JPS63317657A - Thermal spraying method - Google Patents

Thermal spraying method

Info

Publication number
JPS63317657A
JPS63317657A JP15229087A JP15229087A JPS63317657A JP S63317657 A JPS63317657 A JP S63317657A JP 15229087 A JP15229087 A JP 15229087A JP 15229087 A JP15229087 A JP 15229087A JP S63317657 A JPS63317657 A JP S63317657A
Authority
JP
Japan
Prior art keywords
metallic substrate
transformation
substrate
heated
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15229087A
Other languages
Japanese (ja)
Inventor
Masahito Kumon
公文 将人
Minoru Kawahara
河原 稔
Koichi Mitsuhata
光畑 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP15229087A priority Critical patent/JPS63317657A/en
Publication of JPS63317657A publication Critical patent/JPS63317657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To obtain a film having high adhesive strength, by heating only the surface of a metallic substrate to the prescribed temp. to transform the structure into austenitic structure and then thermally spraying a powder on the above surface while the surface is held at a temp. of the initial point of martensite transformation or above. CONSTITUTION:Only the surface of a metallic substrate with martensitic structure is heated, by which the surface temp. is regulated to a temp. of A3 transformation point or Acm transformation point according to the composition of the above metal so as to soften the surface-layer part. Subsequently, before the surface is cooled down to a temp. of the initial point of martensite transformation or below, a material in powder condition is thermally sprayed on the above surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶射方法に係り、特に金属質基質表面を軟化さ
せ密着性の優れた溶射被膜を形成させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermal spraying method, and particularly to a method for softening the surface of a metallic substrate and forming a thermally sprayed coating with excellent adhesion.

〔従来の技術〕[Conventional technology]

材料の耐熱性、耐食性、耐融着性及び耐摩耗性を向上さ
せる方法として材料の表面にこれらより優れた材料を溶
射する方法が知られている。特に、摺動する機械部品、
刃物、カッター等は摩耗が問題となり、溶射材料として
は耐摩耗性、耐剥離性のいずれにも優れている必要があ
る。こうした特性を向上させるには、酸化物、窒化物、
ホウ化物。
BACKGROUND ART A known method for improving the heat resistance, corrosion resistance, fusion resistance, and abrasion resistance of a material is to thermally spray a material superior to these onto the surface of the material. In particular, sliding mechanical parts,
Abrasion is a problem with blades, cutters, etc., and thermal spray materials must have excellent wear resistance and peeling resistance. To improve these properties, oxides, nitrides,
Boride.

炭化物および珪化物やダイヤモンド等の立方晶構造組成
物を溶射して、被膜を形成させるのが有効である。
It is effective to thermally spray a cubic structure composition such as carbide, silicide, or diamond to form a coating.

上記部品に使用されるセラミックス等を含んだ溶射被膜
に必要な性能としては、上記の特性の内特に耐剥離性が
良好であることが重要である。特に、刃物や機械部品に
は高硬度全屈材料が使用されているため、従来より使用
されているプラズマ溶射や酸素−アセチレン等の爆発エ
ネルギーを利用した爆発溶射法(1975年の米国特許
第3884415)そして超音速強化ガス溶射法(19
86−41日本溶射協会編JET  KOTE溶射法に
よるWC被膜に関する2、3の考察)等でブラスティン
グを行ったままの基質表面に溶射しても、溶射した被膜
は基質が高硬度であるため、ブラスティングが不充分に
なることや粒子の基質に食い込む度合が小さいこと等に
より、粒子飛行速度が大きいにも拘わらず、母材との密
着力が充分に得られず、耐剥離性に乏しい。
Among the properties listed above, it is important that the thermal spray coating containing ceramics and the like used in the above parts has good peeling resistance. In particular, since high-hardness, fully-flexible materials are used for cutlery and mechanical parts, conventionally used plasma spraying and explosive spraying methods that utilize explosive energy such as oxygen-acetylene (1975 U.S. Patent No. 3,884,415) ) and supersonic enhanced gas spraying method (19
86-41 Edited by Japan Thermal Spraying Association JET KOTE (Considerations 2 and 3 on WC coatings by thermal spraying method) etc. Even if the sprayed coating is sprayed onto the surface of the substrate that has been blasted, since the substrate has high hardness, Due to insufficient blasting and a small degree of particle penetration into the substrate, despite the high particle flight speed, sufficient adhesion to the base material cannot be obtained and peeling resistance is poor.

