JPS63317755A - Minute hole detector for underwater applied film - Google Patents

Minute hole detector for underwater applied film

Info

Publication number
JPS63317755A
JPS63317755A JP15389587A JP15389587A JPS63317755A JP S63317755 A JPS63317755 A JP S63317755A JP 15389587 A JP15389587 A JP 15389587A JP 15389587 A JP15389587 A JP 15389587A JP S63317755 A JPS63317755 A JP S63317755A
Authority
JP
Japan
Prior art keywords
detecting
coating film
micropores
electrode
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15389587A
Other languages
Japanese (ja)
Inventor
Takeo Morita
森田 赳夫
Yoshitaka Ishihara
嘉孝 石原
Tomosaburo Kawahara
河原 友三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP15389587A priority Critical patent/JPS63317755A/en
Publication of JPS63317755A publication Critical patent/JPS63317755A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect a minute hole in an underwater minute hole with good reliability, by providing a partitioning outer wall so as to surround a detecting electrode, insulating the water around the detecting electrode from the outside, and detecting the presence or absence of a current which is detected under this state. CONSTITUTION:An elastic tube body 14 is provided at the tip of a sensor part 1, in which an electrode part 13 is contained. Before an applied film S on a structure member F to be checked, which is arranged in the water, is checked, the elastic tube body 14 of the sensor 1 is compressed to the applied film S. The water around the electrode part 13 and the water at the outside of the elastic tube body 14 are electrically insulated by the compression. Under this state, a switch 24 in a measuring part 2 is closed, and a voltage is applied between the structure member F and the electrode part 13. When a minute hole Sa is present in the applied film S1, a large current flows through the electrode part 13. This current is detected with the measuring part 2, sent to an X-Y recorder 3 and recorded on recording paper.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、導電性構造材の表面に施された塗膜におけ
る微小孔の検出を水中において検出する水中塗膜の微小
孔検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an underwater coating film micropore detection device that detects micropores in a coating film applied to the surface of a conductive structural material underwater.

〔背景技術〕[Background technology]

湾岸構築物、例えば、桟橋、シーバース等の橋脚用鋼管
杭や港湾の鋼矢板等の導電性構造材は、海水中に浸かっ
ている部分があり、この海水に浸かる部分は厳しい腐食
環境に置かれることとなる。もちろん、亜鉛による電気
防食等の対策が採られてはいるが、年月がたつと構造材
の腐食が始まる。この場合、構造材を新しいものに取り
替えることもひとつの解決策として考えられはするが、
工事費用や工事に伴う漁業補償および環境補償を必要と
したりするため、現実的な策ではない。それで、通常、
腐食を食い止めるため、構造材の表面に水中でも硬化す
る塗料、例えば、エポキシ系水中硬化塗料、ポリエステ
ル系水中硬化塗料、ビニルエステル系水中硬化塗料等を
使って、塗膜を形成することが行われている。
Conductive structural materials such as steel pipe piles for piers in coastal structures such as piers and sea berths, and steel sheet piles in ports have parts that are submerged in seawater, and the parts that are submerged in seawater are exposed to a severe corrosive environment. becomes. Of course, countermeasures such as electrolytic protection using zinc have been taken, but as time passes, the structural materials begin to corrode. In this case, one possible solution may be to replace the structural materials with new ones, but
This is not a realistic plan as it would require construction costs and fishery compensation and environmental compensation associated with the construction. So usually,
To prevent corrosion, a coating film is formed on the surface of structural materials using paints that harden even in water, such as epoxy-based underwater-curable paints, polyester-based underwater-curable paints, and vinyl ester-based underwater-curable paints. ing.

塗膜を形成する場合、塗料の粘度が高く、しかも、塗膜
厚みが1〜5m墓程度という比較的厚いものであること
から、塗装方法は、ウェットハンド法と称される、いわ
ゆる手で直接塗り拡げる方法の他、へらやこて、もしく
は、ローラ等を用いて塗り付ける等の方法が採られてい
る。このような水中での手作業による塗膜には塗り残し
等による微小孔(直径2〜3論議程度)ができやすい。
When forming a paint film, the viscosity of the paint is high and the film thickness is relatively thick, about 1 to 5 meters. In addition to the spreading method, methods such as applying with a spatula, trowel, or roller are also used. In such a coating film manually applied in water, micropores (about 2 to 3 mm in diameter) are likely to be formed due to unpainted areas.

塗膜に微小孔があると、構造材表面が直接海水にさらさ
れるので、構造材の腐食が進んでしまう。これを防ぐた
め、塗膜形成後、ダイパーが潜って目視で塗膜に微小孔
ができていないかを調べ、微小孔があれば補修する。
If there are micropores in the paint film, the surface of the structural material will be directly exposed to seawater, leading to accelerated corrosion of the structural material. To prevent this, after the paint film is formed, a dipper dives and visually inspects the paint film for micropores, and if any, they are repaired.

しかしながら、このような完全に目視に頼る検出作業は
時間がかかる。ダイパーは潜水時間の制約も受けて長時
間続けて検出作業を行うこともできない。作業が完了す
るまでには長い時間を要するのである。また、検査結果
が海水の透明度、水深等の影響を受けやすく、判定自体
に個人差があり検査結果の信頼性が乏しい。5月〜10
月の間は、場所によっては赤潮が発生する。この場合に
は透明度が著しく低下し、検査が極めて困難となる。
However, such detection work that relies completely on visual inspection takes time. Daiper cannot perform detection work continuously for long periods of time due to limitations on diving time. It takes a long time to complete the work. In addition, the test results are easily affected by seawater transparency, water depth, etc., and there are individual differences in the judgment itself, making the test results less reliable. May-October
During the month, red tide occurs in some places. In this case, transparency is significantly reduced and inspection becomes extremely difficult.

