JPS63317645A - High corrosion resistant amorphous fiber for reinforcing of tubular body - Google Patents

High corrosion resistant amorphous fiber for reinforcing of tubular body

Info

Publication number
JPS63317645A
JPS63317645A JP26534087A JP26534087A JPS63317645A JP S63317645 A JPS63317645 A JP S63317645A JP 26534087 A JP26534087 A JP 26534087A JP 26534087 A JP26534087 A JP 26534087A JP S63317645 A JPS63317645 A JP S63317645A
Authority
JP
Japan
Prior art keywords
fiber
amorphous
amorphous alloy
reinforcing
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26534087A
Other languages
Japanese (ja)
Other versions
JPH0469224B2 (en
Inventor
Shun Sato
駿 佐藤
Tsutomu Ozawa
小澤 勉
Toshio Yamada
山田 利男
Hideo Hagiwara
英夫 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26534087A priority Critical patent/JPS63317645A/en
Publication of JPS63317645A publication Critical patent/JPS63317645A/en
Publication of JPH0469224B2 publication Critical patent/JPH0469224B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled fiber having high corrosion resistance to brine and having excellent mechanical characteristics which contains specific amounts of Cr, Ni, B, C and the balance consisting substantially of Fe and is formed by regulating each width and thickness of the section thereof. CONSTITUTION:Said amorphous alloy fiber contg., by atom., 8-20% Cr, 5-30% Ni, 8-16% B, 2-6% C and the balance consisting substantially of Fe, having the following sectional size and produced by liquid-quenching is provided: as said sectional size, 0.2-1.5mm width and 10-50mum thickness are regulated. The above-mentioned amorphous alloy fiber is furthermore produced by known melt-quenching. The method in which a single roll made of metal such as Cu, etc., is used to a cooling body and the molten metal of the alloy is projected via a nozzle to the outer circumferential surface thereof to quench to cooling body is, e.g., adapted. Since said amorphous alloy fiber has the above-mentioned characteristics, the long service-life and light weight are promoted at the time of using it as the reinforcing material of a base body having generally a tubular structure such as a fishing rod, tennis racket, the frame of an automobile, and said fiber furthermore contributes to the improvement of workability and productivity at the coiling stage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は釣竿やゴルフシャフトテニスラケットのフレー
ム、軽量自転車のフレームなど管状体の補強材として用
いる非晶質合金繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an amorphous alloy fiber used as a reinforcing material for tubular bodies such as fishing rods, golf shafts, tennis racket frames, and lightweight bicycle frames.

(従来の技術) 非晶質合金は引張り強度が従来の金属材料に比べて著る
しく大きいことが特徴で、強度材としての応用が種々検
討されてきた。その中で、釣具、ゴルフシャフトテニス
ラケットのフレームの強化材として既に実用化されてい
るものがある。
(Prior Art) Amorphous alloys are characterized by significantly higher tensile strength than conventional metal materials, and various applications as strength materials have been investigated. Among them, some have already been put into practical use as reinforcing materials for fishing gear, golf shafts, and tennis racket frames.

これらの強化材として用いられる非晶質合金の形状は細
いリボン状の繊維(以下繊維と称する)か、断面が丸い
線材(以下ワイアと称する)である。
The shape of the amorphous alloy used as these reinforcing materials is either a thin ribbon-like fiber (hereinafter referred to as fiber) or a wire rod with a round cross section (hereinafter referred to as wire).

前者は主として単ロール法と呼ばれる方法でつくられる
ので、簡便かつ生産性が高いが、断面形状が矩形となる
。後者は回転液中紡糸法と呼ばれる方法で作製される。
The former method is mainly produced by a method called the single roll method, which is simple and highly productive, but the cross-sectional shape is rectangular. The latter is produced by a method called a spin-in-spinning method.

回転液中紡糸法は特開昭57−52550号公報に記載
されているように回転するドラムの内側に水などの冷却
用媒体を遠心力により張り付け、液体の流れの中に合金
溶湯を細いノズルを介して噴出させ、急冷凝固させるも
のである。回転液中紡糸法によってつくられた材料は溶
湯の表面張力により断面が丸くなるのである。鋳造され
たワイアは線引が出来、その結果アモルファス合金にも
かかわらず伸びがでるという実用上重要な性質を示す。
As described in Japanese Patent Application Laid-Open No. 57-52550, the rotating liquid spinning method involves applying a cooling medium such as water to the inside of a rotating drum by centrifugal force, and then passing the molten alloy into the liquid stream through a thin nozzle. The liquid is ejected through the pipe and rapidly solidified. Materials made by spinning in a rotating liquid have a round cross-section due to the surface tension of the molten metal. The cast wire can be drawn and, as a result, exhibits practically important properties such as elongation despite being an amorphous alloy.

