm1幅が数100μI
11〜数lの断面形状矩形状に形成されている。
In the gap between the cylindrical opposing surfaces 3a and 3b of the rotating shaft 1 and the bearing member 2 that face each other in the radial direction, and between the axially opposing surfaces 5a and Sb that face each other in the axial direction, a lubricating fluid film 7a of air or oil, etc. 7b are formed and constitute the ranofle bearing 4 and the thrust bearing 6, respectively. A plurality of spiral groups 8 are formed on the cylindrical facing surface 3a on the outer periphery of the rotating shaft 1. As a specific example, this spiral group 8 has a depth of several micrometers to several tens of micrometers and a width of several hundred micrometers.
It is formed into a rectangular cross-sectional shape of 11 to several liters.

又、前記回転軸1側の軸方向対向面5aには回転軸1の
軸心と同心状に円状突出部9が形成され、前記軸受部材
2側の軸方向対向面5bは平面状に形成されている。さ
らに、前記円状突出部9の端面も軸受部材2側の軸方向
対向面5bと平行な平面状に形成されている6又、前記
軸方向対向面5bの軸心位置には大気又は油溜に開放さ
れる貫通穴10が′g設されている。前記円状突出部9
の突出高さdは数10μm〜数100μm程度であり、
実施例では円状突出部9の外径r、は回転軸1の外径r
2の概略1/2程度に設定した。
Further, a circular protrusion 9 is formed on the axially opposing surface 5a on the rotating shaft 1 side, concentrically with the axis of the rotating shaft 1, and the axially opposing surface 5b on the bearing member 2 side is formed in a planar shape. has been done. Furthermore, the end face of the circular protrusion 9 is also formed into a plane parallel to the axially opposing surface 5b on the bearing member 2 side. A through-hole 10 is provided. Said circular protrusion 9
The protrusion height d is about several tens of μm to several 100 μm,
In the embodiment, the outer diameter r of the circular protrusion 9 is the outer diameter r of the rotating shaft 1.
It was set to approximately 1/2 of 2.

以上の構成において、回転軸1を回転させるとスパイラ
ルグループ8にでポンピング圧力が生じて、円筒対向面
3a、3b間の潤滑流体膜7aの軸端側の圧力が高くな
り、このボンピング圧力にて回転軸1が全周にわたって
均等に加圧される。
In the above configuration, when the rotating shaft 1 is rotated, pumping pressure is generated in the spiral group 8, and the pressure on the shaft end side of the lubricating fluid film 7a between the cylindrical opposing surfaces 3a and 3b increases, and this pumping pressure The rotating shaft 1 is evenly pressurized over its entire circumference.

その結果、振れ回り回転が防止され、回転軸1の安定回
転が確保される。また、ボンピング圧力は、軸方向対向
面5a、Sb間の間隙に供給され、この間隙を通って軸
受部材2の軸心位置に穿設された貫通穴10を通って流
出する。この軸方向対向面5a15b間に供給された潤
滑流体圧にてその間隙が一定に保持され、回転軸1が一
定位置に支持されている。
As a result, whirling rotation is prevented and stable rotation of the rotating shaft 1 is ensured. Further, the pumping pressure is supplied to the gap between the axially opposing surfaces 5a and Sb, and flows out through the gap through the through hole 10 bored at the axial center position of the bearing member 2. The gap is kept constant by the lubricating fluid pressure supplied between the axially opposing surfaces 5a15b, and the rotating shaft 1 is supported at a constant position.