〔発明の目的〕[Purpose of the invention]

この発明は、海水の透明度、水深等の影響が少なく、検
出結果が客観的で信頼性が高く、しかも、微小孔検出作
業を能率よく行える水中塗膜の微小孔検出装置を提供す
ることを目的とする。
The purpose of this invention is to provide a micropore detection device for underwater paint films that is less affected by seawater transparency, water depth, etc., provides objective and reliable detection results, and can efficiently perform micropore detection work. shall be.

〔発明の開示〕[Disclosure of the invention]

前記目的を達成するため、この発明は、導電性構造材の
表面に施された塗膜における微小孔の検出を水中におい
て検出する装置であって、前記微小孔検出のための電極
部を備えたセンサ手段が設けられているとともに、前記
電極部・構造材間のインピーダンス値に関連した信号を
計測する計測手段が設けられており、前記センサ手段は
前記電極部の周囲を囲む絶縁性弾性材料の仕切壁をも備
えていて、微小孔の検出の際に前記仕切壁を塗膜に当て
ることにより前記電極部が仕切壁外側の水と導通するこ
とを阻止するようにすることを特徴とする水中塗膜の微
小孔検出装置を要旨とする。
In order to achieve the above object, the present invention provides an apparatus for detecting micropores in a coating film applied to the surface of a conductive structural material in water, comprising an electrode section for detecting the micropores. A sensor means is provided, and a measuring means is provided for measuring a signal related to an impedance value between the electrode section and the structural material, and the sensor means is connected to an insulating elastic material surrounding the electrode section. The underwater device further comprises a partition wall, and when detecting micropores, the partition wall is brought into contact with the coating film to prevent the electrode portion from being electrically connected to water outside the partition wall. The gist of this paper is a device for detecting micropores in paint films.

以下、この発明にかかる水中塗膜の微小孔検出装置を、
その一実施例をあられす図面を参照しながら詳しく説明
する。
Hereinafter, the underwater coating film micropore detection device according to the present invention will be described below.
One embodiment will be described in detail with reference to the accompanying drawings.

第1図は、この発明にかかる水中塗膜の微小孔検出装置
(以下、「微小孔検出装置」という)の概略構成を模式
的にあられす。第2図(a)、(b)、(C)は、この
微小孔検出装置のセンサ部をあられす。
FIG. 1 schematically shows the general structure of a micropore detection device for an underwater coating film (hereinafter referred to as "micropore detection device") according to the present invention. Figures 2 (a), (b), and (C) show the sensor section of this microhole detection device.

第3図は、前記微小孔検出装置を使用する時の様子をあ
られす。
FIG. 3 shows how the microhole detection device is used.

微小孔検出装置は、水中に持ち込んで塗膜Sに当てて使
うセンサ部(センサ手段)1、水上に置かれる計測部(
計測手段)2および記録部(この実施例では、X−Yレ
コーダ)3からなる。センサ部1、計測部2および記録
部30間の必要な電′ 気的接続は、それぞれ、ケーブ
ル4.5によりなされている。
The micropore detection device consists of a sensor section (sensor means) 1 that is brought into the water and used by applying it to the coating film S, and a measurement section (
It consists of a measuring means) 2 and a recording section (in this embodiment, an X-Y recorder) 3. Necessary electrical connections between the sensor section 1, the measurement section 2, and the recording section 30 are made by cables 4.5, respectively.

センサ部1は絶縁性材料からなるボディ10を備え、こ
のボディ10に微小孔検出のための電極部13と絶縁性
弾性材料のベロ一様弾性筒体(仕切壁)14が設けられ
ている。ボディ1oは、基部ピース11と前部ピース1
2からなり、基部ピース11と前部ピース12はねし結
合されている。両ピース11.12の接触面には0−リ
ング16を設け、接触面から水がボディ内空間10aへ
浸入しないようにしである。
The sensor section 1 includes a body 10 made of an insulating material, and the body 10 is provided with an electrode section 13 for detecting micropores and a tongue-like elastic cylinder (partition wall) 14 made of an insulating elastic material. The body 1o includes a base piece 11 and a front piece 1.
2, the base piece 11 and the front piece 12 are spring-fitted. An O-ring 16 is provided on the contact surfaces of both pieces 11, 12 to prevent water from entering the body interior space 10a from the contact surfaces.

前部ピース12には、第2図にみるように、孔12a、
12bがふたつ設けられていて、そのひとつの孔12a
に電極部13が取着され、もうひとつの孔12aに感圧
素子15が水圧を受けるようにして取着されている。弾
性筒体14は前部ピース12の側面に設けられた段部1
2cへ嵌め込まれている。
The front piece 12 has holes 12a, as shown in FIG.
Two holes 12b are provided, one of which is the hole 12a.
An electrode portion 13 is attached to the hole 12a, and a pressure sensitive element 15 is attached to the other hole 12a so as to receive water pressure. The elastic cylinder 14 has a stepped portion 1 provided on the side surface of the front piece 12.
It is fitted into 2c.

基部ピース11の側面には電極部13と構造材Fの間の
電圧印加・非印加を制御するためのスイッチ17が取着
されている。後述するように、このスイッチ17を押し
ている間だけ、電極部13と構造材Fの間に電圧が印加
される。基部ピース11の後面には、微小孔が検出され
たことを報知するための報知器18が取着されている。
A switch 17 for controlling application/non-application of voltage between the electrode section 13 and the structural material F is attached to the side surface of the base piece 11. As will be described later, a voltage is applied between the electrode section 13 and the structural material F only while this switch 17 is pressed. An alarm 18 is attached to the rear surface of the base piece 11 to notify that a microhole has been detected.