しかし冷却速度が単ロール法(冷却ロールの外周面で急
冷する方法)に比べて約1ケタ小さいため、適用できる
合金の組成、純度、製造条件、得られる材料の寸法等に
大きな制約があることが欠点である。例えば合金組成で
云えば、Fe−5i−B系合金は比較的つくりやすいが
、耐食性を高めるために、Cr、 Mo、  Pなどを
多量に添加すると安定製造が困難になると云われる。こ
のため回転液中紡糸法でつくられる非晶質ワイアは耐食
性が不充分であった。耐食性とくに耐塩水性は釣具に用
いられる材料としては不可欠の特性である。
However, since the cooling rate is approximately one order of magnitude lower than that of the single roll method (a method in which rapid cooling is performed on the outer circumferential surface of a cooling roll), there are significant restrictions on the applicable alloy composition, purity, manufacturing conditions, dimensions of the resulting material, etc. is a drawback. For example, in terms of alloy composition, Fe-5i-B alloys are relatively easy to produce, but it is said that stable production becomes difficult if large amounts of Cr, Mo, P, etc. are added to improve corrosion resistance. For this reason, the amorphous wire produced by spinning in a rotating liquid has insufficient corrosion resistance. Corrosion resistance, especially salt water resistance, is an essential property for materials used in fishing gear.

また他の用途に対しても、デザイン上非晶質合金を露出
ないしそれに近い状態で使用されることがある。このよ
うな場合、錆の発生は美観上も強度上も問題となる。
In addition, for other applications, the amorphous alloy may be used in an exposed or nearly exposed state due to the design. In such cases, the occurrence of rust poses problems both in terms of aesthetics and strength.

耐食性非晶質合金については特公昭5B−41345号
および特公昭59−40900号公報に開示されている
Corrosion-resistant amorphous alloys are disclosed in Japanese Patent Publication No. 5B-41345 and Japanese Patent Publication No. 40900-1987.

Fe−Cr−B−C系合金およびFe−Cr −(P、
  C。
Fe-Cr-B-C alloys and Fe-Cr-(P,
C.

B)−X系合金(ここでX成分はNi、 Co、 Mo
、Zr+Ti、 Sit  Af、 Pi、 Mn、 
Pd+  V、 Nb、 Ta、 W、 Ge。
B)-X alloy (here, the X component is Ni, Co, Mo
, Zr+Ti, Sit Af, Pi, Mn,
Pd+V, Nb, Ta, W, Ge.

Be、 Au、 Cu、 Zn、 C+L Sn、 A
s、 Sb+ Bi+ Sの1種又は2種以上)が知ら
れている。しかし上記成分はきわめて範囲が広く、開示
されるすべての組成が特定の用途に通しているわけでは
ない。
Be, Au, Cu, Zn, C+L Sn, A
s, Sb+ Bi+ S) are known. However, the range of components described above is quite broad, and not all compositions disclosed are amenable to a particular application.

管状体の補強材に使用される非晶質合金には、耐食性の
ほか、巻いた状態で使用されるため、曲げ応力下での耐
遅れ破壊性が要求される。またカーボン繊維やガラス繊
維、その他高分子材など他の素材と複合化して用いるこ
とも多いため、複合化(複合繊りなど)の作業性が重要
になる。非晶質合金は硬いためエツジがノコギリの刃状
にギザギザしていると複合化のプロセスで相手の素材を
傷付け、破断させることがある。複合化プロセスの歩留
り向上には非晶質繊維のエツジが滑らかでなければなら
ない。エツジの性状は鋳造時の溶湯の流れの安定性およ
び空気との反応性が関係する。
In addition to corrosion resistance, amorphous alloys used as reinforcing materials for tubular bodies are required to have delayed fracture resistance under bending stress because they are used in a rolled state. Furthermore, since it is often used in composites with other materials such as carbon fibers, glass fibers, and other polymeric materials, the workability of composites (composite fibers, etc.) is important. Amorphous alloys are hard, so if the edges are jagged like a saw, they can damage and break the other material during the compounding process. To improve the yield of the composite process, the edges of the amorphous fibers must be smooth. The properties of the edge are related to the stability of the flow of the molten metal during casting and the reactivity with air.

