JPS6331522A - Moisture absorbent - Google Patents

Moisture absorbent

Info

Publication number
JPS6331522A
JPS6331522A JP61175257A JP17525786A JPS6331522A JP S6331522 A JPS6331522 A JP S6331522A JP 61175257 A JP61175257 A JP 61175257A JP 17525786 A JP17525786 A JP 17525786A JP S6331522 A JPS6331522 A JP S6331522A
Authority
JP
Japan
Prior art keywords
water
vinyl monomer
moisture
acid
moisture absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61175257A
Other languages
Japanese (ja)
Inventor
Naohiro Oya
大屋 尚洋
Takatoshi Kobayashi
小林 隆俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP61175257A priority Critical patent/JPS6331522A/en
Publication of JPS6331522A publication Critical patent/JPS6331522A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a reusable moisture absorbent having excellent hydroscopic capacity and generating no exudation of a liquid even after the absorption of moisture, by compounding a water-insoluble water absorbable resin comprising a specific composition of an acidic vinyl monomer and a basic vinyl monomer with deliquescent salts. CONSTITUTION:An acidic vinyl monomer (A) such as an acrylic acid and a basic vinyl monomer (B) such as dimethylaminoethyl acrylate are set to a compositional ratio of A:B=20:80-80:20 and a water-soluble cross-linking agent is added to polymerize both monomers to obtain a water-insoluble water absorbable resin. This water absorbable resin is mechanically mixed with deliquescent salts such as ground calcium chloride to obtain a moisture absorbent.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は吸湿能力に優れ、しかも吸湿しても液のしみ出
しがなく、かつ再使用可能な空間中の湿気を効率的に除
去できる吸湿剤に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a moisture absorbent that has excellent moisture absorption ability, does not seep out even when moisture is absorbed, and can efficiently remove moisture in a reusable space. This is related to drugs.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来より食品、衣類、金属機械類を高湿度雰囲気下に放
置するとカビの発生や変質、腐敗、発錆等の有害な現象
が生じるため、これを防止する方法として吸湿剤が使用
されてきた。
Conventionally, when food, clothing, and metal machinery are left in a high-humidity atmosphere, harmful phenomena such as the growth of mold, deterioration, rot, and rust occur, so moisture absorbers have been used as a method to prevent this.

吸湿剤としては吸湿後も保型性があり、かつ反復使用で
きるものとして、シリカゲル、活性アルミナ、活性炭、
合成ゼオライト等の無機多孔物質が主として用いられて
きた。しかしながら、これらの吸湿作用は無機物質の細
孔に吸着することにより吸湿するものであり、従って単
位重量あたりの吸湿容量そのものが小さく、その使用量
が多(なるという欠点がある。
Moisture absorbents that retain their shape even after moisture absorption and can be used repeatedly include silica gel, activated alumina, activated carbon,
Inorganic porous materials such as synthetic zeolites have mainly been used. However, these hygroscopic properties absorb moisture by adsorbing into the pores of the inorganic substance, and therefore have the disadvantage that the hygroscopic capacity per unit weight itself is small and the amount used is large.

一方、強い吸湿性及び大きな吸湿容量を有する物質とし
て、潮解性の塩類、例えば塩化カルシウム、塩化マグネ
シウム、五酸化リン等が知られているものの、これら塩
類は吸湿すると液状化してしまい、他のものを汚染して
しまう欠点がある。この欠点を改善すべく、潮解性の塩
類と吸水性樹脂とを混和し、潮解液をゲル化させ固める
ことが提案されている(特開昭52−107042号公
報参照)。用いられている吸水性樹脂としては、ポリア
クリル酸ソーダ等のカルボキシレート類やポリビニルア
ルコール等のポリオキシエチレン類のものであり、潮解
液を高度に吸水保持する能力は十分とは言い難く、液の
しみ出しを完全に防止できない。さらにはカルボキシレ
ート類は一般に二価以上の金属塩とは強い結合を生じ、
再使用不能となってしまう。
On the other hand, deliquescent salts such as calcium chloride, magnesium chloride, and phosphorus pentoxide are known as substances with strong hygroscopicity and large hygroscopic capacity, but these salts liquefy when they absorb moisture, and other It has the disadvantage of contaminating the In order to improve this drawback, it has been proposed to mix deliquescent salts with a water-absorbing resin to gel and solidify the deliquescent liquid (see Japanese Patent Laid-Open No. 107042/1982). The water-absorbent resins used are carboxylates such as polyacrylic acid soda and polyoxyethylenes such as polyvinyl alcohol, but their ability to absorb and retain deliquescent liquid to a high degree is not sufficient. Seepage cannot be completely prevented. Furthermore, carboxylates generally form strong bonds with divalent or higher valent metal salts,
It becomes impossible to reuse.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、いかなる塩、いかなる塩濃度の水溶液に
対しても優れた吸収能力を有する高吸水性樹脂と潮解性
を有する無機塩とを複合させることにより、従来の吸湿
剤の欠点を克服した吸湿能力に優れ、かつ吸湿後も液の
しみ出しのないしかも再使用可能な吸湿剤を見出し、本
発明を完成するに至った。
The present inventors have overcome the drawbacks of conventional moisture absorbents by combining a super absorbent resin that has excellent absorption capacity for any salt or aqueous solution of any salt concentration with an inorganic salt that has deliquescent properties. The present inventors have discovered a reusable moisture absorbent that has excellent moisture absorption ability, does not seep out even after moisture absorption, and has completed the present invention.