この種の手法としては特公昭56−54391が提案さ
れているが、溶射被膜を改質し、耐摩耗性を向上させる
手法にとどまり、密着性を向上させる手法に付いては言
及されていない。
This type of method has been proposed in Japanese Patent Publication No. 56-54391, but the method is limited to improving the abrasion resistance by modifying the thermally sprayed coating, and there is no mention of a method for improving adhesion.

セラミックス等を高硬度な基質上に溶射した被膜に必要
な性能は、基質との密着力であるが、前記溶射法により
形成される溶射被膜層と基質との間の結合は一部の溶射
被膜に関しては金属学的反応帯域の生成された証拠が見
い出されているが、主に機械的なものである。そのため
部品に形成した溶射被膜は耐剥離性を充分に持つ程の機
械強度が得られないために、部品は使用中あるいは使用
前に剥離してしまう。
The performance required for a coating made of ceramics etc. by thermal spraying on a highly hard substrate is adhesion to the substrate, but the bond between the thermal sprayed coating layer formed by the above thermal spraying method and the substrate is Evidence has been found for the production of metallurgical reaction zones, but they are primarily mechanical. As a result, the sprayed coating formed on the component does not have sufficient mechanical strength to provide sufficient peeling resistance, and the component peels off during or before use.

耐摩耗性を向上させた機械部品等を得るため、メッキ、
スパッタリング、イオンブレーティング等の方法が溶射
以外にもあるが、これらの方法は。
In order to obtain mechanical parts with improved wear resistance, plating,
There are other methods besides thermal spraying, such as sputtering and ion blasting.

全である種の制限を受ける。すなねち、イオン、ブレー
ティングおよびスパッタリングは非常に高価であるのに
加え、充分な厚さの被覆層を得ることができない。また
、メッキは有効に使用され得るが、耐摩耗性、被覆層の
厚さ弁子充分である。
All are subject to certain restrictions. In other words, ion, brating and sputtering are very expensive and do not provide a coating layer of sufficient thickness. In addition, plating can be used effectively, but the wear resistance and thickness of the coating layer are insufficient.

[発明が解決しようとする問題点] 上記従来技術は高硬度な基質上に耐摩耗性を付与するセ
ラミックス等の溶射被膜を形成する上で、基質との密着
性が劣る点で問題があった。
[Problems to be Solved by the Invention] The above conventional technology has a problem in that the adhesion to the substrate is poor when forming a thermally sprayed coating of ceramics or the like that imparts wear resistance on a highly hard substrate. .

本発明の目的は、高硬度な基質上に密着性の良好な溶射
被膜を形成する方法を提供することにある。
An object of the present invention is to provide a method for forming a thermally sprayed coating with good adhesion on a highly hard substrate.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、マルテンサイト組織を有する金属質基質
の表面を少くとも該金属質基質の組成によって決まるA
、変態点、Acm変態点のいずれかの変態点に加熱後冷
却しマルテンサイト変態開始点以上に保持した状態で粉
末状物質を溶射することにより、またはマルテンサイト
組織を有する金属質基質の表面を少くとも該金属質基質
の組成によって決まるA、変態点、Acm変態点のいず
れかの変態点に加熱後冷却しマルテンサイト変態開始点
以上に保持した状態で、ブラスティングを行いその後粉
末状物質を溶射することにより解決される。
The above problem is that the surface of a metallic substrate having a martensitic structure is at least A
The surface of a metallic substrate having a martensitic structure is coated by thermal spraying a powder material while heating to either the transformation point or the Acm transformation point, and then cooling and maintaining the temperature above the martensitic transformation start point. After heating to at least one of the transformation points A, transformation point, and Acm transformation point determined by the composition of the metallic substrate, the material is cooled and maintained at the martensitic transformation starting point, and then blasting is performed, and then the powdered material is Solved by thermal spraying.

