JPS63318185A - Distributed feedback semiconductor laser - Google Patents

Distributed feedback semiconductor laser

Info

Publication number
JPS63318185A
JPS63318185A JP15346287A JP15346287A JPS63318185A JP S63318185 A JPS63318185 A JP S63318185A JP 15346287 A JP15346287 A JP 15346287A JP 15346287 A JP15346287 A JP 15346287A JP S63318185 A JPS63318185 A JP S63318185A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
light wave
inp
wave path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15346287A
Other languages
Japanese (ja)
Inventor
Kenji Matsumoto
研司 松本
Junichi Kinoshita
順一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15346287A priority Critical patent/JPS63318185A/en
Publication of JPS63318185A publication Critical patent/JPS63318185A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/185Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
    • H01S5/187Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL] using Bragg reflection

Abstract

PURPOSE:To make an oscillating threshold current value lower and enable laser rays to be emitted efficiently in the direction perpendicular to a substrate by a method wherein a secondary corrugation is provided only in the region where a light distribution is large in intensity. CONSTITUTION:A first corrugation with a phase shift of lambda/4 is formed on the central part of a resonator on an InP substrate which serves also as a first clad layer 8 of a first conductivity type. A light wave path layer 6 consisting of n-InGaAsP, an active layer 5 composed of InGaAsP and a light wave path layer 4 consisting of p-InGaAsP are formed. An SiO2 insulating film 32 is formed onto the light wave path layer 4 and a secondary corrugation is formed only on the central part of the resonator through the SiO2 film 32 as a mask. A clad layer 3 consisting of p-InP is deposited on the light wave path 4. A mask of a SiO2 film is formed and the clad layer 3, the light wave path layers 4 and 6, and the active layer 5 are made to be left stripe-like. A buried layer 30 consisting of p-InP and a buried layer 31 composed of n-InP are grown. A p-side electrode 2 and an n-side electrode are provided, and then a laser ray extracting opening 33 is formed.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は分布帰還型半導体レーザ、特に面発光分布帰還
型半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a distributed feedback semiconductor laser, and particularly to a surface emitting distributed feedback semiconductor laser.

(従来の技術) 単一モード光ファイバーを用いた大容口、長距離伝送を
目的とする光通信システムでは、光ファイバーの波長分
散に因るパルス幅の広がりが、伝送帯域上問題となる。
(Prior Art) In optical communication systems using single-mode optical fibers aimed at large-capacity, long-distance transmission, pulse width broadening due to wavelength dispersion of the optical fibers poses a problem in terms of transmission bandwidth.

そのため高速変調時に於いても縦単一モードのスペクト
ラムで発振する動的単一モード(DSM)レーザとして
分布帰還型半導体レーザが提案されている。
Therefore, a distributed feedback semiconductor laser has been proposed as a dynamic single mode (DSM) laser that oscillates in a longitudinal single mode spectrum even during high-speed modulation.

また高密度光情報処理用光源として、半導体塞板に対し
て垂直方向に発光し、2次元アレイ状に集積が可能であ
る面発光型半導体レーザが提案されている。
Further, as a light source for high-density optical information processing, a surface-emitting semiconductor laser has been proposed, which emits light in a direction perpendicular to a semiconductor board and can be integrated into a two-dimensional array.

また更に面発光分布帰還型半導体レーザが提案されてい
る(電子通信学会−技術報告、1987年1月、0QE
86−152参照)。この半導体レーザは、第8図に斜
視図を示すように構成される。即ち、活性層13及び2
次のコラゲーション12を有する導波路層18を第1ク
ラッド層14と第2クラッド層11で挟みこむ構造を有
している。またレーザの其本構造としてTJS構造を用
い、電流は電極19から亜鉛を拡散することによりp型
となった領域17を通り活性層13に注入される。動作
は、2次のコラゲーションを有する導波路818により
2次の回折効果の分布帰還型の発振を行い、同時に2次
のコラゲーションを有する導波路層18の1次の回折効
果によりレーザ発振光の一部を半導体基板に垂直方向に
取出している。
Furthermore, a surface-emitting distributed feedback semiconductor laser has been proposed (IEICE-Technical Report, January 1987, 0QE
86-152). This semiconductor laser is constructed as shown in a perspective view in FIG. That is, active layers 13 and 2
It has a structure in which a waveguide layer 18 having the next corrugation 12 is sandwiched between a first cladding layer 14 and a second cladding layer 11. Further, a TJS structure is used as the main structure of the laser, and current is injected into the active layer 13 through the region 17 which has become p-type by diffusing zinc from the electrode 19. In operation, the waveguide 818 having the second-order collation performs distributed feedback oscillation of the second-order diffraction effect, and at the same time, the laser oscillation light is generated by the first-order diffraction effect of the waveguide layer 18 having the second-order collation. A part of the semiconductor substrate is taken out in a direction perpendicular to the semiconductor substrate.