即ち本発明は、 (a)  潮解性無機塩、及び (b)  酸性ビニル単量体(A成分)と塩基性ビニル
単量体(B成分)との組成比がA:B=20:80〜8
0 : 20 (モル比)である水不溶性の吸水性樹脂 を含有してなる吸湿剤を提供するものである。
That is, the present invention comprises (a) a deliquescent inorganic salt, and (b) an acidic vinyl monomer (component A) and a basic vinyl monomer (component B) in a composition ratio of A:B=20:80 to 8
The present invention provides a moisture absorbent containing a water-insoluble water-absorbing resin having a molar ratio of 0:20.

本発明に使用される高吸水性樹脂は、酸性ビニル単量体
と塩基性ビニル単量体とからなる架橋共重合体であり、
水不溶性であることを必須の条件とする。
The super absorbent resin used in the present invention is a crosslinked copolymer consisting of an acidic vinyl monomer and a basic vinyl monomer,
The essential condition is that it is water insoluble.

本発明に係る酸性ビニル単量体とは、1分子中にカルボ
キシル基、スルホン酸基などの酸性基と、重合可能なビ
ニル基とを有する化合物であって、例えば、アクリル酸
、メタクリル酸、イタコン酸、無水マレイン酸、2−ア
クリルアミド−2−メチルプロパンスルホン酸、スチレ
ンスルホン酸、ビニルスルホン酸、アリルスルホン酸、
メタリルスルホン酸等を挙げることができる。
The acidic vinyl monomer according to the present invention is a compound having an acidic group such as a carboxyl group or a sulfonic acid group and a polymerizable vinyl group in one molecule, such as acrylic acid, methacrylic acid, itacon acid, maleic anhydride, 2-acrylamido-2-methylpropanesulfonic acid, styrenesulfonic acid, vinylsulfonic acid, allylsulfonic acid,
Examples include methallylsulfonic acid.

本発明に係る塩基性ビニル単量体とは、1分子中に1級
アミノ基、2級アミノ基、3級アミノ基等の塩基性基と
、重合可能なビニル基とを有する化合物であって、例え
ば、ジメチルアミノエチルメタクリレート、ジエチルア
ミノエチルメタクリレート、ジメチルアミノエチルアク
リレート、ジエチルアミノエチルアクリレートジメチル
アミノプロピルメタクリルアミド、ジメチルアミノプロ
ピルアクリルアミド、2−ビニルピリジン、4−ビニル
ピリジン、ジメチルアリルアミン、ジアリルメチルアミ
ン等を挙げることが出来る。
The basic vinyl monomer according to the present invention is a compound having a basic group such as a primary amino group, a secondary amino group, or a tertiary amino group and a polymerizable vinyl group in one molecule. , for example, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoethyl acrylate, diethylaminoethyl acrylate dimethylaminopropylmethacrylamide, dimethylaminopropylacrylamide, 2-vinylpyridine, 4-vinylpyridine, dimethylallylamine, diallylmethylamine, etc. I can do it.

本発明に於いて、単量体の種類は限定されるものではな
く、上記の単量体の3種類以上の組み合わせを用いても
よい。酸性ビニル単量体(A)と塩基性ビニル単量体(
B)のモル比は、A:B=20:80〜80 : 20
の範囲がら選択できるが、吸湿後の物性を考慮するとA
 : B =3oニア0〜70〜30の範囲が好ましい
。更に、樹脂の性能を低下させない範囲で2−ヒドロキ
シエチル(メタ)アクリレート、アクリルアミド等の非
イオン性水溶性ビニル単量体を共重合せしめた樹脂もま
た、本発明の方法に使用し得る。
In the present invention, the types of monomers are not limited, and a combination of three or more of the above monomers may be used. Acidic vinyl monomer (A) and basic vinyl monomer (
The molar ratio of B) is A:B=20:80 to 80:20
However, considering the physical properties after moisture absorption, A
: B = 3o is preferably in the range of 0 to 70 to 30. Furthermore, resins copolymerized with nonionic water-soluble vinyl monomers such as 2-hydroxyethyl (meth)acrylate and acrylamide can also be used in the method of the present invention to the extent that the performance of the resin is not deteriorated.