〔作用〕[Effect]

マルテンサイト組織を有する金、@質基質表面を少くと
も該金属質基質の組成によって決まるA3変態点、Ac
m変態点のいずれかの変態点に加熱することにより前記
金属質基質中の高硬点であるマルテンサイト組織を一旦
オーステナイト組織に変態させh後、再びマルテンサイ
ト組織が析出しない状態であるマルテンサイト変態開始
点以上に保持した状態で直接またはブラスティングを行
った後に粉末溶射を行うと該粉末が前記金属質基質に食
い込む。
The surface of a gold, @-based substrate having a martensitic structure is at least A3 transformation point determined by the composition of the metallic substrate, Ac
Martensite, which is a state in which the martensite structure, which is a high hard point in the metallic matrix, is once transformed into an austenite structure by heating to one of the transformation points m, and after h, the martensite structure does not precipitate again. When powder spraying is performed directly or after blasting while the temperature is maintained above the transformation start point, the powder bites into the metallic substrate.

〔実施例〕〔Example〕

以下に本発明の実施例を挙げ、第1図〜第3図を参照し
ながら更に具体的に説明する。
Embodiments of the present invention will be described below in more detail with reference to FIGS. 1 to 3.

第1図は本発明による、高密着性耐摩耗被膜を基質表面
に形成させる方法の一例を示す説明図である。また第2
図は第1図のA部を拡大した図である。材料1の表面を
洗浄した後、レーザビーム、電子ビームまたは高周波加
熱法を用いて基質表面の表層から5〜5000μm(金
1@質基質の高硬度特性を残すため、でき得るなら10
0μm以下の領域)を一旦基質のA、変態点又はAc+
a変態点以上まで加熱し、表層部2を軟化させ、その後
基質がマルテンサイト変態開始点(Ms点)以下に冷却
される前に溶射M3を形成する。
FIG. 1 is an explanatory diagram showing an example of a method of forming a highly adhesive wear-resistant coating on a substrate surface according to the present invention. Also the second
The figure is an enlarged view of section A in FIG. 1. After cleaning the surface of material 1, a laser beam, an electron beam, or a high-frequency heating method is used to clean the surface of the substrate from 5 to 5,000 μm (10 μm if possible to preserve the high hardness characteristics of the gold-based substrate).
0 μm or less) once the A, transformation point or Ac+ of the substrate.
The surface layer 2 is softened by heating to the a transformation point or higher, and then the thermal spray M3 is formed before the substrate is cooled to the martensitic transformation start point (Ms point) or lower.

以上のプロセスによって作製した本発明による溶射被膜
と従来法とで基質との密着強度試験を行った結果を第1
表に示す。
The results of an adhesion strength test between the thermal sprayed coating of the present invention produced by the above process and the conventional method with the substrate are shown in the first table.
Shown in the table.

基質は高速度工具鋼である5KH51で硬度はHV83
0程度である。また、溶射材料は、タングステン・カー
バイト88%、コバルト12%の溶射材料を用いたもの
である。
The substrate is high speed tool steel 5KH51 with a hardness of HV83.
It is about 0. The thermal spraying material used was 88% tungsten carbide and 12% cobalt.

本試験では基質表層部を高周波加熱により1200℃ま
で上げ、基質が約250’Cまで冷却された時点で密着
性を更に向上させるためブラスティングを行った後爆発
溶射法で溶射したものである。
In this test, the surface layer of the substrate was heated to 1200°C by high-frequency heating, and when the substrate had cooled to about 250°C, it was blasted to further improve adhesion and then thermally sprayed using an explosive spraying method.