計測部2には、構造材Fと検出電極部13の間に交流電
圧を印加するための電源部、および、構造材F・検出電
極部13間に流れる電流を測定する電流測定部、および
、センサ部1の水深測定部等が設けられている。電流測
定部で測定する電流は、構造材F・電極部13間のイン
ピーダンス値(この場合は抵抗値)に関連した信号であ
る。
The measurement section 2 includes a power supply section for applying an alternating current voltage between the structural material F and the detection electrode section 13, a current measurement section that measures the current flowing between the structural material F and the detection electrode section 13, and A water depth measuring section of the sensor section 1 and the like are provided. The current measured by the current measuring section is a signal related to the impedance value (in this case, the resistance value) between the structural material F and the electrode section 13.

電源部は、交流発振器(発振周波数は、通常、50〜2
000 Hz程度の間から選定される)21と電圧調整
器22を備えている。交流発振器21の交流出力は、電
圧調整器22で適当な値に調整され、スイッチ24およ
び検出抵抗25を介して、構造材Fと検出電極部13の
間に印加されている。
The power supply section is an AC oscillator (the oscillation frequency is usually 50 to 2
000 Hz) 21 and a voltage regulator 22. The AC output of the AC oscillator 21 is adjusted to an appropriate value by a voltage regulator 22, and is applied between the structural material F and the detection electrode section 13 via a switch 24 and a detection resistor 25.

電流測定部は検出抵抗25を備えていて、この抵抗25
には、構造材F・検出電極部13を流れる電流量に比例
する電圧が発生する。この電圧はアンプ26で増幅され
たのち交流−直流変換器27で直流信号に変換され、X
−Yレコーダ3のY軸用信号として出力されるとともに
、電流指示器28に送られ電流量が指示される。なお、
交流−直流変換器27は、電流量が一定の量を越えた場
合、報知器18へ報知信号も出力する。
The current measuring section includes a detection resistor 25, and this resistor 25
, a voltage proportional to the amount of current flowing through the structural material F and the detection electrode section 13 is generated. This voltage is amplified by an amplifier 26 and then converted to a DC signal by an AC-DC converter 27.
-It is output as a Y-axis signal of the Y recorder 3 and is also sent to the current indicator 28 to indicate the amount of current. In addition,
The AC-DC converter 27 also outputs a notification signal to the notification device 18 when the amount of current exceeds a certain amount.

水深測定部は、センサ部1に設けられた感圧素子15か
らの信号を検出部29で検出し、アンプ30で増幅し水
深に応じた信号に変換しX−Yレコーダ3にY軸用信号
として出力されるとともに、水深指示器31に送られ水
深の指示がなされる。32は、感圧素子15駆動用電源
である。なお、感圧素子15としては、例えば、シリコ
ン単結晶からなる薄いダイアフラムの表面に歪みゲージ
抵抗が形成された素子、あるいは、金属ダイアフラム表
面の絶縁層上に多結晶シリコンの歪みゲージ抵抗が形成
された素子等が用いられる。
The water depth measurement section detects a signal from the pressure sensitive element 15 provided in the sensor section 1 with the detection section 29, amplifies it with the amplifier 30, converts it into a signal according to the water depth, and sends a Y-axis signal to the X-Y recorder 3. At the same time, it is sent to the water depth indicator 31 to indicate the water depth. 32 is a power source for driving the pressure sensitive element 15. The pressure sensitive element 15 may be, for example, an element in which a strain gauge resistor is formed on the surface of a thin diaphragm made of single crystal silicon, or an element in which a strain gauge resistor is formed on an insulating layer on the surface of a metal diaphragm. elements etc. are used.

弾性筒体14はつぎのような重要な役割を果たす。微小
孔検出作業において、第1図に一点鎖線で示すように、
弾性筒体14が導電性構造材Fの塗膜Sに押当てられた
際、電極部13が弾性筒体14内側の塗膜S1とは電気
的に接触しているか、弾性筒体14外側の塗膜S2とは
電気的に接触しないようにするというものである。水中
塗膜の微小孔を検出する場合には、塗膜S全面に導電性
の水が存在しており、弾性筒体14がない電極部13を
塗膜Sに当てるだけでは、当てた個所に微小孔がなくて
も他の個所に微小孔があれば、水を介して電極部13に
電流が流れる。したがって、微小孔があることは分かっ
ても、孔が電極部13を当てた個所にあるわけでなく、
孔の位置についての情報は全く得られない。弾性筒体1
4は、微小孔の位置に関する情報をもたらすのである。
The elastic cylinder 14 plays the following important role. In the microhole detection work, as shown by the dashed line in Figure 1,
When the elastic cylinder 14 is pressed against the coating S1 of the conductive structural material F, the electrode portion 13 is in electrical contact with the coating S1 on the inside of the elastic cylinder 14, or is in contact with the coating S1 on the outside of the elastic cylinder 14. The purpose is to prevent electrical contact with the coating film S2. When detecting micropores in an underwater coating film, conductive water is present on the entire surface of the coating film S, and simply applying the electrode section 13 without the elastic cylinder 14 to the coating film S will cause damage to the spot where it was applied. Even if there are no micropores, if there are micropores elsewhere, current will flow to the electrode section 13 through the water. Therefore, even if it is known that there is a microhole, it does not mean that the hole is located at the place where the electrode part 13 is applied.
No information is available about the location of the holes. Elastic cylinder 1
4 provides information regarding the position of the micropores.