(発明が解決しようとする問題点) 上記の面発光分布帰還型半導体レーザでは、レーザ発振
を行うための帰還を1次のコラゲーションと比べての結
合定数(に)の小ざい2次のコラゲーションに頼ってい
る。そのため1次のコラゲーションを有する分布帰還型
半導体レーザと比べて発振しきい電流値が高い欠点が有
った。
(Problems to be Solved by the Invention) In the above-mentioned surface-emitting distributed feedback semiconductor laser, the feedback for laser oscillation is a second-order collagen whose coupling constant is smaller than that of a first-order collagen. rely on gaming. Therefore, it has a drawback that the oscillation threshold current value is higher than that of a distributed feedback type semiconductor laser having first-order collation.

また結合定数(に)が小さいため共振軸方向にレーザ光
が漏れ易く半導体基板に垂直方向に光を取出す効率が低
い欠点が有った。
Furthermore, since the coupling constant is small, laser light tends to leak in the direction of the resonance axis, and the efficiency of extracting light in the direction perpendicular to the semiconductor substrate is low.

[発明の構成] (問題を解決するための手段) 本発明は、共振軸方向に対して1次のコラゲーションを
有する導波路層を有し、かつ該共振軸方向に光強度分布
が存在する分布帰還型半導体レーザにおいて、光強度分
布が強い領域にのみ2次のコラゲーションを具備するこ
とを特徴とする半導体レーザである。
[Structure of the Invention] (Means for Solving the Problems) The present invention has a waveguide layer having first-order collation in the direction of the resonance axis, and a light intensity distribution exists in the direction of the resonance axis. The present invention is a distributed feedback semiconductor laser characterized by having second-order collation only in a region where the light intensity distribution is strong.

(作 用) 一般に分布帰還型半導体レーザでは、ブラッグ波長にお
いて単一軸モード発振させるために、1次のコラゲーシ
ョンに共振器の中央部に位相シフトを設けている。この
際、1次のコラゲーションを有する導波路層の結合定数
(に)と共振器の長さくL)の積(にL)が大きい場合
、共]辰器内部の光強度は第7図に示すように共振器の
中央部で強く端面近傍で弱い。この傾向はにLが増加す
るに従って著しくなる。
(Function) In general, in a distributed feedback semiconductor laser, a phase shift is provided in the center of the resonator in the first-order corrugation in order to cause single-axis mode oscillation at the Bragg wavelength. In this case, if the product (L) of the coupling constant (L) of the waveguide layer with first-order collation and the resonator length (L) is large, the light intensity inside the co-irradiation device will be as shown in Figure 7. As shown, it is strong in the center of the resonator and weak near the end faces. This tendency becomes more pronounced as L increases.

従って、光強度の強い領域に2次のコラゲーションを設
けることにより、効率良く光を半導体基体に垂直方向に
取出すことが出来る。
Therefore, by providing a secondary collation in a region where the light intensity is strong, light can be efficiently extracted in a direction perpendicular to the semiconductor substrate.

また1次のコラゲーションを有する導波路層の結合定数
(に〉は2次のコラゲーションを有する導波路層の結合
定数(に)より大きいため、発振しきい電流値を低く抑
えることができ、かつ共軸方向にレーザ光が漏れ難いた
め、半導体基板に対して垂直方向に光を取出す効率が良
くすることができる。
In addition, since the coupling constant (N) of the waveguide layer having the first-order collagen is larger than the coupling constant (N) of the waveguide layer having the second-order collagen, the oscillation threshold current value can be kept low. In addition, since laser light is difficult to leak in the coaxial direction, it is possible to improve the efficiency of extracting light in the direction perpendicular to the semiconductor substrate.