試験は第3図に示すように約0.3wmの厚さの溶射M
7を形成させた後、試験治具5を固定し。
The test was carried out by spraying M with a thickness of about 0.3wm as shown in Figure 3.
After forming 7, the test jig 5 is fixed.

試験治具6を矢印T方向に引張り、破断時の荷重(破断
応力)を測定した。
The test jig 6 was pulled in the direction of arrow T, and the load at break (break stress) was measured.

第1表に示すごとく、本発明の実施例に基づいて作製し
た被膜は良好な密着性を示していることが分かる。
As shown in Table 1, it can be seen that the coatings prepared based on the examples of the present invention exhibit good adhesion.

なお、金属質基質に炭素を含む場合、炭素含有量は0.
4〜6.67重量%が適当である。これは炭素量が0.
4重量%以上になると熱処理条件を特殊に行なう場合を
除けば、組織的にマルテンサイトが析出しておりまた6
、67重量%は鉄鋼材料(f)鉄を除く)の場合の最大
値である。
Note that when the metallic substrate contains carbon, the carbon content is 0.
4 to 6.67% by weight is suitable. This has a carbon content of 0.
If the concentration exceeds 4% by weight, martensite will precipitate structurally, unless special heat treatment conditions are used.
, 67% by weight is the maximum value for steel materials (f) excluding iron).

また金属質基質の硬度はHV500以下であれば溶射の
前処理であるブラスト処理で十分表面を荒すことが可能
となるので本発明を適用する必要性が少いがHV500
以上になると表面をブラスト等で荒すことが困難となる
ため本発明はHV500以上で特に有効となる。
In addition, if the hardness of the metallic substrate is HV500 or less, it is possible to sufficiently roughen the surface by blasting, which is a pretreatment for thermal spraying, so there is little need to apply the present invention.
If it is higher than that, it becomes difficult to roughen the surface by blasting or the like, so the present invention is particularly effective when the HV is 500 or higher.

以上の実施例において示した如く、本発明の方法により
形成した溶射被膜が優れた密着性を示す理由は、基質表
面を軟質化させたことで溶射材料が高速度で衝突した際
に、溶射粒子中に含まれる半溶融状態の高硬度粉末材料
が基質に食い込んで強固な密着性が得られるためである
As shown in the examples above, the reason why the thermal spray coating formed by the method of the present invention exhibits excellent adhesion is that the substrate surface is softened, so that when the thermal spray material collides with the thermal spray material at high speed, the thermal spray particles This is because the semi-molten high hardness powder material contained therein bites into the substrate and provides strong adhesion.

本発明において、溶射材料としては、C,Fe。In the present invention, the thermal spraying materials include C and Fe.

Co、Ni金属またはその化合物とセラミックスやダイ
ヤモンド等の立方晶構造組成物との混合物または化合物
であれば最も顕著な効果が現われるが、セラミックスや
立方晶構造組成物単体でも同様な効果が得られる。
The most remarkable effect is obtained with a mixture or compound of Co, Ni metal, or a compound thereof with a cubic crystal structure composition such as ceramics or diamond, but the same effect can be obtained with a single ceramic or cubic crystal structure composition.