塗膜Sに弾性筒体14が押し当てられると、弾性筒体1
4が絶縁性を有するために、筒体14内にある水と筒体
14外の水が電気的に絶縁される。したがって、電極部
13は弾性筒体14内側に充満している水を介して弾性
筒体14内側の塗膜S1と導通しているが、電極部13
は弾性筒体14外側の水とは絶縁されているので、弾性
筒体14外側の塗膜S2とは導通していない。塗膜S1
に微小孔がある場合は、電極部13に電流が流れる。塗
膜S1に微小孔がない場合には、塗膜S2に微小孔があ
っても、電極部13に電流が流れない。塗膜S2と電極
部13が電気的に絶縁されているからである。したがっ
て、電極部13に電流が流れた場合には、塗膜S1のう
ちに必ず微小孔があることになる。つまり、この塗11
’ff51のうちという位置特定ができるのである。電
極部13に電流が流れなければ、この塗膜S1には微小
孔は存在しない。もちろん、弾性筒体14の押し当て方
や塗膜S1の状態等によっては筒体内外の導通の阻止の
程度が変動する場合もあるが、電気的導通の阻止の程度
は、微小孔の有無の判別に支障がでない範囲でなされて
いればよい。
When the elastic cylinder 14 is pressed against the coating film S, the elastic cylinder 1
4 has insulating properties, the water inside the cylinder 14 and the water outside the cylinder 14 are electrically insulated. Therefore, the electrode part 13 is electrically connected to the coating film S1 inside the elastic cylinder 14 through the water filling the inside of the elastic cylinder 14.
Since it is insulated from the water outside the elastic cylinder 14, it is not electrically connected to the coating film S2 outside the elastic cylinder 14. Paint film S1
If there are micropores in the electrode section 13, a current flows through the electrode section 13. If there are no micropores in the coating film S1, no current will flow through the electrode portion 13 even if the coating film S2 has micropores. This is because the coating film S2 and the electrode section 13 are electrically insulated. Therefore, when a current flows through the electrode portion 13, there will always be micropores in the coating film S1. In other words, this coating 11
'ff51 location can be specified. If no current flows through the electrode portion 13, no micropores exist in the coating film S1. Of course, the degree of prevention of electrical conduction inside and outside the cylinder may vary depending on the way the elastic cylinder 14 is pressed, the state of the coating film S1, etc., but the degree of prevention of electrical conduction depends on the presence or absence of micropores. This may be done within a range that does not hinder the determination.

スイッチ17も、上記のように水の存在に関連して設け
られている。スイッチ17がなり、構造材F・電極部1
3の間に常に電圧が印加さていると、センサ部lが塗膜
Sから離された場合には、構造材Fの全ての微小孔から
の電流が流れ、X−Yレコーダ3に高い電流が記録され
、実際の検出動作時の記録との区別が付きにくくなる。
A switch 17 is also provided in connection with the presence of water as described above. The switch 17 is turned on, and the structural material F/electrode part 1
If a voltage is always applied between 3 and the sensor part l is separated from the coating film S, current will flow from all the micropores of the structural material F, and a high current will flow to the X-Y recorder 3. recorded, making it difficult to distinguish from the recording made during the actual detection operation.

続いて、前記検出装置を使って、塗膜の微小孔の検出を
行う時の様子を説明する。
Next, a description will be given of how the detection device is used to detect micropores in a coating film.

第3図にみるように、計測部う・構造材F間を電線8で
接続しておいて、ダイパーDがセンサ1を持って潜り、
第1図にみるように、センサ部1の弾性筒体14を塗膜
Sに押し当て、スイッチ17を押す。このスイッチ17
を押している間、計測部2のスイッチ24が連動して閉
じる。スイッチ24が閉じると、構造材Fと電極部13
の間に電圧が印加される。
As shown in Fig. 3, the measuring part U and the structural member F are connected with an electric wire 8, and the Diaper D dives with the sensor 1.
As shown in FIG. 1, the elastic cylinder 14 of the sensor section 1 is pressed against the coating film S, and the switch 17 is pressed. This switch 17
While pressing , the switch 24 of the measuring section 2 is closed in conjunction. When the switch 24 is closed, the structural material F and the electrode part 13
A voltage is applied between them.

弾性筒体14内側の塗膜S1に微小孔Saがなければ、
電極部13に流れる電流は塗膜Sの絶縁抵抗に応じて決
まる極めてわずかなベース電流だけである。微小孔Sa
があれば、水を介して電極部13と構造材Fが導通する
ので、電極部13に流れる電流はベース電流を遥かに越
える。もちろん電流は電流測定部で測定され、X−Yレ
コーダ3に送られる。
If there is no micropore Sa in the coating film S1 inside the elastic cylinder 14,
The current flowing through the electrode portion 13 is only an extremely small base current determined depending on the insulation resistance of the coating film S. Micropore Sa
If there is, conduction will occur between the electrode section 13 and the structural material F through the water, so that the current flowing through the electrode section 13 will far exceed the base current. Of course, the current is measured by the current measuring section and sent to the XY recorder 3.

一方、水深測定部は、センサ部1の水深に応じた信号を
X−Yレコーダ3に送る。また、X−Yレコーダ3には
、スイッチ17が押され検出動作がなされたタイミング
を示すマーカ用信号も送られる。
On the other hand, the water depth measuring section sends a signal corresponding to the water depth of the sensor section 1 to the XY recorder 3. Further, a marker signal indicating the timing when the switch 17 is pressed and the detection operation is performed is also sent to the X-Y recorder 3.

ダイパーDは、水深の浅い側から深い側ヘセンサ部1を
順次当てて所定深さまで検出動作を繰り返す。同時に、
検出結果も、X−Yレコーダ3により記録されてゆく。
Diaper D sequentially applies the sensor section 1 from the shallow side to the deep side of the water and repeats the detection operation until a predetermined depth is reached. at the same time,
The detection results are also recorded by the XY recorder 3.