水不溶性を付与する目的でこれらモノマーを重合するに
あたり、水溶性の架橋剤を添加する必要がある。水溶性
の架橋剤としては、水溶性のビニル化合物や、酸性基又
は塩基性基と反応しうる官能基を2個以上有する化合物
であればいずれでもよい。水溶性のビニル化合物として
は、例えばN、N−メチレンビスアクリルアミド、エチ
レングリコールジ(メタ)アクリレート、ポリエチレン
グリコールジ(メタ)アクリレート等が挙げられ、また
酸性基又は塩基性基と反応しうる官能基を2個以上有す
る化合物としては、例えばエチレングリコールジグリシ
ジルエーテル、ポリエチレングリコールジグリシジルエ
ーテル、グリセリントリグリシジルエーテル等のポリグ
リシジルエーテル、エピクロルヒドリン、α−メチルク
ロルヒドリン等のへロエポキシ化合物、ゲルタールアル
デヒド、グリオキザール等のポリアルデヒド類等を挙げ
ることが出来る。
When polymerizing these monomers for the purpose of imparting water insolubility, it is necessary to add a water-soluble crosslinking agent. Any water-soluble crosslinking agent may be used as long as it is a water-soluble vinyl compound or a compound having two or more functional groups that can react with an acidic group or a basic group. Examples of water-soluble vinyl compounds include N,N-methylenebisacrylamide, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, and functional groups that can react with acidic or basic groups. Examples of compounds having two or more include polyglycidyl ethers such as ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and glycerin triglycidyl ether, herooepoxy compounds such as epichlorohydrin and α-methylchlorohydrin, geltal aldehyde, Examples include polyaldehydes such as glyoxal.

架橋剤の添加量は架橋剤の種類及び重合体の種類によっ
ても異なるが、通常重合体に対して0.01〜5.0重
量%が適切な範囲である。架橋剤の添加量が0.01重
量%より少ない場合には添加効果が十分発現せず、吸湿
するとゲルが半溶解状態となる。反対に5.0重量%よ
りも多い場合には架橋密度が高くなり吸湿量の低下を招
く結果となり、本発明の意図する所ではない。
The amount of the crosslinking agent added varies depending on the type of crosslinking agent and the type of polymer, but the appropriate range is usually 0.01 to 5.0% by weight based on the polymer. If the amount of the crosslinking agent added is less than 0.01% by weight, the effect of the addition will not be sufficiently expressed, and when moisture is absorbed, the gel will be in a semi-dissolved state. On the other hand, if the amount is more than 5.0% by weight, the crosslinking density will increase, leading to a decrease in moisture absorption, which is not the intention of the present invention.

酸性ビニル単量体と塩基性ビニル単量体、更には非イオ
ン性水溶性ビニル単量体を合わせたモノマー水溶液の濃
度は広い範囲で変更が可能であり、一般的に30〜70
重量%である。この上限は特に両車量体混合時の溶解度
に依存するが、下限は経済的理由により一般的に前記の
値より低くはならない。ラジカル重合開始剤としては、
過硫酸塩等の水溶性開始剤が使用される。ラジカル重合
開始剤の使用量はその単量体の種類により異なるが、−
iに全単量体に対し0.01〜5重量%程度が好適であ
る。
The concentration of the monomer aqueous solution containing acidic vinyl monomer, basic vinyl monomer, and nonionic water-soluble vinyl monomer can be varied within a wide range, and is generally 30 to 70%.
Weight%. This upper limit depends, inter alia, on the solubility during the mixing of the two vehicles, but the lower limit will generally not be lower than the above-mentioned value for economic reasons. As a radical polymerization initiator,
Water-soluble initiators such as persulfates are used. The amount of radical polymerization initiator used varies depending on the type of monomer, but -
It is preferable that i be about 0.01 to 5% by weight based on the total monomers.