′(実施例) 以下、本発明をInP/InGaASP半導体を用いた
埋め込み型半導体レーザを例にとり説明する。
(Example) The present invention will be described below by taking as an example a buried semiconductor laser using an InP/InGaASP semiconductor.

本実施例の半導体レーザは、第1図に共振器方向の光軸
上の縦断面図、第2図に斜視図を示すように構成される
。即ち、第1の導電形の第1クラッド層8.1次のコラ
ゲーション7を有する第1の導電形の第1導波路層6.
1次のコラゲーションに対応するブラッ波長に対して利
得を有する活性層5.2次のコラゲーション1を中央部
に有する第2の導電形の第2導波路層4、第2の導電形
の第2クラッド層3を積層した構造を成す。そして、こ
れらの各積層は、ストライプ状にして、その両側を第1
、第2の埋め込みJfi30.31で埋め込んでなる。
The semiconductor laser of this embodiment is constructed as shown in FIG. 1 as a longitudinal sectional view on the optical axis in the direction of the resonator, and FIG. 2 as a perspective view. That is, a first cladding layer 8 of a first conductivity type; a first waveguide layer 6 of a first conductivity type having first-order collagen 7;
an active layer 5 having a gain for the Bragg wavelength corresponding to the first-order collagen; a second waveguide layer 4 of the second conductivity type having the second-order collagen 1 in the center; It has a structure in which second cladding layers 3 are laminated. Each of these laminated layers is then formed into a stripe, with the first layer on both sides.
, embedded with the second embedding Jfi30.31.

図中、2.9は電極で1、電極2は光取出し口33を有
する。
In the figure, 2.9 is an electrode 1, and the electrode 2 has a light extraction port 33.

次にこの半導体レーザの製造方法を説明する。Next, a method of manufacturing this semiconductor laser will be explained.

まず第3図に示すように、第1の導電形の第1クラッド
層8を兼ねるInP桔板上板上振器中央部にλ/4の位
相シフト35のおる1次のコラゲーション7を形成する
First, as shown in FIG. 3, a first-order collage 7 with a phase shift 35 of λ/4 is formed at the center of the vibrator on an InP plate that also serves as the first cladding layer 8 of the first conductivity type. do.

次に第4図に示すように、液相成長法を用いて、n−I
 nGaASPから成る厚さ0.2utnの導波路層6
.InGaAsPから成る厚さ0.11J!nノ活性層
5.p−InGaAsPから成る厚さ0.21ttnの
導波路層4を形成する。この際、導波路層6には、第1
クラッド層8に形成されたコラゲーション7の形状が反
映される。
Next, as shown in FIG. 4, using the liquid phase growth method, n-I
Waveguide layer 6 made of nGaASP and having a thickness of 0.2 utn
.. Made of InGaAsP, thickness 0.11J! n active layer5. A waveguide layer 4 made of p-InGaAsP and having a thickness of 0.21 ttn is formed. At this time, the waveguide layer 6 includes the first
The shape of the collagen 7 formed on the cladding layer 8 is reflected.

次にプラズマCVD法を用い導波路層4上に厚さ062
卯の5i02絶縁IIu32を形成し、続いてフォトレ
ジスト工程により共振器中央部の領域の8102膜を除
去する。次に前記SiO2膜をマスクとして共振器中央
部にのみ2次のコラゲーションを形成し、第4図に示す
構造を1qる。
Next, using the plasma CVD method, a layer with a thickness of 062 mm is deposited on the waveguide layer 4.
A rabbit 5i02 insulator IIu32 is formed, and then the 8102 film in the central region of the resonator is removed by a photoresist process. Next, using the SiO2 film as a mask, a secondary collage is formed only in the center of the resonator, resulting in a structure 1q shown in FIG.

5iO21を剥離した後に液相成長法を用いて、第5図
に示すように、導波路層4上にp−■n′Pから成る厚
さ2期のクラッド層3を成長する。
After peeling off the 5iO21, a liquid phase growth method is used to grow the cladding layer 3 of p-■n'P with a thickness of two stages on the waveguide layer 4, as shown in FIG.

