JPS63317679A - Production of hard film having high thermal impart resistance - Google Patents

Production of hard film having high thermal impart resistance

Info

Publication number
JPS63317679A
JPS63317679A JP15150487A JP15150487A JPS63317679A JP S63317679 A JPS63317679 A JP S63317679A JP 15150487 A JP15150487 A JP 15150487A JP 15150487 A JP15150487 A JP 15150487A JP S63317679 A JPS63317679 A JP S63317679A
Authority
JP
Japan
Prior art keywords
chromic acid
particles
coating
base material
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15150487A
Other languages
Japanese (ja)
Inventor
Shoichi Taira
平 正一
Saburo Otani
大谷 三郎
Yoshio Harada
良夫 原田
Ikuyoshi Miyajima
生欣 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOOKARO KK
Tocalo Co Ltd
Nippon Steel Corp
Original Assignee
TOOKARO KK
Tocalo Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOOKARO KK, Tocalo Co Ltd, Nippon Steel Corp filed Critical TOOKARO KK
Priority to JP15150487A priority Critical patent/JPS63317679A/en
Publication of JPS63317679A publication Critical patent/JPS63317679A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To form a hard film having high thermal impact resistance by coating a slurry prepd. by mixing a mixture composed of ceramics particles essentially consisting of SiO2 and metallic particles having a specific grain size with an aq. chromic acid soln. on a base material and calcining the coating, then repeating the impregnation of the chromic acid and the calcination several times. CONSTITUTION:The metallic particles having <=7mu average grain size and high coefft. of thermal expansion are incorporated and mixed at 18-50% into and with the ceramics particles essentially consisting of SiO2. This mixture is mixed with the aq. soln. contg. the chromic acid to prepare the slurry which is then coated on the base material and is calcined at 500-600 deg.C to form the porous film. This material is immersed in the aq. chromic acid soln. to fill the chromic acid into the pores; thereafter, the coating is calcined at 500-600 deg.C. The impregnation of the chromic acid and the calcination treatment are repeated plural times. the hard film which withstands the thermal impact up to about 1,000 deg.C is thereby formed on the member having the high coefft. of thermal expansion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、オーステナイト系ステンレスに代表される、
熱膨張係数が15X 10−’I/’C以上の高熱膨張
特性を有する母材に対し、セラミックスをコーティング
した複合材料であって、高耐熱衝撃性を要求される部材
に供せられるセラミックス系被膜の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention is directed to austenitic stainless steel,
A composite material in which a base material having high thermal expansion characteristics with a coefficient of thermal expansion of 15X 10-'I/'C or more is coated with ceramics, and is a ceramic-based coating that can be applied to members that require high thermal shock resistance. It pertains to the manufacturing method.

(従来の技術) 近年、セラミックスを低い温度でコーティングする方法
が開発され(特公昭55−14833)ているが、この
方法は、クロム酸溶液を多気孔被膜の気孔部に浸透させ
、これを少なくとも酸化クロムが6価から3価に変換す
る温度以上、好ましくは550℃前後で焼成し、クロム
酸を3価の酸化クロムに変える工程を複数回を繰り返す
ことにより、マトリクス部がCr2O,で充填された、
高硬度の緻密な被n!2を得るとするものである。
(Prior Art) In recent years, a method of coating ceramics at a low temperature has been developed (Japanese Patent Publication No. 55-14833). By firing at a temperature higher than the temperature at which chromium oxide converts from hexavalent to trivalent chromium oxide, preferably around 550°C, and repeating the process of converting chromic acid into trivalent chromium oxide several times, the matrix portion is filled with Cr2O. Ta,
Highly hard and dense coating! 2.