したがって形状のよい細い非晶′1を繊維を長時間安定
に製造するためには合金組成の選定がきわめて重要とな
る。
Therefore, selection of alloy composition is extremely important in order to stably produce long-term, thin amorphous fibers with good shape.

これまでに開示されている高耐食性非晶質合金の組成は
製品形状や製造性を観点に成分開発されたものではなか
った。
The compositions of highly corrosion-resistant amorphous alloys disclosed so far have not been developed with consideration to product shape and manufacturability.

(発明が解決しようとする問題点) 釣竿など管状体の補強材として用いられている従来の非
晶質合金繊維又はワイアは、すでに述べたように、耐食
性、機械的性質、製品形状および製造性など実用的に要
求される特性のすべてを満足するものではなかった。こ
れに対して本発明は、塩水に対して高耐食性を有し、機
械特性が優れ、形状のよい製品が安定に製造できる非晶
質合金の化学組成および形状寸法を提示するものである
(Problems to be Solved by the Invention) Conventional amorphous alloy fibers or wires used as reinforcing materials for tubular bodies such as fishing rods have poor corrosion resistance, mechanical properties, product shape, and manufacturability. However, it did not satisfy all of the characteristics required for practical use. In contrast, the present invention proposes the chemical composition and shape dimensions of an amorphous alloy that has high corrosion resistance against salt water, excellent mechanical properties, and can stably produce products with good shapes.

(問題点を解決するための手段) 本発明の釣竿等管状体補強用材料は、その合金組成(原
子%で示す)が、Cr8〜20%、Ni5〜30%、8
8〜16%、C2〜6%、残部が実質的にFeよりなり
、断面寸法が幅0.2〜1.5 tm、厚さ10〜50
μmである融体2、冷性で作製された高耐食性非晶質合
金繊維(以下非晶質繊維と略称する)である。
(Means for Solving the Problems) The material for reinforcing tubular bodies such as fishing rods of the present invention has an alloy composition (expressed in atomic %) of 8 to 20% Cr, 5 to 30% Ni, 8
8 to 16%, C2 to 6%, the remainder is substantially Fe, and the cross-sectional dimensions are 0.2 to 1.5 tm wide and 10 to 50 tm thick.
The melt 2 is a highly corrosion-resistant amorphous alloy fiber (hereinafter abbreviated as amorphous fiber) produced by cold treatment.

上記合金組成および各成分の範囲および材料の寸法は釣
竿等管状体の補強材に要求される緒特性、および製造容
易性を勘案して定めた。
The above alloy composition, the range of each component, and the dimensions of the material were determined in consideration of the strength characteristics required for reinforcing materials for tubular objects such as fishing rods, and ease of manufacture.

すなわち引張り強度が少なくとも150 kgf/mj
で、弾性伸びが少なくとも2%であること、海水等に対
する耐食性がきわめて良好なこと、曲げひずみによる遅
れ破壊が長時間に亘り生じないこと、良好な製品形状が
安定に製造できること、非晶質形成能が高いこと、以上
の要求をすべて満足するように成分選定した。
That is, the tensile strength is at least 150 kgf/mj
The elastic elongation is at least 2%, the corrosion resistance against seawater etc. is very good, delayed fracture due to bending strain does not occur for a long time, good product shape can be stably manufactured, and amorphous formation. The ingredients were selected to ensure high performance and satisfy all of the above requirements.

このうち耐食性、遅れ破壊、良好な形状の安定製造性は
合金組成の依存性が大きいため、特に倉入りに成分設計
をした。
Among these, corrosion resistance, delayed fracture, and stable manufacturability with a good shape are highly dependent on the alloy composition, so we designed the composition especially for the warehouse.

ここで、耐食性は、海水に対する錆の発生が長期間に亘
り全くないことを評価の基準とした。具体的にはJIS
 Z2371に記載される塩水噴霧試験法を採用し、少
なくとも3週間全く錆の発生がない成分を選定した。
Here, the evaluation standard for corrosion resistance was that no rust occurred in seawater for a long period of time. Specifically, JIS
The salt spray test method described in Z2371 was adopted, and components that did not generate any rust for at least 3 weeks were selected.