この侵、再度プラズマCVD法を用いS i O2膜を
形成し、フォトレジスト工程により幅5麿のストライプ
状にS i 021W4を残す。このストライプ状の5
i02膜をマスクとし、化学エツチングによりクラッド
層3、導波路層4.8および活性層5をストライプ状に
残すように他を除去する。
After this attack, a SiO2 film is again formed using the plasma CVD method, and a photoresist process leaves Si021W4 in a stripe shape with a width of 5 mm. This striped 5
Using the i02 film as a mask, chemical etching is performed to remove the cladding layer 3, waveguide layer 4.8, and active layer 5 so as to leave them in a striped pattern.

この後、更に液相成長法を用いて、1)−InPから成
る埋め込み1530.n−1nPから成る埋め込み層3
1を成長し、ストライプ状領域の両側を埋め込む。
After this, using a liquid phase growth method, 1) a filling 1530 made of -InP. Buried layer 3 made of n-1nP
1 to fill both sides of the striped region.

更にn側電極2、n側電極9を形成し、フォトレジスト
工程によりn側電極2の一部を除去してレーザ光の取出
し口33形成する。以上の工程により、第2図に示す本
実施例の面発光分布帰還型半導体レーザを得る。
Further, an n-side electrode 2 and an n-side electrode 9 are formed, and a part of the n-side electrode 2 is removed by a photoresist process to form a laser beam extraction port 33. Through the above steps, the surface emitting distributed feedback semiconductor laser of this embodiment shown in FIG. 2 is obtained.

上述の実施例では異なる導波路層3.4にそれぞれ1次
のコラゲーション7と2次のコラゲーション1を作成し
たが、第6図に示すように、1つの導波路層6に1次の
コラゲーション7と、光強度の強い領域に2次のコラゲ
ーション1の双方を形成してもよい。
In the above-described embodiment, the first-order collagen 7 and the second-order collagen 1 were created in different waveguide layers 3.4, respectively, but as shown in FIG. Both the collagen 7 and the secondary collagen 1 may be formed in a region with high light intensity.

また第6図に示す実施例では導波路層6が活性層5の下
側に有るが、活性層5の上側に1次のコラゲーション7
と2次のコラゲーション1とを形成した導波路層6を設
けても良い。
Furthermore, in the embodiment shown in FIG.
A waveguide layer 6 may be provided in which a waveguide layer 6 and a second-order collagen 1 are formed.

更に上述の実施例では、InP系の半導体レーザで説明
したが、GaAsWの他の半導体を用いても本発明を実
施できる。また1次のコラゲーションの中央部に形成し
たλ/4位相シフトは、上述の実施例で用いたコラゲー
ションの位相をずらす代りに、中央部の導波路層の幅を
変えることにより中央部の伝搬定数を変え等価的に位相
をずらすようにしても良い。
Further, in the above-described embodiments, an InP-based semiconductor laser was used, but the present invention can also be practiced using other semiconductors such as GaAsW. In addition, the λ/4 phase shift formed in the central part of the first-order collagen can be achieved by changing the width of the waveguide layer in the central part instead of shifting the phase of the collagen used in the above embodiment. The propagation constant may be changed to equivalently shift the phase.

[発明の効果] 本発明によれば、発振しきい電流値が低く、且つ半導体
基板に対して垂直方向に効率良く発光する面発光分布帰
還型半導体レーザを作成することができる。
[Effects of the Invention] According to the present invention, it is possible to create a surface-emitting distributed feedback semiconductor laser that has a low oscillation threshold current value and efficiently emits light in the direction perpendicular to the semiconductor substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の面発光分布帰還型半導体レーザの縦断
面図、第2図は本発明の半導体レーザ装置の斜視図、第
3図乃至第5図は本発明の面発光分布帰還型半導体レー
ザの製作プロセスを説明す半導体レーザの共振器内部の
電界分布を示す図、第8図は従来のTJS形面光面発光
分布帰還型半導体レーザ視図である。 1・・・2次のコラゲーション、2・・・電極、3・・
・第2クラッド層、 4・・・第2導波路層、 5・・・活性層、 6・・・第1導波路層、 7・・・1次のコラゲーション、 8・・・第2クラッド層、9・・・電極、10・・・オ
ーミック層、 11・・・第2クラッド層、 30・・・埋め込み層、 31・・・埋め込み層、 32・・・光取出し口。
FIG. 1 is a vertical cross-sectional view of a surface emitting distributed feedback semiconductor laser of the present invention, FIG. 2 is a perspective view of a semiconductor laser device of the present invention, and FIGS. 3 to 5 are a vertical sectional view of a surface emitting distributed feedback semiconductor laser of the present invention. FIG. 8 is a diagram showing the electric field distribution inside the resonator of a semiconductor laser to explain the manufacturing process of the laser. FIG. 8 is a perspective view of a conventional TJS type surface emitting distribution feedback semiconductor laser. 1...Second-order collagen, 2...Electrode, 3...
・Second cladding layer, 4...Second waveguide layer, 5...Active layer, 6...First waveguide layer, 7...First-order collagen, 8...Second cladding Layer, 9... Electrode, 10... Ohmic layer, 11... Second cladding layer, 30... Buried layer, 31... Buried layer, 32... Light extraction port.