ここで、第2図(a)の如く、一定の外力Fが作用して
軸方向対向面5a、5b間の距離がδI となっている
状態における圧力分布が第3図の曲線Aで示すようにな
っているものとする。なお、第3図における「=0は、
円状突出部9の中心位置を示す。Poはスパイラルグル
ープによる最大ポンピング圧力であり、軸方向対向面5
aの外周から円状突出部9の外周までの間では隙間はδ
6のままであり、流体抵抗が小さいため圧力低下は少な
い。一方、円状突出部9外周縁から貫通穴10の間では
、隙間がδ、−dとなっており、流体抵抗が大きくなっ
て圧力は急激に変化している。そして、この圧力分布に
おける圧力の総和によって回転軸1は一定位置に支持さ
れている。この状態から第2図(b)の如く軸方向対向
面5a、5t+間の距離がδ2に増加すると、圧力分布
はtIS3図の曲線Bのように、回転軸1の外周におけ
る圧力P。からその軸心位置の開放圧力まで直線に近い
圧力分布状態となる。その結果、曲HAとBの間の斜線
で示した面積に対応する力だけ外力Fに対抗する力が小
さくなり、そのため外力Fによって回転軸1は元の位置
に復元されることになる。又、回転軸1の変位、即ち隙
間δの変化量に対してこの復元力が大きく得られること
により回転軸1は外力Fの変化に対しても極めて変位の
小さい状態で支持することができるのである。
Here, as shown in FIG. 2(a), the pressure distribution in a state where a constant external force F acts and the distance between the axially opposing surfaces 5a and 5b is δI is as shown by the curve A in FIG. It is assumed that In addition, “=0” in Fig. 3 is
The center position of the circular protrusion 9 is shown. Po is the maximum pumping pressure by the spiral group, and the axially opposing surface 5
The gap is δ between the outer periphery of a and the outer periphery of the circular protrusion 9.
6, and the pressure drop is small because the fluid resistance is small. On the other hand, between the outer peripheral edge of the circular protrusion 9 and the through hole 10, the gap is δ, -d, and the fluid resistance increases and the pressure changes rapidly. The rotating shaft 1 is supported at a fixed position by the sum of the pressures in this pressure distribution. From this state, when the distance between the axially opposing surfaces 5a and 5t+ increases to δ2 as shown in FIG. 2(b), the pressure distribution changes to the pressure P at the outer periphery of the rotating shaft 1, as shown by curve B in tIS3. The pressure distribution state is close to a straight line from the point to the opening pressure at the axial center position. As a result, the force opposing the external force F is reduced by a force corresponding to the area indicated by diagonal lines between the curves HA and B, so that the external force F restores the rotating shaft 1 to its original position. Furthermore, by obtaining a large restoring force with respect to the displacement of the rotating shaft 1, that is, the amount of change in the gap δ, the rotating shaft 1 can be supported with extremely small displacement even in response to changes in the external force F. be.

上記実施例では、スパイラルグループ8とスラスト軸受
6を回転軸1の一端部に配置し、回転軸1の軸方向対向
面5aの中心部に円状突出部9を形成した例を示したが
、本発明はこれに限定されるものではない。
In the above embodiment, the spiral group 8 and the thrust bearing 6 are arranged at one end of the rotating shaft 1, and the circular protrusion 9 is formed at the center of the axially opposing surface 5a of the rotating shaft 1. The present invention is not limited to this.

例えば、第4図に示す第2実施例のように、スパイラル
グループ18を回転軸11の一端に配置し、他端にスラ
スト軸受16を配置してもよい。
For example, as in the second embodiment shown in FIG. 4, the spiral group 18 may be arranged at one end of the rotating shaft 11, and the thrust bearing 16 may be arranged at the other end.

その場合、スパイラルグループ18によるボンピング圧
力を回転軸11の一端から他端のスラスト軸受16に導
入するため、回転軸11の軸心位置に連通路12を穿設
する。前記スラスト軸受16は、互いに対向する回転軸
11の他端の軸方向対向面15aと上部軸受部材14の
軸方向対向面15bの間に構成され、連通路12は回転
軸11の軸方向対向面15aの中心位置で開放され、こ
の軸方向対向面15aの外周部に円環状突出部19が形
成されている。第4図において、13は上部軸受部材、
17は回転軸11の中間部に形成された鍔であり、この
実施例は下部軸受部材14の店準面20から鍔17の上
面17aまでの距fiHを精度良くかつ一定に保持する
ための軸受装置が構成されている。尚、回転軸11の下
端部の外周にはラノアル方向の軸受のために中央部で方
向が異なる一対のスパイラルグループ21a、21bが
形成されている。
In that case, in order to introduce the pumping pressure from the spiral group 18 from one end of the rotating shaft 11 to the thrust bearing 16 at the other end, a communicating path 12 is bored at the axial center position of the rotating shaft 11. The thrust bearing 16 is configured between an axially opposing surface 15a of the other end of the rotating shaft 11 and an axially opposing surface 15b of the upper bearing member 14, which face each other, and the communication path 12 is formed between the axially opposing surface 15a of the rotating shaft 11 and the axially opposing surface 15b of the rotating shaft 11. 15a is opened at the center position, and an annular protrusion 19 is formed on the outer periphery of this axially opposing surface 15a. In FIG. 4, 13 is an upper bearing member;
Reference numeral 17 denotes a flange formed at the intermediate portion of the rotating shaft 11, and this embodiment is a bearing for maintaining the distance fiH from the leveling surface 20 of the lower bearing member 14 to the upper surface 17a of the flange 17 accurately and constant. The device is configured. A pair of spiral groups 21a and 21b having different directions at the center are formed on the outer periphery of the lower end of the rotating shaft 11 for bearing in the lanoal direction.