重合方法は特に制限はないが、好ましくは懸濁重合であ
る。懸濁重合は除熱効果が大きいため、容易に高分子量
の樹脂が得られ、かつビーズ状の樹脂を得ることができ
、微粉が発生しにくいので粉塵対策が不用となり、しか
も粒子間において均一な性能を有する樹脂を得ることが
でき、吸湿剤としての商品形態上好ましい方法である。
The polymerization method is not particularly limited, but suspension polymerization is preferred. Suspension polymerization has a large heat removal effect, so it is easy to obtain high-molecular-weight resin, and it is also possible to obtain bead-shaped resin. It is difficult to generate fine powder, so there is no need to take dust countermeasures, and it is possible to achieve uniformity between particles. This method is preferable in terms of the form of the product as a moisture absorbent, since it is possible to obtain a resin with good performance.

本発明に用いる無機塩類としては、潮解性を有するもの
であれば何れのものでもよい。潮解性無機塩としては、
塩化カルシウム、塩化リチウム、塩化マグネシウム、塩
化マンガン、五酸化リン等が例示できる。これら無機塩
は吸湿すべき湿度により選択し、更には2種以上の混合
系での使用も可能である。中でも好ましいのは塩化カル
シウム及び/又は塩化リチウムである。
The inorganic salts used in the present invention may be any inorganic salts as long as they have deliquescent properties. As a deliquescent inorganic salt,
Examples include calcium chloride, lithium chloride, magnesium chloride, manganese chloride, and phosphorus pentoxide. These inorganic salts are selected depending on the humidity to be absorbed, and it is also possible to use a mixture of two or more kinds. Among them, calcium chloride and/or lithium chloride are preferred.

潮解性無機塩と吸水性樹脂との混合割合は自由に選択可
能であるが、吸湿後の液のしみ出し防止及び経済性の点
から、潮解性無機塩100重゛量部に対して吸水性樹脂
5〜500重量部を用いることが望ましい。5重量部未
満では保型性は認められるが、吸湿後の液のしみ出しを
完全に防止することはできず、また500重量部を越え
ると経済性の点から好ましくない。
The mixing ratio of the deliquescent inorganic salt and the water-absorbing resin can be freely selected, but from the viewpoint of preventing the liquid from seeping out after moisture absorption and from the viewpoint of economic efficiency, It is desirable to use 5 to 500 parts by weight of the resin. If it is less than 5 parts by weight, shape retention is observed, but it is not possible to completely prevent the liquid from seeping out after absorbing moisture, and if it exceeds 500 parts by weight, it is unfavorable from the economic point of view.

吸水性樹脂と潮解性無機塩との混合は単なる機械的混合
の他、水を添加し混合後乾燥させることにより容易に分
散可能であるが、水溶性バインダーを用いての混合等を
使用することも好ましい。
The water-absorbent resin and the deliquescent inorganic salt can be easily dispersed by mechanical mixing or by adding water and drying the mixture after mixing, but mixing using a water-soluble binder is also recommended. is also preferable.

吸湿速度はその吸湿剤の総表面積に依存するものであり
、微粉化し造粒等の公知の混合手法を好ましく用いるこ
とができる。
The moisture absorption rate depends on the total surface area of the moisture absorbent, and known mixing methods such as pulverization and granulation can be preferably used.

本発明の吸湿剤の使用方法としては、吸湿後も液のしみ
出しがないことより自由な形態が可能であり、例えばパ
ルプの上に散布し不織布で包む形態や、紙でサンドイン
チしてシート状や錠剤等の形態が例示できる。
The moisture absorbent of the present invention can be used in any form as it does not seep out even after absorbing moisture, such as spreading it on pulp and wrapping it in non-woven fabric, or sandwiching it in paper to form a sheet. Examples include shapes such as a shape and a tablet.

この発明の組成物は、居室、押入、下駄箱、靴の中、そ
の他除湿したい場所で有効に使用出来る。その他、吸湿
を嫌って密閉容器に入れて販売されている商品、例えば
のり、せんべい、ビスケット、その他の食品、その他の
工業用品、更には発錆を嫌う機器類の梱包等、従来、シ
リカゲル等を使用していた物品類に使用して、より強力
な効果を発揮するものである。
The composition of this invention can be effectively used in living rooms, closets, shoe cabinets, inside shoes, and other places where it is desired to dehumidify. In addition, silica gel, etc. have traditionally been used to package products that are sold in airtight containers because they do not want to absorb moisture, such as glue, rice crackers, biscuits, other foods, other industrial products, and even equipment that does not want to rust. It can be used on previously used items for even more powerful effects.