Claims (1)

【特許請求の範囲】[Claims] 共振軸方向に対して1次のコラゲーシヨンを有する導波
路層を有し、かつ該共振軸方向に光強度分布が存在する
分布帰還型半導体レーザにおいて、光強度分布が強い領
域にのみ2次のコラゲーシヨンを具備することを特徴と
する分布帰還型半導体レーザ。
In a distributed feedback semiconductor laser that has a waveguide layer that has first-order corrugation in the direction of the resonance axis and has a light intensity distribution in the direction of the resonance axis, second-order collocation occurs only in a region where the light intensity distribution is strong. A distributed feedback semiconductor laser comprising:
JP15346287A 1987-06-22 1987-06-22 Distributed feedback semiconductor laser Pending JPS63318185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15346287A JPS63318185A (en) 1987-06-22 1987-06-22 Distributed feedback semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15346287A JPS63318185A (en) 1987-06-22 1987-06-22 Distributed feedback semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63318185A true JPS63318185A (en) 1988-12-27

Family

ID=15563089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15346287A Pending JPS63318185A (en) 1987-06-22 1987-06-22 Distributed feedback semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63318185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018009538A1 (en) * 2016-07-05 2018-01-11 Forelux Inc. Grating based optical transmitter
US10386581B2 (en) 2013-10-25 2019-08-20 Forelux Inc. Grating based optical transmitter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386581B2 (en) 2013-10-25 2019-08-20 Forelux Inc. Grating based optical transmitter
WO2018009538A1 (en) * 2016-07-05 2018-01-11 Forelux Inc. Grating based optical transmitter

Similar Documents

Publication Publication Date Title
US6252895B1 (en) Distributed feedback semiconductor laser in which light intensity distributions differ in different polarization modes, and driving method therefor
JP2005510090A (en) Surface emitting DFB laser structure for broadband communication systems and arrangement of this structure
JPH0715087A (en) Single wavelength semiconductor laser
JP2982422B2 (en) Semiconductor laser and method of manufacturing the same
US6537841B2 (en) Ridge-structure DFB semiconductor laser and method of manufacturing the same
JP2002353559A (en) Semiconductor laser and method of manufacturing the same
JPH03256386A (en) Semiconductor laser, its manufacture and optical communication system
CN107623250B (en) Short-cavity long-surface emitting laser and manufacturing method thereof
JPS63318185A (en) Distributed feedback semiconductor laser
CN115280609A (en) Optical device
JP2531719B2 (en) Semiconductor laser
US5360763A (en) Method for fabricating an optical semiconductor device
JP2001326423A (en) Semiconductor optical element and its manufacturing method
JPS5858784A (en) Distribution feedback type semiconductor laser
KR100237858B1 (en) Laser diode
JPS60165782A (en) Semiconductor laser
JPH0834333B2 (en) Distributed feedback quantum well semiconductor laser
JPH0472786A (en) Semiconductor laser element
JPH06291412A (en) Semiconductor laser and manufacture thereof
JPH01316986A (en) Semiconductor laser
JP2000068590A (en) Distributed feedback semiconductor laser diode
JPS63255987A (en) Buried dbr semiconductor laser
JPH05251811A (en) Semiconductor laser
JPH1117271A (en) Semiconductor laser
JPS60160682A (en) Semiconductor laser