曲げ歪による遅れ破壊の試験は直径31ItI11のガ
ラス棒にサンプルをスパイラル状に巻き、恒温槽に入れ
60°Cの大気中に5000時間保持した後も破断がな
いことを選定の基準とした。
In the test for delayed fracture due to bending strain, the selection criterion was that the sample should be spirally wound around a glass rod with a diameter of 31ItI11, and that there should be no fracture even after the sample was placed in a constant temperature bath and kept in the atmosphere at 60°C for 5000 hours.

また製造性は、大気中鋳造においてノズル詰りによる繊
維の幅の減少の程度を繊維の長さに対する比率で表わす
。具体的には繊維の長さ2000 mに対する幅の減少
率が10%以内であることが利用面から要求される。
Furthermore, manufacturability is expressed as a ratio of the degree of reduction in fiber width due to nozzle clogging in atmospheric casting to fiber length. Specifically, from the viewpoint of use, it is required that the reduction rate of the width of the fibers with respect to the length of 2000 m is within 10%.

引張り強度、弾性伸びは通常のインストロン型引張り試
験で測定した。
Tensile strength and elastic elongation were measured using a conventional Instron type tensile test.

以上の諸性性の試験評価の結果、本発明の管状体補強用
非晶質合金の組成が決定された。個々の元素についてそ
の成分範囲を限定した理由を述べると次の通りである。
As a result of the above tests and evaluations of various properties, the composition of the amorphous alloy for reinforcing a tubular body of the present invention was determined. The reasons for limiting the component range of each element are as follows.

Crは耐食性を付与するための必須元素であることは周
知の通りである。塩水噴霧試験の結果は本発明の基準を
超えるためには少なくとも8%のCrが必要であること
を示した。8%を超えるCrは耐食性をさらに高めるが
製造性を劣化させる。特に12%を超えると溶湯の流れ
が不安定になる。このため繊維のエツジは粗くなり板厚
の均一性も低下する。またノズルが詰り易くなり、幅の
狭い繊維(50,5mm)では長尺物をつくることが困
難になる。
It is well known that Cr is an essential element for imparting corrosion resistance. Salt spray test results showed that at least 8% Cr is required to exceed the standards of the present invention. Cr exceeding 8% further improves corrosion resistance but deteriorates manufacturability. In particular, if it exceeds 12%, the flow of the molten metal will become unstable. As a result, the edges of the fibers become rough and the uniformity of the board thickness decreases. In addition, the nozzle becomes easily clogged, and it becomes difficult to make long products with narrow fibers (50.5 mm).

Cr増加による製造性、形状の劣化を改善するために不
可欠なのがNiの添加である。Niの添加はCrが12
%を超えるとき著るしい効果を示す。Niの必要量はC
rの含有量と相関があり、Crが8〜12%の範囲では
Ni5〜20%、 Crが12〜16%ではNi1O〜
25%、 Crが16〜20%のとき、Niは15〜3
0%の添加が必要である。
Addition of Ni is essential for improving manufacturability and shape deterioration due to increase in Cr. Ni addition is Cr 12
%, it shows a remarkable effect. The required amount of Ni is C
There is a correlation with the r content; when Cr is 8-12%, Ni is 5-20%, and when Cr is 12-16%, Ni1O~
25%, when Cr is 16-20%, Ni is 15-3
0% addition is required.

BおよびCは非晶質形成元素として不可欠である。B and C are essential as amorphous forming elements.

Fe −B −C系合金において非晶質形成能の高い組
、成は8〜12%、0〜4%付近にあることを本発明者
らは過去に見い出している。Feの一部がCrとNiで
置換される本発明の合金においてもBとCの適性含有量
はPe−B−03元系の場合と大略同じ程度であった。
In the past, the present inventors have found that in Fe-B-C alloys, the composition with high amorphous formation ability is around 8 to 12% and 0 to 4%. Even in the alloy of the present invention in which a part of Fe is replaced by Cr and Ni, the appropriate contents of B and C were approximately the same as in the case of the Pe-B-0 ternary system.

そこで本発明において非晶質形成能の観点から88〜1
6%、C2〜6%の範囲に限定した。耐食性の観点から
必須と考えられてきたPは本発明では用いない。Pは以
下に述べる機械的性質および製造性の点から敢えて添加
しない方が好ましいことが分ったからである。
Therefore, in the present invention, from the viewpoint of amorphous formation ability, 88-1
6% and C2 to 6%. P, which has been considered essential from the viewpoint of corrosion resistance, is not used in the present invention. This is because it has been found that it is preferable not to add P from the viewpoint of mechanical properties and manufacturability as described below.