以上の実施例では、回転軸を軸受部材にて支持する例を
示したが、逆に軸固定で有底円筒体を回転自在にする場
合にも同様に適用でき、またスパイラルグループも、軸
側又は有底円部体側のいずれの円筒軸受面に形成しても
よい。
In the above embodiment, an example was shown in which the rotating shaft is supported by a bearing member, but conversely, it can be similarly applied to the case where the shaft is fixed and a bottomed cylindrical body is made rotatable. Alternatively, it may be formed on any cylindrical bearing surface on the bottomed circular body side.

さらに、ボンピング圧力を生ずる浅い溝は、スパイラル
グループ8.18のような螺旋溝形状でなくてもよく、
要は円筒軸受面と浅い溝の相対回転によって一方向に潤
滑流体を圧送する溝であればよい。
Furthermore, the shallow grooves that generate the pumping pressure need not be in the form of a spiral groove like the spiral group 8.18.
In short, any groove may be used as long as it pumps the lubricating fluid in one direction by the relative rotation between the cylindrical bearing surface and the shallow groove.

発明の効果 本発明の軸受装置によれば、以上のように紬の相対回転
に伴って浅い溝のポンピング作用により潤滑流体が軸端
の対向面間に供給されてスラスト軸受が形成されるとと
もに、紬と軸受部材が相対変位し、それによって対向面
間の間隙が変化した場合、対向面に円状突出部又は円環
状突出部が形成されているために圧力分布が者しく変化
し、その結果相対変位に対して大きな復元力が作用する
Effects of the Invention According to the bearing device of the present invention, as described above, the lubricating fluid is supplied between the opposing surfaces of the shaft end by the pumping action of the shallow groove as the pongee rotates relative to each other, and a thrust bearing is formed. When the pongee and the bearing member are displaced relative to each other, and the gap between the opposing surfaces changes accordingly, the pressure distribution will change significantly due to the circular protrusion or annular protrusion formed on the opposing surfaces. A large restoring force acts against relative displacement.

又、釉と軸受部材間に作用する軸方向の外力が変化して
も軸と軸受部材の軸方向の隔間は大きく変化せず、紬又
は軸受部材を一定位置に支持することができる。しかも
、軸端面に円状突出部又は円環状突出部を形成するだけ
でよく、構造並びに加工が極めて簡単で低コストで製作
できる等、犬なる効果を発揮する。
Further, even if the external force in the axial direction acting between the glaze and the bearing member changes, the axial distance between the shaft and the bearing member does not change significantly, and the pongee or the bearing member can be supported at a constant position. Moreover, it is only necessary to form a circular protrusion or an annular protrusion on the end face of the shaft, and the structure and processing are extremely simple and can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の一実施例を示し、第1図は縦
断正面図、第2図は(a) 、(b)はそれぞ゛ れ動
作状態の軸受部材を断面して示した正面図、第3図は軸
端における径方向の圧力分布図、第4図は本発明の第2
実施例の部分断面正面図、第5図は従来例の軸受部材を
断面して示した正面図、tSa図は同軸方向の圧力分布
図である。 1.11・・・・・・・・・・・・・・・・・・回転軸
2.14・・・・・・・・・・・・・・・・・・軸受部
材5a、5b・・・・・・・・・・・・・・・軸方向対
向面6.16・・・・・・・・・・・・・・・・・・ス
ラスト軸受7a、7b・・・・・・・・・・・・・・・
潤滑流体膜8.18・・・・・・・・・・・・・・・・
・・スパイラルグループ9・・・・・・・・・・・・・
・・・・・・・・・・・・・・円状突出部15a、15
11・・・・・・・・・・・・軸方向対向面19・・・
・・・・・・・・・・・・・・・・・・・・・・・・円
環状突出部。 代理人の錫 弁理士 中尾敏男 はh弓名第1図 9− 円双゛光工舒
Figures 1 to 3 show an embodiment of the present invention, with Figure 1 being a vertical front view, and Figures 2 (a) and (b) being cross-sectional views of the bearing member in its operating state. 3 is a radial pressure distribution diagram at the shaft end, and FIG. 4 is a diagram of the second embodiment of the present invention.
FIG. 5 is a partially sectional front view of the embodiment, FIG. 5 is a sectional front view of a conventional bearing member, and tSa is a pressure distribution diagram in the coaxial direction. 1.11・・・・・・・・・・・・・・・Rotating shaft 2.14・・・・・・・・・・・・・・・Bearing members 5a, 5b・......Axial opposing surface 6.16...Thrust bearings 7a, 7b...・・・・・・・・・
Lubricating fluid film 8.18・・・・・・・・・・・・・・・
・・Spiral Group 9・・・・・・・・・・・・・・・
.........Circular protrusions 15a, 15
11...Axially opposite surface 19...
・・・・・・・・・・・・・・・・・・・・・・・・ Annular protrusion. The agent, Toshio Nakao, is a patent attorney.