C実 施 例〕 以下に実施例、比較例を挙げて本発明を更に具体的に説
明するが、本発明はこれらの実施例に制約されるもので
はない。
C Examples] The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

吸水性樹脂−1 ジメチルアミノエチルアクリレート47.5g、アクリ
ル酸30gをイオン交換水140gに溶解し、更にポリ
オキシエチレンジアクリレート(商品名:A−600、
新中村化学製)を0.10g加え均一溶解した。その後
ラジカル重合開始剤としてv−50(和光純薬社製:2
,2’−アゾビス(2−アミジノプロパン)ジ塩酸塩)
 0.05gを加え均一に溶解し、70℃でN2雰囲気
下重合させた。重合後、含水樹脂を減圧下乾燥させ粉砕
し、42メツシュ通過のポリマーとして得た。
Water-absorbent resin-1 47.5 g of dimethylaminoethyl acrylate and 30 g of acrylic acid were dissolved in 140 g of ion-exchanged water, and polyoxyethylene diacrylate (product name: A-600,
0.10 g of Shin Nakamura Chemical Co., Ltd.) was added and uniformly dissolved. After that, v-50 (manufactured by Wako Pure Chemical Industries, Ltd.: 2) was used as a radical polymerization initiator.
, 2'-azobis(2-amidinopropane) dihydrochloride)
0.05 g was added, uniformly dissolved, and polymerized at 70° C. under N2 atmosphere. After polymerization, the water-containing resin was dried under reduced pressure and pulverized to obtain a polymer that passed through 42 meshes.

吸水性樹脂−2 攪拌機、還流冷却器、滴下漏斗及び窒素ガス導入管を付
した500m1の4つ日丸底フラスコにシクロヘキサン
230m1 、エチルセルロースN−200(バーキュ
リーズ社製) 1.0gを仕込み75℃まで昇温した。
Water Absorbent Resin-2 Into a 500 ml four day round bottom flask equipped with a stirrer, reflux condenser, dropping funnel and nitrogen gas inlet tube were charged 230 ml of cyclohexane and 1.0 g of ethyl cellulose N-200 (manufactured by Vercules) and heated to 75°C. The temperature rose.

別に三角フラスコ中でアクリル酸12.0g 、ジメチ
ルアノミニチルメタクリレート26.2gを70gの蒸
留水に溶解し、35%塩酸5gを加え、更にN、N−メ
チレンビスアクリルアミドを0.05g加えた。開始剤
として過硫酸アンモニウム0.02gを添加し溶解させ
、このモノマー水溶液を上記の4つロフラスコに窒素雰
囲気下に1.5時間かかって滴下重合した後、70〜7
5°Cで0.5時間放置し重合を完了させた。冷却後シ
クロヘキサンを除去し、ポリマーを80〜100°Cで
減圧下に乾燥し樹脂−2を得た。
Separately, in an Erlenmeyer flask, 12.0 g of acrylic acid and 26.2 g of dimethylanominityl methacrylate were dissolved in 70 g of distilled water, 5 g of 35% hydrochloric acid was added, and further 0.05 g of N,N-methylenebisacrylamide was added. 0.02 g of ammonium persulfate was added and dissolved as an initiator, and this monomer aqueous solution was dropwise polymerized in the above four-layer flask under a nitrogen atmosphere for 1.5 hours.
The polymerization was completed by standing at 5°C for 0.5 hours. After cooling, cyclohexane was removed, and the polymer was dried at 80 to 100°C under reduced pressure to obtain Resin-2.

吸湿剤1〜3 塩化カルシウムの粉砕@!+(200メツシュ通過品)
100gと吸湿性樹脂−1を10g、 20g、 50
gをそれぞれ機械的に混合し、本発明の吸湿剤1.2.
3を得た。
Moisture absorbent 1-3 Calcium chloride pulverization @! + (200 mesh passed product)
100g and hygroscopic resin-1 10g, 20g, 50
g of the moisture absorbent of the present invention 1.2.
I got 3.

比較吸湿剤1.2 吸湿剤1〜3で使用した塩化カルシウム及び吸水性樹脂
−1をそれぞれ単独で用い、比較吸湿剤1.2とした。
Comparative Moisture Absorbent 1.2 Calcium chloride and water absorbent resin-1 used in Moisture Absorbents 1 to 3 were each used alone to prepare Comparative Moisture Absorbent 1.2.

吸湿剤4.5 塩化リチウムの粉砕物(200メツシュ通過品)100
gと吸水性樹脂−2をLog、 50gと水をそれぞれ
IQg、 50g添加し機械的に混合した。その後減圧
下乾燥し、本発明の吸湿剤4.5を得た。
Moisture absorbent 4.5 Pulverized lithium chloride (passed through 200 mesh) 100
Log and 50 g of Water Absorbent Resin-2 and 50 g of IQ g of water were added and mechanically mixed. Thereafter, it was dried under reduced pressure to obtain moisture absorbent 4.5 of the present invention.