耐遅れ破壊性は管状体に巻いて補強効果を狙う用途には
不可欠の性質である。遅れ破壊に関係する元素は主とし
てB、C,P、Stなど半金属である。Pは先に述べた
ように遅れ破壊を促進する元素としてなるべく低く抑え
る方がよい。Pはまた製造性も劣化させるのでP<1%
とするのがよい。
Delayed fracture resistance is an indispensable property for applications where the material is wrapped around a tubular body to achieve a reinforcing effect. Elements related to delayed fracture are mainly semimetals such as B, C, P, and St. As mentioned above, P is an element that promotes delayed fracture and should be kept as low as possible. P also degrades manufacturability, so P < 1%.
It is better to

Cも遅れ破壊を促進する。この理由で本発明ではCの上
限を6%とした。
C also promotes delayed destruction. For this reason, in the present invention, the upper limit of C is set to 6%.

その他の機械的性質、引張り強度、弾性伸び等は上記の
成分範囲内であれば、いずれも、管状体の補強材として
必要な特性を満足している。
As long as other mechanical properties, tensile strength, elastic elongation, etc. are within the above component ranges, all of them satisfy the properties necessary as a reinforcing material for a tubular body.

本発明の合金組成はFe−Cr−Nt −B −Cの5
元系が基本であるが、構成元素の一部(≦5%)をCo
+ Mo+ Nb+ W、 Ti+ Zr、 Hf等で
置換してもよい。
The alloy composition of the present invention is Fe-Cr-Nt-B-C.
Basically, a part of the constituent elements (≦5%) is Co
+Mo+Nb+W, Ti+Zr, Hf, etc. may be substituted.

本発明において成分と同様に重要な構成要件は繊維の断
面形状である。本発明では繊維の寸法をIPIo、2〜
1.5IIIl、厚さ10〜50μmと規定した。
In the present invention, the cross-sectional shape of the fiber is as important as the components. In the present invention, the fiber size is IPIo, 2 to
The thickness was defined as 1.5III and 10 to 50 μm.

上記範囲は釣竿など管状体の組加工時の巻き作業性、カ
ーボン繊維、ガラス繊維、高分子繊維など他素材との複
合化プロセスの作業性、複合体としての特性、デザイン
の自由度の広さなどを勘案して定めた。
The above ranges include ease of winding when assembling tubular objects such as fishing rods, workability of composite processes with other materials such as carbon fiber, glass fiber, and polymer fiber, properties as a composite, and wide degree of freedom in design. It was determined by taking into account the following.

すなわち幅が0.2 mm未満、あるいは厚さが10μ
m未満だと巻き加工や複合化プロセスの途中で非晶質繊
維の破断がしばしば起こる。一方幅が1.5閣を超える
と、重ね巻きの必要性が生じ重量増の割に強度が向上し
ないこと、管状体の柔軟性が損われること、複合体とす
る場合にも作業性が低下するなどの欠点が生じる。厚み
が50μmを超えると材料は脆くなりやすく、加工時の
破断や耐遅れ破壊性の劣化がみとめられる。
i.e. width less than 0.2 mm or thickness 10μ
If it is less than m, the amorphous fibers often break during the winding or compositing process. On the other hand, if the width exceeds 1.5 mm, there will be a need for overlapping wrapping, and the strength will not improve despite the increased weight, the flexibility of the tubular body will be impaired, and workability will decrease when forming a composite body. There are disadvantages such as: When the thickness exceeds 50 μm, the material tends to become brittle, causing breakage during processing and deterioration of delayed fracture resistance.

以上の理由で繊維の寸法の許容範囲を幅が0.2〜1.
5 rHs、厚さが10〜50μmとしている。
For the above reasons, the allowable range of fiber dimensions is 0.2 to 1.
5 rHs and a thickness of 10 to 50 μm.

本発明の非晶質繊維の製造は公知の融体急、冷方(液体
急冷法ともいう)によって行なわれる。例えば冷却体に
Cuなど金属製の単ロールを用い、その外周面にノズル
を介して合金の溶湯を噴出し、急冷する方法(単ロール
法)が採用できる。
The amorphous fiber of the present invention is produced by a known melt quenching method (also called liquid quenching method). For example, a method (single roll method) can be adopted in which a single roll made of metal such as Cu is used as the cooling body, and molten alloy is jetted onto the outer peripheral surface of the roll through a nozzle to rapidly cool the roll.