この方法を高熱膨張率を有する金属母材へ適用するには
、被膜マトリクス部のCr2O3の熱膨張率が低いため
、母材との熱膨張に伴う不整合を避けるよう、被膜内に
分散させる粒子は、セラミックスの中でも高熱膨張率を
持つ、5in2を中心とする組成に限られていた。とこ
ろがこの5in2を使用した被膜は、5in2が570
〜580℃で変態して、低熱膨張のβ・5in2となり
被膜の熱膨張率が低下し、700℃を超える温度では、
母材との熱膨張の不整合により、被膜の亀裂、剥離等が
生じ、使用できない状況にあった。(「実務表面技術J
  Vol、32No、2. ’85 ) また、この先願の発明に於て、「被膜対母材の大きい熱
膨張率の不釣合は、スラリーが高%の延性物質、例えば
金属粉末を有する場合には、許容することかできる。」
と開示しているが、その金属粉の種類、使用量等具体的
な方法については、明らかにされていない。
In order to apply this method to a metal base material with a high coefficient of thermal expansion, since the coefficient of thermal expansion of Cr2O3 in the coating matrix is low, it is necessary to disperse particles in the coating to avoid mismatch due to thermal expansion with the base material. was limited to a composition centered on 5in2, which has a high coefficient of thermal expansion among ceramics. However, the coating using this 5in2 is 570
It transforms at ~580℃ and becomes β・5in2 with low thermal expansion, and the coefficient of thermal expansion of the film decreases, and at temperatures exceeding 700℃,
Due to thermal expansion mismatch with the base material, cracks and peeling of the coating occurred, making it unusable. (“Practical surface technology J
Vol, 32 No. 2. '85) Also, in this prior invention, ``a large coefficient of thermal expansion mismatch between the coating and the base material can be tolerated if the slurry has a high percentage of ductile material, such as metal powder. ”
However, specific methods such as the type of metal powder and the amount used are not disclosed.

(発明が解決すべき問題点) 本発明の目的は、熱膨張率の大きな金属母材上に、クロ
ム酸処理をほどこした耐熱衝撃温度の高い硬質板11i
の製造方法を提供しようとするものである。
(Problems to be Solved by the Invention) An object of the present invention is to provide a hard plate 11i with high thermal shock resistance, which is formed by applying chromic acid treatment to a metal base material having a large coefficient of thermal expansion.
The present invention aims to provide a method for manufacturing.

(問題点を解決するための手段) 従来の主としてSiO2を分散粒とした被膜では、70
0℃を超える温度の場合、耐熱衝撃性が低下することか
ら、本発明者は、高温域でも耐熱衝撃性の優れた硬質被
膜の研究を行なった。その結果、平均粒径7μ以下の金
属粒子を体積比で18%〜50%分散させると、熱衝撃
性が、従来の700℃〜800℃からl000℃に大幅
に改善されることを見出した。尚、ここで平均粒径とは
累積重量の50%時の粒径である。
(Means for solving the problem) In the conventional film mainly composed of dispersed particles of SiO2, 70
Since thermal shock resistance decreases at temperatures above 0° C., the present inventor conducted research on hard coatings that have excellent thermal shock resistance even in high temperature ranges. As a result, it was found that when metal particles with an average particle size of 7 μm or less were dispersed in a volume ratio of 18% to 50%, thermal shock resistance was significantly improved from the conventional 700°C to 800°C to 1000°C. Note that the average particle size here refers to the particle size at 50% of the cumulative weight.

金属粒子に、熱膨張率の高い平均粒径7μ以下のSO5
304粒子を用い、残りをSiO□粒子とし、これらを
種々の割合で配合し、クロム酸をバインダーとした水溶
液中に混合し、スラリー状とした。
Metal particles include SO5 with a high coefficient of thermal expansion and an average particle size of 7μ or less
304 particles were used, and the rest were SiO□ particles, which were blended in various proportions and mixed into an aqueous solution using chromic acid as a binder to form a slurry.

コーティング母材に、SO5304を用い、ショツトブ
ラストにより表面の粗面化を施した後、前記スラリーを
塗布、焼成し、多気孔被膜を得た。これに、クロム酸含
浸、焼成処理を施し、かかる工程を13回繰り返し、マ
トリクス部がCr2O3で、被膜内に金属粒子を種々の
体積配合比で分散したセラミック被膜を得た。
After roughening the surface of the coating base material by shot blasting using SO5304, the slurry was applied and fired to obtain a porous coating. This was subjected to chromic acid impregnation and firing treatment, and these steps were repeated 13 times to obtain a ceramic coating in which the matrix portion was Cr2O3 and metal particles were dispersed in the coating at various volume mixing ratios.

この工程で得られた被膜の耐熱8I撃性を調べるため、
700℃〜1100℃の範囲で昇温、30分間保持後、
水中投下により急冷し、これを4回繰り返す操作を行な
った。
In order to investigate the heat resistance 8I impact resistance of the film obtained in this process,
After raising the temperature in the range of 700°C to 1100°C and holding it for 30 minutes,
The sample was rapidly cooled by dropping it into water, and this process was repeated four times.