〔発明の効果〕〔Effect of the invention〕

マルテンサイト組織を有する金属質基質表面を少くとも
その金属質基質によって決まるA3変態点、Ac+a変
態点のいずれかの変態点に加熱してマルテンサイト組織
を一旦オーステナイト組織に変態させた後マルテンサイ
ト変態開始点以上に保持して直接またはブラスティング
を行った後に粉末溶射を行うと該粉末が前記金属質基質
に食い込み機械的に強く密着した溶射被膜が得られかつ
金属質基質の表面のみ上記変態点以上に加熱することか
ら該基質の機械的性質を損うこともない。
The surface of a metallic substrate having a martensitic structure is heated to at least the A3 transformation point or the Ac+a transformation point determined by the metallic substrate to once transform the martensitic structure into an austenitic structure, and then transform to martensitic structure. If powder spraying is carried out directly or after blasting while holding the temperature above the starting point, the powder will bite into the metallic substrate, resulting in a sprayed coating with strong mechanical adhesion, and only the surface of the metallic substrate will reach the above transformation point. The mechanical properties of the substrate are not impaired due to the heating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の溶射方法の実施例を示す説明図、第2
図は第1図のA部拡大図、第3図は密着強度試験の説明
図である。 1・・・金l′iA貿基質、    2・・・加熱時の
軟化層。 3・・・溶射層、      4・・・セラミックス。
FIG. 1 is an explanatory diagram showing an embodiment of the thermal spraying method of the present invention, and FIG.
The figure is an enlarged view of part A in FIG. 1, and FIG. 3 is an explanatory diagram of the adhesion strength test. 1... Gold l'iA trade substrate, 2... Softening layer upon heating. 3...Thermal spray layer, 4...Ceramics.

Claims (10)

【特許請求の範囲】[Claims] (1)マルテンサイト組織を有する金属質基質の表面を
少くとも該金属質基質の組成によって決まるA_3変態
点、Acm変態点のいずれかの変態点に加熱後冷却しマ
ルテンサイト変態開始点以上に保持した状態で粉末状物
質を溶射する溶射方法。
(1) The surface of a metallic substrate having a martensitic structure is heated to at least either the A_3 transformation point or the Acm transformation point, which is determined by the composition of the metallic substrate, and then cooled, and maintained above the martensitic transformation starting point. A thermal spraying method in which a powdered substance is thermally sprayed in a heated state.
(2)マルテンサイト組織を有する金属質基質の表面を
少くとも該金属質基質の組成によって決まるA_3変態
点、Acm変態点のいずれかの変態点に加熱後冷却しマ
ルテンサイト変態開始点以上に保持した状態で、ブラス
ティングを行いその後粉末状物質を溶射する溶射方法。
(2) The surface of a metallic substrate having a martensitic structure is heated to at least either the A_3 transformation point or the Acm transformation point, which is determined by the composition of the metallic substrate, and then cooled to maintain the surface above the martensitic transformation starting point. A thermal spraying method in which a powder substance is sprayed after blasting is carried out under such conditions.
(3)前記粉末状物質がセラミックス、立方晶構造組成
物の少くとも1つからなる材料であることを特徴とする
特許請求の範囲第1項または第2項記載の方法。
(3) The method according to claim 1 or 2, wherein the powdery substance is a material consisting of at least one of ceramics and a composition with a cubic crystal structure.
(4)前記粉末状物質が金属、該金属の合金、セラミッ
クス、立方晶構造組成物の少くとも1つからなる材料で
あることを特徴とする特許請求の範囲第1項または第2
項記載の方法。
(4) Claim 1 or 2, wherein the powdery substance is a material consisting of at least one of a metal, an alloy of the metal, a ceramic, and a composition with a cubic crystal structure.
The method described in section.
(5)前記金属質基質がCを0.4〜6.67重量%含
むことを特徴とする特許請求の範囲第1項〜第4項のい
ずれかに記載の方法。
(5) The method according to any one of claims 1 to 4, wherein the metallic substrate contains 0.4 to 6.67% by weight of C.
(6)前記粉末物質がC、Fe、Co、Niおよびその
合金の少くとも1つと、金属炭化物の少くとも1つから
なる材料である特許請求の範囲第1項、第2項、第5項
のいずれかに記載の方法。
(6) Claims 1, 2, and 5, wherein the powder substance is a material consisting of at least one of C, Fe, Co, Ni, and alloys thereof, and at least one metal carbide. The method described in any of the above.
(7)前記金属質基質が刃物である特許請求の範囲第1
項〜第6項のいずれかに記載の方法。
(7) Claim 1, wherein the metallic substrate is a cutlery.
6. The method according to any one of items 6 to 6.
(8)前記金属質基質の硬度が少くともHv500であ
るような特許請求の範囲第1項〜第7項のいずれかに記
載の方法。
(8) The method according to any one of claims 1 to 7, wherein the metallic substrate has a hardness of at least Hv500.
(9)前記金属質基質の加熱を高周波加熱法、レーザビ
ーム照射法、電子ビーム照射法のいずれかで行うことを
特徴とする特許請求の範囲第1項〜第8項のいずれかに
記載の方法。
(9) The metallic substrate is heated by any one of a high frequency heating method, a laser beam irradiation method, and an electron beam irradiation method. Method.
(10)前記金属質基質を少くともいずれかの前記変態
点に加熱する範囲が該金属質基質の表面から100μm
以内である特許請求の範囲第1項〜第9項のいずれかに
記載の方法。
(10) The range in which the metallic substrate is heated to at least one of the transformation points is 100 μm from the surface of the metallic substrate.
The method according to any one of claims 1 to 9, which is within the scope of claims 1 to 9.
JP15229087A 1987-06-18 1987-06-18 Thermal spraying method Pending JPS63317657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15229087A JPS63317657A (en) 1987-06-18 1987-06-18 Thermal spraying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15229087A JPS63317657A (en) 1987-06-18 1987-06-18 Thermal spraying method