この他、二つの互いに逆方向に回転するロールの間に溶
湯を噴出し急冷しながら圧延する方法(双ロール法)も
ある。また回転する金属ドラムの内周面に溶湯を噴出し
急冷する方法(遠心急冷法)も使用できる。本発明にお
いては、上記いずれの方法を採用してもよい。しかし量
産性、製造コストの観点からは単ロール法が最も優れて
いる。
In addition, there is also a method (twin roll method) in which the molten metal is spouted between two rolls rotating in opposite directions and rolled while being rapidly cooled. Alternatively, a method of rapidly cooling the molten metal by spouting it onto the inner peripheral surface of a rotating metal drum (centrifugal quenching method) can also be used. In the present invention, any of the above methods may be adopted. However, from the viewpoint of mass production and manufacturing cost, the single roll method is the best.

次に本発明の非晶質繊維の製造において用いられるノズ
ルを第1図(a)〜(C)に例示する。いずれも多孔ノ
ズルで複数本の連続繊維を同時に製造できる。ただし非
晶質繊維の製造法は必ずしも上記の方法に限定しない。
Next, the nozzle used in the production of the amorphous fiber of the present invention is illustrated in FIGS. 1(a) to 1(C). In both cases, multiple continuous fibers can be produced simultaneously using a multi-hole nozzle. However, the method for producing amorphous fibers is not necessarily limited to the above method.

前もって幅広の薄帯を製造しておき、次にこれを所定の
幅にスリット加工することもできる。
It is also possible to manufacture a wide ribbon in advance and then slit it to a predetermined width.

(実施例) 次に実施例をあげて説明する。(Example) Next, an example will be given and explained.

実施例 第1表に示す組成の母合金0.5〜1.5 kgを、石
英るつぼで高周波加熱法により溶解し、Cu合金製ロー
ル(直径600mm、幅70mm)の外周面に噴出し非
晶質繊維を製造した。用いたノズルのタイプは第1図(
a)と同じ円孔ノズルで、2〜5個の開孔部をもつもの
である。各チャージ毎の繊維の寸法、各種特性評価の結
果は第1表に示される。
Example 0.5 to 1.5 kg of a master alloy having the composition shown in Table 1 was melted in a quartz crucible by high-frequency heating, and was sprayed onto the outer peripheral surface of a Cu alloy roll (diameter 600 mm, width 70 mm) to form an amorphous material. produced quality fibers. The type of nozzle used is shown in Figure 1 (
It is the same circular hole nozzle as in a), and has 2 to 5 openings. The dimensions of the fibers for each charge and the results of various characteristic evaluations are shown in Table 1.

第1表において引張り試験はインストロン型試験機を用
いた。耐食性はJIS Z2371に記載されている方
法を採用し錆発生までの時間を記載した。
In Table 1, an Instron type testing machine was used for the tensile test. Corrosion resistance was measured using the method described in JIS Z2371, and the time until rust appeared was recorded.

180°曲げは指先で繊維を折り曲げ、密着させた時、
破断が生じるか否かを判定した。遅れ破壊は直径3閣の
ガラス棒にサンプルをスパイラルに巻き、恒温槽で60
°Cの大気中に保持し、5000時間後に破壊が生じる
か否かを判定した。
180° bending is when you bend the fibers with your fingertips and bring them together.
It was determined whether rupture occurred. For delayed destruction, the sample was wound spirally around a glass rod with a diameter of 3 mm and heated in a constant temperature bath for 60 minutes.
It was held in the atmosphere at .degree. C., and it was determined whether or not destruction occurred after 5000 hours.

形状の評価はエツジのザラツキ(ギザギザ)は指先で触
れて判断した。幅の変化は鋳造開始後10mの幅と約2
000 mの幅をマイロメータで測定し、変化率(一般
に減少率)を表示した。また引張強度、弾性伸びはイン
ストロン型試験機で測定した。作業性は単体でのスパイ
ラル巻き加工、あるいは他案材との複合化加工工程の作
業性をいう。
The shape was evaluated by touching the edges with a fingertip to determine the roughness (jaggedness) of the edges. The change in width is about 10m after the start of casting and about 2
The width of 000 m was measured with a micrometer and the rate of change (generally the rate of decrease) was displayed. Further, tensile strength and elastic elongation were measured using an Instron type testing machine. Workability refers to the workability of spiral winding as a single material or in combination with other materials.