比較吸湿剤3 塩化リチウムの粉砕物(200メツシュ通過品)100
gとポリアクリル酸ソーダ架橋体(商品名:ポイズ5A
−20、花王製)10gを機械的に混合し、比較吸湿剤
3を得た。
Comparative moisture absorbent 3: Pulverized lithium chloride (passed through 200 meshes) 100
g and crosslinked sodium polyacrylate (product name: Poise 5A
-20, manufactured by Kao) were mechanically mixed to obtain Comparative Moisture Absorbent 3.

得られた吸湿剤50gを恒温恒温槽(温度30”C1湿
度95%)内に放置し、吸湿後の重量測定、形態観察を
行った。表−1に結果を示す。更に吸湿剤2.3及び比
較吸湿剤3で吸湿した吸湿剤50gを減圧下乾燥し軽く
粉砕し、再度同一条件にて吸湿評価を行った。結果を表
−2に示す。
50 g of the obtained hygroscopic agent was left in a thermostatic chamber (temperature 30" C1 humidity 95%), and after absorbing moisture, the weight was measured and the morphology was observed. The results are shown in Table 1. Furthermore, the hygroscopic agent 2.3 50 g of the moisture absorbent that had absorbed moisture with Comparative moisture absorbent 3 was dried under reduced pressure and lightly pulverized, and the moisture absorption evaluation was performed again under the same conditions.The results are shown in Table 2.

Claims (1)

【特許請求の範囲】 1 (a)潮解性無機塩、及び (b)酸性ビニル単量体(A成分)と塩基性ビニル単量
体(B成分)との組成比がA:B=20:80〜80:
20(モル比)である水不溶性の吸水性樹脂 を含有してなる吸湿剤。 2 (a)成分と(b)成分との混合比が重量比で(a
):(b)=100:5〜500である特許請求の範囲
第1項記載の吸湿剤。 3 酸性ビニル単量体がアクリル酸、メタクリル酸、イ
タコン酸、無水マレイン酸、2−アクリルアミド−2−
メチルプロパンスルホン酸、スチレンスルホン酸、ビニ
ルスルホン酸、メタクリルスルホン酸から成る群より選
ばれた1種以上であり、塩基性ビニル単量体がジメチル
アミノエチル(メタ)アクリレート、ジエチルアミノエ
チル(メタ)アクリレート、ジメチルアミノプロピル(
メタ)アクリルアミド、ビニルピリジンから成る群より
選ばれた1種以上である特許請求の範囲第1項記載の吸
湿剤。 4 潮解性無機塩が塩化カルシウム及び/又は塩化リチ
ウムである特許請求の範囲第1項記載の吸湿剤。
[Scope of Claims] 1 (a) a deliquescent inorganic salt, and (b) an acidic vinyl monomer (component A) and a basic vinyl monomer (component B) in a composition ratio of A:B=20: 80-80:
20 (molar ratio) of a water-insoluble water-absorbing resin. 2 The mixing ratio of component (a) and component (b) is (a
):(b)=100:5-500, the moisture absorbent according to claim 1. 3 Acidic vinyl monomer is acrylic acid, methacrylic acid, itaconic acid, maleic anhydride, 2-acrylamide-2-
One or more selected from the group consisting of methylpropanesulfonic acid, styrenesulfonic acid, vinylsulfonic acid, and methacrylsulfonic acid, and the basic vinyl monomer is dimethylaminoethyl (meth)acrylate and diethylaminoethyl (meth)acrylate. , dimethylaminopropyl (
The moisture absorbent according to claim 1, which is one or more selected from the group consisting of meth)acrylamide and vinylpyridine. 4. The moisture absorbent according to claim 1, wherein the deliquescent inorganic salt is calcium chloride and/or lithium chloride.
JP61175257A 1986-07-25 1986-07-25 Moisture absorbent Pending JPS6331522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61175257A JPS6331522A (en) 1986-07-25 1986-07-25 Moisture absorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61175257A JPS6331522A (en) 1986-07-25 1986-07-25 Moisture absorbent

Publications (1)

Publication Number Publication Date
JPS6331522A true JPS6331522A (en) 1988-02-10

Family

ID=15993000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61175257A Pending JPS6331522A (en) 1986-07-25 1986-07-25 Moisture absorbent

Country Status (1)