第1図に示すごとく被膜内に、SO5304粒子を体積
比で18%以上配合することで、耐熱trst性は著し
く改善されるが、これは高温域での熱膨張率の向上のほ
かに、金属粒子が熱歪みを吸収する効果によるものと考
えられる。
As shown in Figure 1, by incorporating SO5304 particles in a volume ratio of 18% or more in the coating, heat resistance is significantly improved. This is thought to be due to the effect of particles absorbing thermal strain.

これは、同じく高温での耐酸化性に優れたNiCr粒子
についても、同様な効果が得られた。かかる金属粒子に
よる熱歪み吸収効果は、種々の実験の結果、金属粒子表
面間の平均間隔が、5μ以内の場合において初めて達成
しえたものであり、これを超えると、熱歪み吸収効果は
、得られないことがわかった。
Similar effects were obtained with NiCr particles, which also have excellent oxidation resistance at high temperatures. As a result of various experiments, such a thermal strain absorption effect by metal particles could only be achieved when the average spacing between metal particle surfaces was 5μ or less; beyond this, the thermal strain absorption effect could not be obtained. I found out that I can't do it.

このような熱歪みを効果的に吸収しようとするためには
、金属粒子の分散は、金属粒子を被膜中に体積比で18
〜50%含有せしめ、かつ平均粒子径を7μ以下とし、
望ましくは粒度を1μから12μの範囲とすることによ
って、得られるものである。
In order to effectively absorb such thermal strain, it is necessary to disperse the metal particles in the coating at a volume ratio of 18.
~50% content, and the average particle size is 7μ or less,
This is preferably obtained by setting the particle size to a range of 1μ to 12μ.

また金属粒子と同時に配合する酸化物粒子は、酸化物中
で特に高熱膨張率を有することから、珪素酸化物を主体
とすることが好ましく、残りはZrO□、A1□03な
ど比較的熱膨張率の高い材料であればよい。
In addition, the oxide particles to be blended together with the metal particles are preferably mainly composed of silicon oxide, as they have a particularly high coefficient of thermal expansion among oxides, and the rest are made of particles with relatively high thermal expansion coefficients such as ZrO□ and A1□03. Any material with high quality is sufficient.

また、本発明の効果は、コーティング母材の熱膨張率が
大きい程、即ち15X 10”61/”Cを超え、熱膨
張差が大きくなっても、本発明の効果が顕著に維持され
る。
Further, the effect of the present invention is maintained more significantly even when the coefficient of thermal expansion of the coating base material is larger, that is, it exceeds 15×10"61/"C, and the difference in thermal expansion becomes larger.

次に金属粉にオーステナイト系ステンレスを使用する理
由としては、高熱膨張率を有し、かつ高温まで変態を生
じず、安定した膨張特性を示すためであり、再びまた、
NiCr合金を使用すれば高温耐酸化性に優れた高耐熱
被膜が得られる。
Next, the reason why austenitic stainless steel is used for the metal powder is that it has a high coefficient of thermal expansion, does not undergo transformation even at high temperatures, and exhibits stable expansion characteristics.
If NiCr alloy is used, a highly heat-resistant coating with excellent high-temperature oxidation resistance can be obtained.

(実施例) 以下実施例により本発明の高耐熱衝撃硬質被膜の製造例
を具体的に記載する。
(Example) Hereinafter, production examples of the highly heat-resistant shock-resistant hard coating of the present invention will be specifically described in Examples.