第1表の評価結果から本発明の合金組成および寸法を有
する非晶質繊維は比較例に比べて管状体の補強材料に適
していることが明らかである。
From the evaluation results shown in Table 1, it is clear that the amorphous fibers having the alloy composition and dimensions of the present invention are more suitable as reinforcing materials for tubular bodies than the comparative examples.

第1表の本発明材N091〜25に例示した非晶質繊維
を単体あるいはカーボン繊維やガラス繊維などと組み合
わせた第2図のような複合縁すした帯状体は耐食性、機
械的性質、複合縁りの加工性、単体での巻き作業性、複
合帯状体の性能等がきわめて優れていた。このように本
発明の非晶質繊維は管状体の補強材としてきわめて優れ
ていることが認められる。
The composite edge sintered band shown in Figure 2, which is made by using the amorphous fibers exemplified as the invention materials No. 091 to 25 in Table 1 alone or in combination with carbon fibers, glass fibers, etc., has excellent corrosion resistance, mechanical properties, and composite edges. The processability of rolling, the workability of winding as a single unit, and the performance of composite strips were extremely excellent. Thus, it is recognized that the amorphous fiber of the present invention is extremely excellent as a reinforcing material for tubular bodies.

(発明の効果) 以上説明したように本発明の非晶質合金繊維はきわめて
耐食性が高く(とくに塩水に対して)、断面寸法が適性
かつ機械的性質、製造性が優れているので釣竿、テニス
ラケットおよび自転車のフレーム、ゴルフシャフトなど
一般に管状構造をもつ基体の補強材として用いるとき、
長寿命でかつ軽量化が図れ、かつ巻き加工工程の作業性
および生産性の向上に寄与する。
(Effects of the Invention) As explained above, the amorphous alloy fiber of the present invention has extremely high corrosion resistance (especially against salt water), has suitable cross-sectional dimensions, and has excellent mechanical properties and manufacturability. When used as a reinforcing material for substrates that generally have a tubular structure, such as rackets, bicycle frames, and golf shafts,
It has a long life, is lightweight, and contributes to improving workability and productivity in the winding process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の非晶質合金繊維を作製するために用い
ることができる各種ノズルの形状を示す図で、(a)は
円孔ノズル、(b)は楕円ノズル、(C)は矩形ノズル
を示す。 第2図は本発明の非晶質合金繊維と他の素材例えばカー
ボン繊維との複合体の例を示す図である。 l・・・複合繊物、2a、2b、2c・・・非晶質繊維
、3a、3b・・・非晶質金属繊維間に配置された他素
材繊維、4a、4b、4c、4d・・・耳糸用地素材繊
維、5・・・緯糸用地素材繊維。 第1図
FIG. 1 is a diagram showing the shapes of various nozzles that can be used to produce the amorphous alloy fiber of the present invention, in which (a) is a circular hole nozzle, (b) is an elliptical nozzle, and (C) is a rectangular nozzle. Shows the nozzle. FIG. 2 is a diagram showing an example of a composite of the amorphous alloy fiber of the present invention and another material such as carbon fiber. l...Composite fibers, 2a, 2b, 2c...amorphous fibers, 3a, 3b...other material fibers arranged between amorphous metal fibers, 4a, 4b, 4c, 4d... - Material fiber for the selvage thread, 5... Material fiber for the weft thread. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)合金組成が原子%で、Cr8〜20%、Ni5〜
30%、B8〜16%、C2〜6%、残部が実質的にF
eよりなり、断面寸法が幅0.2〜1.5mm、厚さ1
0〜50μmである、融体急冷法で作製された管状体補
強用高耐食性非晶質合金繊維。
(1) Alloy composition is atomic%, Cr8~20%, Ni5~
30%, B8-16%, C2-6%, the remainder is substantially F
E, cross-sectional dimensions are 0.2 to 1.5 mm wide and 1 mm thick.
A highly corrosion-resistant amorphous alloy fiber for reinforcing a tubular body produced by a melt quenching method and having a diameter of 0 to 50 μm.
(2)合金組成が原子%で、Cr8〜12%のときNi
5〜20%、Cr12〜16%のときNi10〜25%
、Cr16〜20%のときNi15〜30%、かつB8
〜16%、C2〜6%、残部が実質的にFeよりなる特
許請求の範囲第1項記載の管状体補強用高耐食性非晶質
合金繊維。
(2) When the alloy composition is 8 to 12% Cr in atomic %, Ni
5-20%, 12-16% Cr, 10-25% Ni
, when Cr is 16-20%, Ni is 15-30%, and B8
2. The highly corrosion resistant amorphous alloy fiber for reinforcing a tubular body according to claim 1, wherein the fiber is comprised essentially of ~16% C, 2~6% C, and the remainder Fe.
JP26534087A 1987-03-24 1987-10-22 High corrosion resistant amorphous fiber for reinforcing of tubular body Granted JPS63317645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26534087A JPS63317645A (en) 1987-03-24 1987-10-22 High corrosion resistant amorphous fiber for reinforcing of tubular body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6988887 1987-03-24
JP62-69888 1987-03-24
JP26534087A JPS63317645A (en) 1987-03-24 1987-10-22 High corrosion resistant amorphous fiber for reinforcing of tubular body