第4図は、検出結果が記録された記録紙をあられす。記
録紙には、水深と対応して電流量が記録されている。記
録紙左端には、スイッチ17を押して検出動作を行った
タイミングをあられすマーカM・・・Mが対応して記録
されている。マーカMと並んで記録されているピークP
・・・Pは、その検出動作において微小孔があったため
電流量が多かったことを示している。しかし、マーカM
を伴わないピークP′は、電流量が多いことをあられす
のであるが、それは検出動作をしていない時のノイズ電
流であり、したがって、マーカMを伴わないピークP′
は微小孔のあったことを示すものではない。
Figure 4 shows the recording paper on which the detection results are recorded. The amount of current is recorded on the recording paper in correspondence with the water depth. On the left end of the recording paper, markers M . . . M are recorded corresponding to the timing when the switch 17 is pressed to perform the detection operation. Peak P recorded alongside marker M
. . . P indicates that the amount of current was large in the detection operation due to the existence of a microhole. However, marker M
A peak P' without a marker M indicates a large amount of current, but it is a noise current when no detection operation is being performed, and therefore a peak P' without a marker M
does not indicate that there were micropores.

なお、検出動作時に所定以上の電流が流れた場合(ピー
クPがあった時)、センサ部1の報知器(光、あるいは
、音等で報知がなされる)18へ計測部2から信号が送
られ、微小孔Saの検出がなされたことをダイパーに知
らせる。ダイパーDは、微小孔Saを探して補修する(
あるいは、補修が必要なことを示すマークを残す)。報
知器18からの報知がない時は、直ちにつぎの検出動作
に移る。
In addition, when a current exceeding a predetermined value flows during the detection operation (when there is a peak P), a signal is sent from the measuring section 2 to the alarm 18 of the sensor section 1 (notification is made by light or sound, etc.). This notifies the dialer that the microhole Sa has been detected. Diaper D searches for and repairs micropores Sa (
or leave a mark indicating that repair is required). When there is no notification from the notification device 18, the process immediately moves to the next detection operation.

所定の深さまでの検出動作が終わったら、最初の水深ま
で戻り、水平方向に所定距離ずらせて再び深い方向へ順
に検出動作を繰り返す。このようにして、構造材Fの塗
膜S全面にわたる検出作業を行う。
When the detection operation up to a predetermined depth is completed, the probe returns to the initial water depth, shifts a predetermined distance in the horizontal direction, and repeats the detection operation in the deeper direction again. In this way, the detection work is performed over the entire surface of the coating film S of the structural material F.

前記の微小孔検出装置では、所定面積のうちに微小孔が
あるかないかが直ぐに分かる。しかも、微小孔の有無の
判断は、電流測定に基づ(客観的なものである。微小孔
がある場合も、その所定面積内だけを調べればよいから
極めて迅速に微小孔の探索が行え、検出作業に要する時
間の短縮が図れる。しかも、上記のように深さに対応し
た検査結果もチャートに記録してゆくことができる。し
たがって、検査結果の信頼性・信用性が高い。
With the micropore detection device described above, it can be immediately determined whether or not there are micropores within a predetermined area. Moreover, the determination of the presence or absence of micropores is based on current measurement (objective). Even if there is a micropore, it is only necessary to examine within a predetermined area, so the search for micropores can be performed extremely quickly. The time required for the detection work can be shortened.Moreover, the inspection results corresponding to the depth can be recorded on the chart as described above.Therefore, the reliability and reliability of the inspection results are high.

上記実施例の微小孔検出装置には、水平方向の位置検出
を行う手段は設けられていなかったが、水平方向の位置
検出手段がついていると一層便利である。
Although the microhole detection device of the above embodiment was not provided with a means for detecting the position in the horizontal direction, it would be more convenient if the device was provided with a means for detecting the position in the horizontal direction.

水平方向の位置検出を行う手段の一例として、つぎのよ
うなものがある。センサ部には超音波発振器を取着して
おく。一方、超音波受信素子を多数センサ部の水平方向
移動範囲に沿って配列した受信器を設けておいて、最も
強く受信された超音波素子がある位置をセンサ部のその
時の水平方向位置として検出する。
An example of a means for detecting a position in the horizontal direction is as follows. An ultrasonic oscillator is attached to the sensor section. On the other hand, a receiver is provided in which a large number of ultrasonic receiving elements are arranged along the horizontal movement range of the sensor unit, and the position of the ultrasonic element that is most strongly received is detected as the horizontal position of the sensor unit at that time. do.

さらに、センサ部をダイパーが手で支えるのではなく、
構造材の塗膜上を垂直・水平方向に自動的に移動・検知
動作をするようにロボッ□ト化して′おいて、基準とす
る位置からの垂直・水平方向移動量に応じた信号が出力
されるようにしておいてもよい。
Furthermore, instead of having the sensor part supported by the dialer's hand,
The robot is designed to automatically move and detect vertically and horizontally on the paint film of the structural material, and outputs signals according to the amount of vertical and horizontal movement from the reference position. You may also leave it as such.

次に、この発明にかかる微小孔検出装置の第2実施例の
説明を行う。
Next, a second embodiment of the microhole detection device according to the present invention will be explained.

第5図(alの微小孔検出装置は、そのセンサ部1′が
絶縁性樹脂材料の環状ボディ41を備えていて、このボ
ディ41が2つ別構成になっており、第5図(b)にみ
るように、蝶番42を支点として両側に開かれるように
なっている。環状ボディ41の内周には、仕切壁43で
個別に囲まれている複数の電極部44・・・44が設け
られている。ひとつの仕切壁43内には感圧素子45が
設けられている。
The microhole detection device shown in FIG. As shown in the figure, it is opened on both sides using a hinge 42 as a fulcrum.A plurality of electrode parts 44, which are individually surrounded by a partition wall 43, are provided on the inner circumference of the annular body 41. A pressure sensitive element 45 is provided within one partition wall 43.