Publications (1)

Publication Number Publication Date
JPS63317657A true JPS63317657A (en) 1988-12-26

Family

ID=15537293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15229087A Pending JPS63317657A (en) 1987-06-18 1987-06-18 Thermal spraying method

Country Status (1)

Country Link
JP (1) JPS63317657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111856A (en) * 1987-10-24 1989-04-28 Toyota Motor Corp Improvement of wear resistance of fe-c flame sprayed layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111856A (en) * 1987-10-24 1989-04-28 Toyota Motor Corp Improvement of wear resistance of fe-c flame sprayed layer

Similar Documents

Publication Publication Date Title
Gärtner et al. The cold spray process and its potential for industrial applications
US5294462A (en) Electric arc spray coating with cored wire
US5213848A (en) Method of producing titanium nitride coatings by electric arc thermal spray
US4911987A (en) Metal/ceramic or ceramic/ceramic bonded structure
US3084064A (en) Abradable metal coatings and process therefor
KR100250363B1 (en) The method for applying abrasive layers to blade surfaces
US3896244A (en) Method of producing plasma sprayed titanium carbide tool steel coatings
US4741975A (en) Erosion-resistant coating system
US20070116890A1 (en) Method for coating turbine engine components with rhenium alloys using high velocity-low temperature spray process
US9108276B2 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
US9982332B2 (en) Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications
JP2001020052A (en) Transition metal boride coating
US5230755A (en) Protective layer for a metal substrate and a method of producing same
US4931152A (en) Method for imparting erosion-resistance to metallic substrate
US3779720A (en) Plasma sprayed titanium carbide tool steel coating
JPH07826B2 (en) Method for producing a chromium carbide-nickel based age-hardening alloy coating and coated article thus produced
JP2785087B2 (en) Rotary seal member coated with chromium carbide-age-hardenable nickel-based alloy
US20070098913A1 (en) Method for coating turbine engine components with metal alloys using high velocity mixed elemental metals
Yilbas et al. Laser treatment and PVD TiN coating of Ti–6Al–4V alloy
US3545944A (en) Composite metal article having an intermediate bonding layer of nickel aluminide
JPH0313303B2 (en)
JP2736525B2 (en) Spray method
CA1191038A (en) Flame spray powder
JPS63317657A (en) Thermal spraying method
Sammaiah et al. Effect of heat treatment & machining process for deposition of Al2O3 nano particles on steel