Publications (2)

Publication Number Publication Date
JPS63317645A true JPS63317645A (en) 1988-12-26
JPH0469224B2 JPH0469224B2 (en) 1992-11-05

Family

ID=26411069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26534087A Granted JPS63317645A (en) 1987-03-24 1987-10-22 High corrosion resistant amorphous fiber for reinforcing of tubular body

Country Status (1)

Country Link
JP (1) JPS63317645A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500904A (en) * 2008-08-25 2012-01-12 ザ・ナノスティール・カンパニー・インコーポレーテッド Ribbon-shaped ductile metal glass
JP2013541632A (en) * 2010-05-27 2013-11-14 ザ・ナノスティール・カンパニー・インコーポレーテッド Alloys and deformation mechanisms exhibiting spinodal glass matrix microstructure
CN103484799A (en) * 2013-09-23 2014-01-01 安泰科技股份有限公司 Amorphous alloy fiber used for concrete and preparation method of amorphous alloy fiber
CN108101431A (en) * 2017-12-12 2018-06-01 北京科技大学 A kind of neutron shield special concrete of amorphous fiber enhancing and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500904A (en) * 2008-08-25 2012-01-12 ザ・ナノスティール・カンパニー・インコーポレーテッド Ribbon-shaped ductile metal glass
JP2013541632A (en) * 2010-05-27 2013-11-14 ザ・ナノスティール・カンパニー・インコーポレーテッド Alloys and deformation mechanisms exhibiting spinodal glass matrix microstructure
US10266930B2 (en) 2010-05-27 2019-04-23 The Nanosteel Company, Inc. Alloys exhibiting spinodal glass matrix microconstituents structure and deformation mechanisms
CN103484799A (en) * 2013-09-23 2014-01-01 安泰科技股份有限公司 Amorphous alloy fiber used for concrete and preparation method of amorphous alloy fiber
CN108101431A (en) * 2017-12-12 2018-06-01 北京科技大学 A kind of neutron shield special concrete of amorphous fiber enhancing and preparation method thereof

Also Published As

Publication number Publication date
JPH0469224B2 (en) 1992-11-05

Similar Documents

Publication Publication Date Title
US4495691A (en) Process for the production of fine amorphous metallic wires
DE3049906C2 (en)
JPS58213857A (en) Amorphous iron alloy having superior fatigue characteristic
JPH0580538B2 (en)
US6675610B2 (en) Jewelry including shape memory alloy elements
US4806179A (en) Fine amorphous metal wire
JPH0147541B2 (en)
JPS63317645A (en) High corrosion resistant amorphous fiber for reinforcing of tubular body
JP2708410B2 (en) Amorphous metal wire
JPS63273592A (en) Ti brazing material
JPH07316755A (en) Al-base amorphous metallic filament
JP4098171B2 (en) Manufacturing method of inexpensive stainless steel fine wire with excellent elongation characteristics
JPS63145742A (en) Fine amorphous metal wire
JP4441140B2 (en) Iron-based amorphous alloy ribbon
JPH11276597A (en) Guide wire
JPH0147540B2 (en)
JPS5941450A (en) Amorphous iron base alloy with excellent fatigue characteristics
JP2593877B2 (en) Carbide precipitation hardening type Co-based alloy welding wire and method for producing the same
JP4711282B2 (en) Functionally graded alloy and guide wire using the same
JPS62107819A (en) Production of amorphous alloy wire
JPS60251261A (en) Manufacture of ultrathin silver foil without material quality variation with lapse of time
JPH06264199A (en) Ti series amorphous alloy
JPS6213555A (en) Fine amorphous metallic wire
JPH0124854B2 (en)
JP2002280424A (en) Reel for film carrier tapes for mounting spoke type electronic components