Country Link
JP (1) JPS6331522A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478415A (en) * 1990-07-19 1992-03-12 Haimo Kk Hygroscopic composition
JPH06235007A (en) * 1992-10-05 1994-08-23 E I Du Pont De Nemours & Co Production of palladium by aerosol decomposition and palladium oxide powder
JPH06319990A (en) * 1993-05-14 1994-11-22 Shin Etsu Chem Co Ltd Mixed dehydrating agent effective in solvent extraction from water-containing sample
US5402305A (en) * 1992-11-30 1995-03-28 Shoei Chemical Inc. Oxidation-resistant palladium powder, production method thereof and thick-film conductive paste and multilayered ceramic capacitor produced therefrom
US5420744A (en) * 1992-10-09 1995-05-30 Shoei Chemical Inc. Multilayered ceramic capacitor
JPH08141355A (en) * 1994-11-17 1996-06-04 Nippon Shokubai Co Ltd Composition of dehumidifying material
EP0777000A1 (en) 1995-11-29 1997-06-04 Toyo Boseki Kabushiki Kaisha Improved high moisture-absorbing and releasing fibers and processes for their production
US5871840A (en) * 1997-05-26 1999-02-16 Shoei Chemical Inc. Nickel powder containing a composite oxide of La and Ni and process for preparing the same
US5964918A (en) * 1996-09-25 1999-10-12 Shoei Chemical Inc. Process for preparing metal powder
US6060165A (en) * 1997-06-02 2000-05-09 Shoei Chemical Inc. Metal powder and process for preparing the same
US6159267A (en) * 1997-02-24 2000-12-12 Superior Micropowders Llc Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US6277169B1 (en) 1997-02-24 2001-08-21 Superior Micropowders Llc Method for making silver-containing particles
US6338809B1 (en) * 1997-02-24 2002-01-15 Superior Micropowders Llc Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US6403218B1 (en) 1998-10-06 2002-06-11 Shoei Chemical Inc. Nickel composite particle and production process therefor
US6530972B2 (en) 2000-05-02 2003-03-11 Shoei Chemical Inc. Method for preparing metal powder
US6699304B1 (en) 1997-02-24 2004-03-02 Superior Micropowders, Llc Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US6869461B2 (en) 2002-09-11 2005-03-22 Sumitomo Metal Mining Co., Ltd. Fine powder of metallic copper and process for producing the same
JP2006178050A (en) * 2004-12-21 2006-07-06 Konica Minolta Business Technologies Inc Method for forming image, image forming apparatus and developing device used therefor
US7503959B2 (en) 2005-10-19 2009-03-17 Shoei Chemical Inc. Method for manufacturing rhenium-containing alloy powder, rhenium-containing alloy powder, and conductor paste
JP2011246181A (en) * 2010-05-28 2011-12-08 Yoshino Kogyosho Co Ltd Container
KR20190085940A (en) 2016-11-16 2019-07-19 소에이 가가쿠 고교 가부시키가이샤 METHOD FOR PRODUCING METAL POWDER
WO2021220976A1 (en) 2020-05-01 2021-11-04 昭栄化学工業株式会社 Electroconductive resin composition and manufacturing method for electronic component
WO2021220975A1 (en) 2020-05-01 2021-11-04 昭栄化学工業株式会社 Method for manufacturing electronic component
US11529611B2 (en) * 2016-12-27 2022-12-20 Korea Institute Of Science And Technology Composition for forming absorption-desorption sheet, absorption-desorption sheet including the composition, and method of preparing the absorption-desorption sheet