使用する場合、第6図にみるように、環状ボディ41を
円柱状の構造材(もちろん塗膜が施されている)Fに巻
き、把持部46.46を締め上げて、仕切壁43を塗膜
へ押しつける。
When in use, as shown in FIG. 6, the annular body 41 is wrapped around a cylindrical structural member F (of course coated with a coating film), the grips 46 and 46 are tightened, and the partition wall 43 is coated. Press against the membrane.

この微小孔検出装置の計測部は、第7図にみるように、
各電極部44ごとに電流測定部Iが設けられている。各
電流測定部■および水深測定部Hの信号は、入力インタ
ーフェース51でディジタル化されてパーソナルコンピ
ュータ52へ入力される。パーソナルコンピュータ53
では入力された信号を処理し、第9図にみるようなデー
タシートをプリンター53で印刷したり、第10図にみ
るようなデータ表示をモニタ54で行う。モニタ54で
は、電流量が一定量以上流れた場合に丸印が表示される
。その際、電流の量に応じて色分けされた丸印となるよ
うにして、ある程度、表示と微小孔の大きさを関連づけ
てお(と便利である。
As shown in Fig. 7, the measurement section of this microhole detection device is as follows.
A current measuring section I is provided for each electrode section 44. The signals from each current measuring section (2) and water depth measuring section H are digitized by an input interface 51 and input to a personal computer 52. personal computer 53
Then, the input signals are processed, and a data sheet as shown in FIG. 9 is printed out on the printer 53, and data as shown in FIG. 10 is displayed on the monitor 54. On the monitor 54, a circle is displayed when a certain amount of current or more flows. At that time, it is convenient to associate the display with the size of the micropore to some extent by making the circle mark color-coded according to the amount of current.

また、検出結果をディスク55へ記憶させるようにして
もよい。
Further, the detection results may be stored on the disk 55.

なお、計測部が、第8図にみるように、電流測定部Iを
1個だけ設けておいて、スイッチ17の信号で順次各電
極部44を電流測定部■に接続するマルチプレクサMX
を設けて、計測部の構成を簡略化してもよい。
In addition, as shown in FIG. 8, the measuring section is a multiplexer MX which has only one current measuring section I and connects each electrode section 44 to the current measuring section 2 in turn by a signal from the switch 17.
The configuration of the measuring section may be simplified by providing the following.

第11図(a)、(b)に示した第3実施例の微小孔検
出装置は、そのセンサ部1#が絶縁性の縦長ボディ61
を備えていて、縦長ボディ61の一例には、仕切壁62
で個別に囲まれている複数の電極部63・・・63が設
けられている。仕切壁62内側には感圧素子64が設け
られている。
In the microhole detection device of the third embodiment shown in FIGS.
An example of the vertically long body 61 includes a partition wall 62.
A plurality of electrode portions 63...63 are provided which are individually surrounded by. A pressure sensitive element 64 is provided inside the partition wall 62.

計測部等の構成は、第2実施例と同様である。The configuration of the measuring section and the like is the same as in the second embodiment.

第2.3実施例では、同時に複数個所の検出動作が行え
るので、作業能率が一層向上する。また、これら実施例
の微小孔検出装置でも、センサ部1′、1″に報知器が
設けられていると便利である。
In the second and third embodiments, detection operations can be performed at a plurality of locations at the same time, so that work efficiency is further improved. Also, in the microhole detection devices of these embodiments, it is convenient if the sensor sections 1', 1'' are provided with an alarm.

この発明にかかる微小孔検出装置は、前記の実施例に限
らない。
The microhole detection device according to the present invention is not limited to the embodiments described above.

電極部に流れる電流を測定することにより微小孔の検出
を行うようにしていたが、電極部と構造材間インピーダ
ンスを構成の一部とする発振器を構成しておいて、発振
周波数を計測して微小孔の検出を行ってもよい。
Previously, micropores were detected by measuring the current flowing through the electrode, but it was also possible to configure an oscillator that includes the impedance between the electrode and the structural material and measure the oscillation frequency. Detection of micropores may also be performed.

新規に施された塗膜に限らず、既に施された塗膜に微小
孔が発生していないかどうかを調べるようにしてもよい
The present invention is not limited to newly applied coatings, but may also be used to check whether micropores have occurred in already applied coatings.

構造材と電極部の間に印加される電圧も、交流でな(直
流であってもよい。ただ、直流の場合は電極部が電気分
解で損傷したり、電流値の安定に時間がかかり応答性が
低いので、交流を用いるのが望ましい。
The voltage applied between the structural material and the electrodes must not be alternating current (direct current is also acceptable. However, if direct current is used, the electrodes may be damaged by electrolysis, or the current value may take a long time to stabilize, resulting in poor response). It is preferable to use alternating current because of its low sensitivity.

センサ部と計測部が分離された構成であったが、センサ
部と計測部が一体化されていてもよい。
Although the sensor section and the measurement section are separated, the sensor section and the measurement section may be integrated.

センサ手段の位置検出を、センサ手段と水上の間を鎖で
緊いでおいて、鎖の位置や繰り出し量を目視測定するこ
とで行うようにし、その結果を手動で位置信号として計
測部へ入力するようにしてもよい。
The position of the sensor means is detected by tightening a chain between the sensor means and the surface of the water, visually measuring the position and amount of extension of the chain, and manually inputting the results as a position signal to the measuring section. You can do it like this.