[製造例] 表1に、本発明の高耐熱衝撃被膜の製造に供した分散粒
子の種類、及び体積配合割合を示す。分散粒子のうち、
5in2およびA1□03粒子は、あらかじめ振動ボー
ルミルにより粉砕し、また、5US304Lおよび旧8
0・Cr2O粒子は分級を行ない、粒径を7μ以下に調
整した。これを水100重量部に対し、無水クロム酸1
60重量部を溶解して作成したクロム酸液に混合し、ス
ラリー状として、ボールミルで2時間攪拌、混合を打込
った。また、被覆を施す母材には、ステンレス鋼SO5
304を用いて、縦100o+m、横5010111.
厚さ5mmに切断し1表面をショツトブラストにより、
粗面化、および清浄化を行なった。この母材を、スラリ
ー中に浸漬し、引上げにより母材表面に厚さ50μ前後
にスラリーを塗布し、乾燥後、550℃で1時間焼成を
行なった。これにより得られた被膜は多気孔であるため
、水100重量部に対し、無水クロム酸160重量部を
溶解して作成したクロム酸液に浸漬し、気孔をクロム酸
で充填した後引き上げ、550℃で1時間焼成を行なっ
た。この工程を13回繰り返して、マトリクスがCr2
O3で緻密化された、表1に示す粒子を分散した被膜を
得た。本方法により得られた被膜の耐熱衝撃試験の結果
を、表2に示す。耐熱衝撃性の評価は、各温度に昇温、
30分間保持後、水冷を行なう工程を4回繰り返し、こ
の時の剥離の有無で行なった。従来法であるSt、2、
へ1203粒子を使用する被膜では、 800℃以上で
剥離が生じるが、SO5304L 、および旧8O−C
r20の金属粒子を、体積比で18%以上含有させるこ
とにより耐熱衝撃性は著しく向上し、1000℃の熱衝
撃に耐えることが可能となった。
[Production Example] Table 1 shows the types of dispersed particles used in the production of the highly thermal shock resistant coating of the present invention and their volumetric blending ratios. Among the dispersed particles,
5in2 and A1□03 particles were pre-pulverized by a vibrating ball mill, and 5in2 and A1□03 particles were
The 0.Cr2O particles were classified and the particle size was adjusted to 7μ or less. Add 1 part of chromic anhydride to 100 parts by weight of water.
It was mixed into a chromic acid solution prepared by dissolving 60 parts by weight, and the mixture was stirred and mixed in a ball mill for 2 hours to form a slurry. In addition, the base material to be coated is stainless steel SO5
304, length 100o+m, width 5010111.
Cut into 5mm thick pieces and shot blast one surface.
The surface was roughened and cleaned. This base material was immersed in a slurry, and the slurry was applied to the surface of the base material to a thickness of approximately 50 μm by pulling up, and after drying, baking was performed at 550° C. for 1 hour. Since the resulting film is multi-porous, it is immersed in a chromic acid solution prepared by dissolving 160 parts by weight of chromic anhydride in 100 parts by weight of water, filling the pores with chromic acid, and then pulling it up. Firing was performed at ℃ for 1 hour. This process is repeated 13 times until the matrix becomes Cr2
A coating was obtained which was densified with O3 and had the particles shown in Table 1 dispersed therein. Table 2 shows the results of the thermal shock resistance test of the film obtained by this method. Thermal shock resistance is evaluated by increasing the temperature at each temperature.
After holding for 30 minutes, the process of cooling with water was repeated four times, and the test was conducted to determine whether or not peeling occurred at this time. Conventional method St, 2,
Coatings using SO5303 particles peel off at temperatures above 800°C, but SO5304L and former 8O-C
By containing 18% or more of r20 metal particles by volume, the thermal shock resistance was significantly improved and it became possible to withstand thermal shock at 1000°C.

表1 (表数値は体積%) 表2 (発明の効果) 今まで熱膨張率の非常に高い部材へのセラミック被覆は
、熱膨張の不一致により、耐熱衝撃性を要求される用途
には、使用できなかったが、本発明により、当該部材に
対しても、1000℃までの耐熱衝撃性に耐えることが
できるようになり、適応用途が非常に拡大され、セラミ
ック被覆の長所が広範囲に享受できることが可能となっ
た。
Table 1 (Table values are volume %) Table 2 (Effects of the invention) Until now, ceramic coatings on members with extremely high coefficients of thermal expansion have not been used in applications that require thermal shock resistance due to the mismatch in thermal expansion. However, with the present invention, it is now possible to withstand thermal shock resistance up to 1000 degrees Celsius for the member concerned, greatly expanding the applicable applications and allowing the benefits of ceramic coating to be enjoyed over a wide range of areas. It has become possible.

【図面の簡単な説明】 第1図は耐熱衝撃温度に及ぼすSO5304粒子の配合
比率の影響を示す図面である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the influence of the blending ratio of SO5304 particles on thermal shock resistance temperature.