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478415A (en) * 1990-07-19 1992-03-12 Haimo Kk Hygroscopic composition
JPH06235007A (en) * 1992-10-05 1994-08-23 E I Du Pont De Nemours & Co Production of palladium by aerosol decomposition and palladium oxide powder
US5420744A (en) * 1992-10-09 1995-05-30 Shoei Chemical Inc. Multilayered ceramic capacitor
US5402305A (en) * 1992-11-30 1995-03-28 Shoei Chemical Inc. Oxidation-resistant palladium powder, production method thereof and thick-film conductive paste and multilayered ceramic capacitor produced therefrom
JPH06319990A (en) * 1993-05-14 1994-11-22 Shin Etsu Chem Co Ltd Mixed dehydrating agent effective in solvent extraction from water-containing sample
JPH08141355A (en) * 1994-11-17 1996-06-04 Nippon Shokubai Co Ltd Composition of dehumidifying material
EP0777000A1 (en) 1995-11-29 1997-06-04 Toyo Boseki Kabushiki Kaisha Improved high moisture-absorbing and releasing fibers and processes for their production
US5853879A (en) * 1995-11-29 1998-12-29 Toyo Boseki Kabushiki Kaisha High moisture-absorbing and releasing fibers and processes for their production
US5964918A (en) * 1996-09-25 1999-10-12 Shoei Chemical Inc. Process for preparing metal powder
US7128852B2 (en) 1997-02-24 2006-10-31 Cabot Corporation Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US7172663B2 (en) 1997-02-24 2007-02-06 Cabot Corporation Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US6159267A (en) * 1997-02-24 2000-12-12 Superior Micropowders Llc Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US6277169B1 (en) 1997-02-24 2001-08-21 Superior Micropowders Llc Method for making silver-containing particles
US6338809B1 (en) * 1997-02-24 2002-01-15 Superior Micropowders Llc Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US6635348B1 (en) 1997-02-24 2003-10-21 Superior Micropowders Llc Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US6689186B1 (en) 1997-02-24 2004-02-10 Cabot Corporation Silver-containing particles, method and apparatus of manufacture, silver-containing devices made therefrom
US6699304B1 (en) 1997-02-24 2004-03-02 Superior Micropowders, Llc Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US5871840A (en) * 1997-05-26 1999-02-16 Shoei Chemical Inc. Nickel powder containing a composite oxide of La and Ni and process for preparing the same
US6060165A (en) * 1997-06-02 2000-05-09 Shoei Chemical Inc. Metal powder and process for preparing the same
US6403218B1 (en) 1998-10-06 2002-06-11 Shoei Chemical Inc. Nickel composite particle and production process therefor
US6530972B2 (en) 2000-05-02 2003-03-11 Shoei Chemical Inc. Method for preparing metal powder
US6869461B2 (en) 2002-09-11 2005-03-22 Sumitomo Metal Mining Co., Ltd. Fine powder of metallic copper and process for producing the same
JP2006178050A (en) * 2004-12-21 2006-07-06 Konica Minolta Business Technologies Inc Method for forming image, image forming apparatus and developing device used therefor
JP4529673B2 (en) * 2004-12-21 2010-08-25 コニカミノルタビジネステクノロジーズ株式会社 Image forming apparatus
US7503959B2 (en) 2005-10-19 2009-03-17 Shoei Chemical Inc. Method for manufacturing rhenium-containing alloy powder, rhenium-containing alloy powder, and conductor paste
JP2011246181A (en) * 2010-05-28 2011-12-08 Yoshino Kogyosho Co Ltd Container
KR20190085940A (en) 2016-11-16 2019-07-19 소에이 가가쿠 고교 가부시키가이샤 METHOD FOR PRODUCING METAL POWDER
KR20190086469A (en) 2016-11-16 2019-07-22 소에이 가가쿠 고교 가부시키가이샤 METHOD FOR PRODUCING METAL POWDER
US11529611B2 (en) * 2016-12-27 2022-12-20 Korea Institute Of Science And Technology Composition for forming absorption-desorption sheet, absorption-desorption sheet including the composition, and method of preparing the absorption-desorption sheet
WO2021220976A1 (en) 2020-05-01 2021-11-04 昭栄化学工業株式会社 Electroconductive resin composition and manufacturing method for electronic component
WO2021220975A1 (en) 2020-05-01 2021-11-04 昭栄化学工業株式会社 Method for manufacturing electronic component

Similar Documents

Publication Publication Date Title
JPS6331522A (en) Moisture absorbent
JP7291622B2 (en) water absorbent resin particles
JP5901524B2 (en) Water absorbent resin
US4735987A (en) Method for manufacture of high-expansion type absorbent polymer
CA1235847A (en) Process for producing a water-absorbent resin
JP4072833B2 (en) Method for producing water absorbent resin and water absorbent resin
JP5383048B2 (en) Hydrolytically stable post-crosslinked superabsorbent
US4340706A (en) Alkali metal acrylate or ammonium acrylate polymer excellent in salt solution-absorbency and process for producing same
KR101763439B1 (en) Process for production of water-absorbing resin particles, water-absorbing resin particles, water-stopping material, and absorbent article
KR102195097B1 (en) Polyacrylate super-absorbent polymer and manufacturing method therefor
WO2011090130A1 (en) Method for producing water absorbent resin
JPS5980459A (en) Water-absorbing powdery resin composition
KR102592021B1 (en) absorbent article
JP5183918B2 (en) Method for producing water absorbent resin
KR20190127697A (en) Absorbent resin particles
SG193939A1 (en) Method for producing water-absorbing resin
CA1257742A (en) Absorbent compositions
US4906717A (en) Hydroabsorbent resins, production method and application thereof for obtaining articles capable of absorbing aqueous fluids
JP7315532B2 (en) Sandbag and its manufacturing method
JPH0330814A (en) Desiccating agent
JPH04120176A (en) Water absorbing agent and production thereof
JP3187478B2 (en) Production method of deliquescent inorganic salt-containing resin
JPS5938271A (en) Water-holding agent
JPH05320270A (en) Production of water-absorptive polymer
JP3180659B2 (en) Non-fluidizing agent for dehumidifier and dehumidifier composition