構造材も、海上の石油備蓄槽の壁を構成する構造材であ
ってもよい。また、弾性筒体が塗膜に押しつけられてい
る間は、電極部と構造材の間に電圧が自動的に印加され
るような構成にしておくと便利である。構造材は、通常
、金属材料からなるものであるが、必ずしも金属材でな
くてもよいが、その導電率が金属材料の導電率に近い程
(導電率が低い程)、微小孔の検出精度がよいことはい
うまでもない。
The structural material may also be a structural material constituting the wall of an offshore petroleum storage tank. Further, it is convenient to configure the structure so that a voltage is automatically applied between the electrode portion and the structural material while the elastic cylinder is pressed against the coating film. The structural material is usually made of a metal material, but it does not necessarily have to be a metal material, but the closer the conductivity is to that of the metal material (the lower the conductivity), the better the detection accuracy of micropores will be. Needless to say, it is good.

波が荒い日は、時々刻々の波の高さ分だけ水深が変動す
る。固定した感圧素子を別に設けておいて変動分を検出
し、検出した変動分でもってセンサ部の感圧素子の変動
分を除去補正し、正確な水深測定を行うようにすると便
利である。あるいは、センサ部に超音波発振器を設けて
おいて、水面上に据えつけた受信器で、発振器から直接
受信される信号と水底で反射された信号を検出し、これ
らの信号の時間差からセンサ部の水底からの高さを求め
、これをセンサ部の位置とすると、前記波の影響による
変動が除去される。
On days when the waves are rough, the water depth changes from moment to moment by the height of the waves. It is convenient to provide a fixed pressure-sensitive element separately, detect the variation, use the detected variation to remove and correct the variation in the pressure-sensitive element of the sensor part, and perform accurate water depth measurement. Alternatively, an ultrasonic oscillator is installed in the sensor section, and a receiver placed on the water surface detects the signal directly received from the oscillator and the signal reflected at the bottom of the water, and the sensor section detects the time difference between these signals. By determining the height from the bottom of the water and using this as the position of the sensor unit, fluctuations due to the influence of the waves can be removed.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる微小孔検出装置は、以上に述べた構成
であるので、海水の透明度、水深等の影響が少なく、検
査結果が客観的で信頼性が高く、しかも、能率よく短時
間で作業が行える。
Since the micropore detection device according to the present invention has the above-described configuration, it is less affected by seawater transparency, water depth, etc., provides objective and reliable inspection results, and can be operated efficiently and in a short time. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明にかかる水中塗膜の微小孔検出装置
の概略構成図、第2図(al、(bl、(e)は、この
微小孔検出装置のセンサ部をあられす図であって、図+
a)は正面図、図(b)は底面図、図(e)は平面図で
ある。第3図は、前記微小孔検出装置を使用する時の様
子をあられす説明図、第4図は前記微小孔検出装置の検
出結果を記録したチャート、第5図(al、(b)は、
この発明にかかる微小孔検出装置の第2実施例のセンサ
部をあられす図であって、図(alは斜視図、図(b)
は平面図、第6図は、このセンサ部の使用状態をあられ
す斜視図、第7図および第8図は、それぞれ、第2実施
例の計測部のブロック図、第9図は、第2実施例の微小
孔検出装置による検出結果を記録したデータシートの平
面図、第10図は、第2実施例による検出結果のモニタ
表示の説明図、第11図(a)、(b)は、この発明に
かかる第3実施例の微小孔検出装置のセンサ部をあられ
す図であって、図(alは正面図、図(b)はこのセン
サ部の使用状態をあられす正面図である。 l、1′、1“・・・センサ部(センサ手段)2・・・
計測部(計測手段)  13.44.63・・・電極部
  14・・・弾性筒体(仕切壁)  43.62・・
・仕切壁  F・・・構造材  S・・・塗膜Sa・・
・微小孔 代理人 弁理士  松 本 武 彦 第1 図 136図 第9図 第70図
FIG. 1 is a schematic diagram of a micropore detection device for an underwater coating film according to the present invention, and FIGS. te, figure+
Figure (a) is a front view, figure (b) is a bottom view, and figure (e) is a plan view. FIG. 3 is an explanatory diagram showing how the micropore detection device is used, FIG. 4 is a chart recording the detection results of the micropore detection device, and FIGS.
FIG. 6 is a schematic view of the sensor section of the second embodiment of the microhole detection device according to the present invention, (al is a perspective view, FIG.
is a plan view, FIG. 6 is a perspective view showing the state of use of this sensor section, FIGS. 7 and 8 are block diagrams of the measuring section of the second embodiment, and FIG. 9 is a diagram of the second embodiment. FIG. 10 is a plan view of the data sheet recording the detection results by the microhole detection device of the embodiment, and FIG. 11 is an explanatory diagram of the monitor display of the detection results by the second embodiment. FIGS. FIG. 3 is a diagram illustrating a sensor section of a microhole detecting device according to a third embodiment of the present invention; FIG. l, 1', 1"...sensor section (sensor means) 2...
Measuring part (measuring means) 13.44.63... Electrode part 14... Elastic cylinder (partition wall) 43.62...
・Partition wall F...Structural material S...Painting film Sa...
・Microhole Agent Patent Attorney Takehiko Matsumoto No. 1 Figure 136 Figure 9 Figure 70

Claims (7)