Claims (1)

【特許請求の範囲】[Claims]  軸とこの軸に相対回転自在に嵌合する部材の互いに対
向する円筒面間に潤滑流体膜を形成するとともに、いず
れか一方の円筒面に、軸の相対回転によって前記潤滑流
体を一方向に圧送する作用を有する浅い溝を形成し、前
記軸の端面とこれに対向する面の間に潤滑流体膜を形成
してスラスト軸受を形成し、このスラスト軸受のいずれ
かの面に、中心部に位置する円状突出部または外周部に
位置する円環状突出部を形成し、円状突出部の場合は対
向面の外周部に、円環状突出部の場合は対向面の中心部
に前記浅い溝の作用によって高圧状態とされた潤滑流体
を供給するとともに、円状突出部の中心部近傍又は円環
状突出部の外周部を低圧側に連通させたことを特徴とす
る軸受装置。
A lubricating fluid film is formed between mutually opposing cylindrical surfaces of a shaft and a member that is relatively rotatably fitted to the shaft, and the lubricating fluid is pumped in one direction to one of the cylindrical surfaces by the relative rotation of the shaft. A thrust bearing is formed by forming a shallow groove having the action of A circular protrusion or an annular protrusion located on the outer periphery is formed, and the shallow groove is formed on the outer periphery of the opposing surface in the case of the circular protrusion, and in the center of the opposing surface in the case of the annular protrusion. A bearing device characterized in that a lubricating fluid brought into a high pressure state by the action is supplied, and the vicinity of the center of the circular protrusion or the outer circumference of the annular protrusion is communicated with a low pressure side.
JP15062287A 1987-06-17 1987-06-17 Bearing device Pending JPS63318312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15062287A JPS63318312A (en) 1987-06-17 1987-06-17 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15062287A JPS63318312A (en) 1987-06-17 1987-06-17 Bearing device

Publications (1)

Publication Number Publication Date
JPS63318312A true JPS63318312A (en) 1988-12-27

Family

ID=15500888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15062287A Pending JPS63318312A (en) 1987-06-17 1987-06-17 Bearing device

Country Status (1)

Country Link
JP (1) JPS63318312A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170338A (en) * 2004-12-16 2006-06-29 Hitachi Global Storage Technologies Netherlands Bv Magnetic disc device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236520A (en) * 1985-04-13 1986-10-21 Ricoh Co Ltd Dynamic pressure air bearing type optical deflector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236520A (en) * 1985-04-13 1986-10-21 Ricoh Co Ltd Dynamic pressure air bearing type optical deflector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006170338A (en) * 2004-12-16 2006-06-29 Hitachi Global Storage Technologies Netherlands Bv Magnetic disc device
JP4616632B2 (en) * 2004-12-16 2011-01-19 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ Magnetic disk unit

Similar Documents

Publication Publication Date Title
JP2516967B2 (en) Bearing device
US3870382A (en) Axial bearing
US3944304A (en) Gas-lubricated self-pressurizing radial bearing
US4798476A (en) Dynamic pressure type fluid bearing
US5634725A (en) Bearing assembly
JPS63318312A (en) Bearing device
US3530728A (en) Conical liquid bearing assembly
JP3547844B2 (en) Fluid dynamic pressure bearing
US4466299A (en) Gyro bearing assembly
JPS616427A (en) Method of manufacturing fluid bearing
JPS62288719A (en) Dynamic pressure thrust bearing
JPH06311701A (en) Spindle motor
JPH0516408Y2 (en)
KR200177723Y1 (en) Air dynamic pressure bearing apparatus having micro pockets
JP3202147B2 (en) Fluid bearing device
JPH0280808A (en) Dynamic pressure bearing
JPH0313614Y2 (en)
JP2905175B2 (en) Hydrostatic spherical gas bearing
JPS6131327B2 (en)
JPH0337411A (en) Dynamic pressure bearing rotating device
JPH04145214A (en) Dynamic pressure bearing rotating device
JPS6343606B2 (en)
JPH0518489Y2 (en)
JPH01141221A (en) Fluid thrust bearing
JP2551646Y2 (en) Rolling mill