Claims (3)

【特許請求の範囲】[Claims] (1)珪素酸化物を主体とするセラミックス粒子、およ
び金属粒子の混合物をクロム酸を含む水溶液に混合して
スラリー状とし、これをコーティング母材上に塗布した
後、500〜600℃にて焼成せしめて多気孔被膜を形
成させたものにクロム酸を含浸させた後、500〜60
0℃にて焼成する工程を複数回繰り返すことによりCr
_2O_3をマトリクスとした緻密な硬質被膜を得る方
法において、平均粒径7μ以下の金属粒子を体積比で1
8〜50%を含有せしめることを特徴とする高耐熱衝撃
硬質被膜の製造方法。
(1) A mixture of ceramic particles mainly composed of silicon oxide and metal particles is mixed with an aqueous solution containing chromic acid to form a slurry, which is applied onto the coating base material and then fired at 500 to 600°C. After impregnating the film with chromic acid to form a multi-porous film,
By repeating the process of firing at 0°C multiple times, Cr
In a method for obtaining a dense hard coating using _2O_3 as a matrix, metal particles with an average particle size of 7μ or less are mixed at a volume ratio of 1
A method for producing a highly heat-resistant impact hard coating, characterized by containing 8 to 50%.
(2)コーティング母材が熱膨張率15×10^−^6
1/℃以上を有する材料である、特許請求の範囲第1項
記載の高耐熱衝撃硬質被膜の製造方法。
(2) The coating base material has a coefficient of thermal expansion of 15 x 10^-^6
1/C or more, the method for producing a highly heat-resistant impact hard coating according to claim 1.
(3)金属粒子がオーステナイト系ステンレス粒子、或
はNi−Cr合金粒子である特許請求の範囲第1項或い
は第2項記載の高耐熱衝撃硬質被膜の製造方法。
(3) The method for producing a highly heat-resistant impact hard coating according to claim 1 or 2, wherein the metal particles are austenitic stainless steel particles or Ni-Cr alloy particles.
JP15150487A 1987-06-19 1987-06-19 Production of hard film having high thermal impart resistance Pending JPS63317679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15150487A JPS63317679A (en) 1987-06-19 1987-06-19 Production of hard film having high thermal impart resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15150487A JPS63317679A (en) 1987-06-19 1987-06-19 Production of hard film having high thermal impart resistance

Publications (1)

Publication Number Publication Date
JPS63317679A true JPS63317679A (en) 1988-12-26

Family

ID=15519956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15150487A Pending JPS63317679A (en) 1987-06-19 1987-06-19 Production of hard film having high thermal impart resistance

Country Status (1)

Country Link
JP (1) JPS63317679A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006002224A1 (en) * 2006-01-16 2007-07-19 Schaeffler Kg Arrangement for protecting a substrate against corrosion, method for its production and pulley

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006002224A1 (en) * 2006-01-16 2007-07-19 Schaeffler Kg Arrangement for protecting a substrate against corrosion, method for its production and pulley

Similar Documents

Publication Publication Date Title
US4931413A (en) Glass ceramic precursor compositions containing titanium diboride
CN112830769A (en) High-emissivity high-entropy ceramic powder material and coating preparation method
JP2951771B2 (en) Rare earth oxide-alumina-silica sintered body and method for producing the same
CN110903074A (en) High-temperature oxidation-resistant coating on surface of silicon carbide substrate and preparation method thereof
CN113735590B (en) Preparation method and product of high-temperature-resistant electromagnetic wave-absorbing ceramic matrix composite material
CN113817946B (en) HEA-SiC high-temperature wave-absorbing material and preparation method thereof
CN117511260A (en) Oriented billet decarburization-preventing coating, coating and preparation method thereof
US4528244A (en) Fused silica shapes
JPS63317679A (en) Production of hard film having high thermal impart resistance
JP4171916B2 (en) Heat-resistant covering material
JPH0250994B2 (en)
JPH02258670A (en) Low temperature expandable ceramics
JPS6141757A (en) Zro2-base powder for heat insulating coating
CN109320263A (en) Sintering aid and quartz-ceramics and its preparation and application method
JPS59199588A (en) Manufacture of infrared radiator
JP2828583B2 (en) Surface-coated silicon nitride heat-resistant member
RU2679774C1 (en) Method of producing heat-resistant glass-ceramic coating
JPH0224789B2 (en)
JP4081574B2 (en) Method for manufacturing heat-resistant coated member
JPH05186285A (en) Substrate for heat treatment and its production
JP2766337B2 (en) Manufacturing method of wear resistant member
JPH03159970A (en) Ceramic sintered body of heat-resistant porous non-oxide base and production thereof
JP3202670B2 (en) Manufacturing method of multilayer ceramics
JPS6046377A (en) Preparation of ceramic/metal bonded material
JP3039269B2 (en) Method of forming thermal insulation film