【特許請求の範囲】[Claims] (1)導電性構造材の表面に施された塗膜における微小
孔の検出を水中において検出する装置であって、前記微
小孔検出のための電極部を備えたセンサ手段が設けられ
ているとともに、前記電極部・構造材間のインピーダン
ス値に関連した信号を計測する計測手段が設けられてお
り、前記センサ手段は前記電極部の周囲を囲む絶縁性弾
性材料の仕切壁をも備えていて、微小孔の検出の際に前
記仕切壁を塗膜に当てることにより前記電極部が仕切壁
外側の水と導通することを阻止するようにすることを特
徴とする水中塗膜の微小孔検出装置。
(1) A device for detecting micropores in a coating film applied to the surface of a conductive structural material in water, the device being provided with sensor means equipped with an electrode section for detecting the micropores, and , a measuring means for measuring a signal related to an impedance value between the electrode part and the structural material is provided, and the sensor means also includes a partition wall made of an insulating elastic material surrounding the electrode part, A device for detecting micropores in an underwater coating film, characterized in that when detecting micropores, the partition wall is brought into contact with the coating film to prevent the electrode portion from being electrically connected to water outside the partition wall.
(2)前記電極部・構造材間のインピーダンス値に関連
した信号が、前記電極部・構造材間を流れる電流である
特許請求の範囲第1項記載の水中塗膜の微小孔検出装置
(2) The underwater coating film micropore detection device according to claim 1, wherein the signal related to the impedance value between the electrode portion and the structural material is a current flowing between the electrode portion and the structural material.
(3)センサ手段の位置を検出する位置検出手段が設け
られている特許請求の範囲第1項または第2項記載の水
中塗膜の微小孔検出装置。
(3) An apparatus for detecting micropores in an underwater coating film according to claim 1 or 2, which is provided with position detection means for detecting the position of the sensor means.
(4)位置検出手段が、センサ手段の水深を検出する手
段であって、この手段は、センサ部に設けられた水圧検
出用の感圧素子と計測手段に設けられた水深測定部から
なる特許請求の範囲第3項記載の水中塗膜の微小孔検出
装置。
(4) The position detecting means is a means for detecting the water depth of the sensor means, and this means is a patented patent that includes a pressure sensitive element for detecting water pressure provided in the sensor section and a water depth measuring section provided in the measuring means. A device for detecting micropores in an underwater coating film according to claim 3.
(5)センサ手段が、微小孔検出がなされたことを報知
する報知器を備えている特許請求の範囲第1項から第4
項までのいずれかに記載の水中塗膜の微小孔検出装置。
(5) Claims 1 to 4, wherein the sensor means includes an alarm that notifies that the microhole has been detected.
2. A device for detecting micropores in an underwater coating film according to any one of the preceding paragraphs.
(6)センサ手段が仕切壁で個別に囲まれている複数の
電極部を備え、計測部が各電極部ごとに信号測定を行う
特許請求の範囲第1項から第5項までのいずれかに記載
の水中塗膜の微小孔検出装置。
(6) Any one of claims 1 to 5, wherein the sensor means includes a plurality of electrode sections individually surrounded by partition walls, and the measurement section measures the signal for each electrode section. A device for detecting micropores in an underwater coating film as described above.
(7)センサ手段がスイッチを備え、このスイッチ操作
により計測手段による計測動作の制御がなされる特許請
求の範囲第1項から第6項までのいずれかに記載の水中
塗膜の微小孔検出装置。
(7) The underwater coating film micropore detection device according to any one of claims 1 to 6, wherein the sensor means includes a switch, and the measurement operation by the measurement means is controlled by operating the switch. .
JP15389587A 1987-06-19 1987-06-19 Minute hole detector for underwater applied film Pending JPS63317755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15389587A JPS63317755A (en) 1987-06-19 1987-06-19 Minute hole detector for underwater applied film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15389587A JPS63317755A (en) 1987-06-19 1987-06-19 Minute hole detector for underwater applied film

Publications (1)

Publication Number Publication Date
JPS63317755A true JPS63317755A (en) 1988-12-26

Family

ID=15572456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15389587A Pending JPS63317755A (en) 1987-06-19 1987-06-19 Minute hole detector for underwater applied film

Country Status (1)

Country Link
JP (1) JPS63317755A (en)

Similar Documents

Publication Publication Date Title
US8926823B2 (en) Sub-coating coated metal corrosion measurement
US10883918B2 (en) Multielectrode probes for monitoring fluctuating stray current effects and AC interference on corrosion of buried pipelines and metal structures
KR20160038107A (en) Sensor for monitoring corrosion and method for manufacturinf same
US4927503A (en) Method for assessment of corrosion activity in reinforced concrete
US4090170A (en) Process and apparatus for investigating the activity of a cathodic protection unit
US10352696B2 (en) Ultrasonic cathodic protection test station
JPH07198643A (en) Method for measuring resistance of solution, method for measuring corrosion rate of metal surface using method thereof and device therefor
NO145034B (en) PROCEDURE AND DEVICE FOR PERFORMING ELECTRICAL INSPECTIONS OF OFFSHORE CONSTRUCTIONS
US6026691A (en) Methods and devices for electrochemically determining metal fatigue status
JPH0387669A (en) Method and apparatus for monitoring safety of metal structural body
CN111788478B (en) Corrosion measuring device
CN102305817A (en) Multi-functional probe for monitoring corrosion of water pipeline and protecting water pipeline
NO20160104A1 (en) Method for detection of electric fields surrounding a structure in an electrically conducting medium
US11162887B2 (en) Apparatus for tank bottom soil side corrosion monitoring
CN202166630U (en) Multifunctional probe for monitoring corrosion and protection of water pipelines
JPS63317755A (en) Minute hole detector for underwater applied film
GB2124382A (en) Determining the level of protection provided by a submarine cathodic protection system
US7572360B2 (en) Electrochemical fatigue sensor systems and methods
US11467083B2 (en) System and method for analyzing cathodic protection current shielding of a coating
JP2515922B2 (en) Water depth position and potential measuring device for underwater metal structures
CN201666891U (en) Impulse eddy detector of detects
WO2014174253A1 (en) Method and apparatus for evaluating cathodic protection
JP2020003431A (en) Method of detecting attached matter using ultrasonic waves, and system for detecting attached matters using ultrasonic waves
RU2559117C2 (en) Conductometric method to measure liquid level
TWI797805B (en) Detection device of cathodic protection apparatus and detection method thereof