JPS6331476Y2 - - Google Patents

Info

Publication number
JPS6331476Y2
JPS6331476Y2 JP1978020868U JP2086878U JPS6331476Y2 JP S6331476 Y2 JPS6331476 Y2 JP S6331476Y2 JP 1978020868 U JP1978020868 U JP 1978020868U JP 2086878 U JP2086878 U JP 2086878U JP S6331476 Y2 JPS6331476 Y2 JP S6331476Y2
Authority
JP
Japan
Prior art keywords
load
heater
self
heat
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978020868U
Other languages
Japanese (ja)
Other versions
JPS54124974U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978020868U priority Critical patent/JPS6331476Y2/ja
Publication of JPS54124974U publication Critical patent/JPS54124974U/ja
Application granted granted Critical
Publication of JPS6331476Y2 publication Critical patent/JPS6331476Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Thermally Actuated Switches (AREA)

Description

【考案の詳細な説明】 この考案はサーマルプロテクターの改良に係
り、構造簡単にして自己保持機能を有するサーマ
ルプロテクターに関するものである。
[Detailed Description of the Invention] This invention relates to an improvement of a thermal protector, and relates to a thermal protector having a simple structure and a self-holding function.

第1図は従前の自動復帰式サーマルプロテクタ
ーの構成を示す。同図において、1,2は入力端
子、3はヒーター、4,5は接点、6は該接点間
に跨るバイメタルである。いま、入力端子1,2
を保護すべき負荷回路の一部に挿入すると、電源
からヒーター3、接点4、バイメタル6、及び接
点5を通じて電源に戻る負荷回路が形成されて、
ここに負荷電流が流れ、該ヒーターの発熱によつ
て該バイメタルが点線で示すごとくに膨脹変形す
るために接点4,5が開く。したがつて、負荷電
流が過電流となつたとき、負荷回路が遮断され
る。そして、負荷回路の遮断によつて、ヒーター
3の発熱が停止するために、時間の経過に伴つて
バイメタル6が冷却し、接点4,5が自動的に復
帰する。かかる従前の自動復帰式サーマルプロテ
クターを無人運転に供する装置に装備した場合に
は装置の永久故障に対しては接点4,5が開閉を
繰返し、該接点が焼損するばかりではなく、保護
されるべき装置にも異常発熱を伴う場合が多い。
そこで、無人運転に供する装置に対しては例え
ば、一度、過電流によつて開いた接点を機械的に
保持せしめ、定期的点検に際して点検者が押ボタ
ンを介して手動で該接点を復帰せしめるごとくに
構成した手動復帰式サーマルプロテクターが屡々
使用されていた。しかし、かかる従前の手動復帰
式サーマルプロテクターは、点検者による手動復
帰操作が必要であるために、該プロテクターを装
備した装置の設置環境が制約されていた。例え
ば、水槽内に水没せしめて使用する水中ポンプ等
に装備する場合には手動復帰操作が困難であり、
これを容易にするためには水槽外からの遠隔操作
機構等を必要とするために構成が複雑になるとい
う欠点があつた。
FIG. 1 shows the configuration of a conventional automatic return type thermal protector. In the figure, 1 and 2 are input terminals, 3 is a heater, 4 and 5 are contacts, and 6 is a bimetal that spans between the contacts. Now, input terminals 1 and 2
When inserted into a part of the load circuit to be protected, a load circuit is formed that returns from the power supply to the power supply through the heater 3, contact 4, bimetal 6, and contact 5.
A load current flows here, and the heat generated by the heater expands and deforms the bimetal as shown by the dotted line, so that contacts 4 and 5 open. Therefore, when the load current becomes an overcurrent, the load circuit is cut off. When the load circuit is cut off, the heater 3 stops generating heat, so the bimetal 6 cools down over time, and the contacts 4 and 5 automatically return to normal. When such a conventional automatic reset type thermal protector is installed in a device used for unmanned operation, contacts 4 and 5 will repeatedly open and close in the event of a permanent failure of the device, which will not only cause the contacts to burn out but also require protection. The equipment is also often accompanied by abnormal heat generation.
Therefore, for devices used for unmanned operation, for example, contacts that have been opened due to overcurrent may be mechanically held, and then during periodic inspections, an inspector can manually return the contacts using a push button. A manual reset type thermal protector configured as follows was often used. However, such conventional manual return type thermal protectors require a manual return operation by an inspector, which limits the environment in which a device equipped with the protector can be installed. For example, when equipped with a submersible pump that is used submerged in an aquarium, manual return operation is difficult.
In order to facilitate this, a remote control mechanism from outside the aquarium is required, which has the disadvantage of complicating the configuration.

この欠点を解消するものとして、正特性(温度
〜抵抗値の相関係係数が正極性)のサミスターを
負荷回路中に挿入して、該サミスターでの発熱に
応動させて、バイメタルを加熱し続けることで、
自己保持機能を実現し、電源遮断操作により、負
荷回路を手動復帰可能とした構成が実公昭52−
28113号(実開昭49−86339号)公報に開示されて
いる。
To overcome this drawback, a thermistor with positive characteristics (the correlation coefficient between temperature and resistance value is positive) is inserted into the load circuit, and the bimetal is continuously heated in response to the heat generated by the thermistor. in,
A configuration that realized a self-holding function and made it possible to manually restore the load circuit by shutting off the power was introduced in 1972.
It is disclosed in Publication No. 28113 (Utility Model Application Publication No. 49-86339).

即ち、第1A図に示されるように、電源6に対
してスイツチ5経由で正特性のサミスター4とこ
れに直列接続された負荷7とを含む負荷回路が形
成されていて、該負荷回路中のサミスター4と負
荷7との間からは、負荷7に並列に分岐して電源
帰線に延びる負荷側路が形成され、該側路中に
は、サミスター4と熱的に結合されたバイメタル
接点(メーク接点)8が配設されているものであ
る。
That is, as shown in FIG. 1A, a load circuit including a thermistor 4 with a positive characteristic and a load 7 connected in series with the thermistor 4 is formed for the power supply 6 via a switch 5, and A load side path is formed between the thermistor 4 and the load 7, branching in parallel to the load 7 and extending to the power return line, and in the side path, a bimetal contact ( (make contact) 8 is provided.

そして、スイツチ5投入後、負荷回路に流入す
る負荷電流がサミスター4を通過し、これに応動
して、該サミスター4が発熱して、バイメタル接
点8を加熱するのであるが、負荷電流が所定値以
上に増大すると、十分に加熱されたバイメタル接
点8が閉成して、負荷7に対して側路を形成し、
これにより、負荷7に通ずる負荷電流を遮断し、
これと同時に、サミスター4に通ずる電流を増大
(負荷7を側路した分だけ)させることで、より
一層の加熱により、バイメタル接点8の閉成を確
実なものとし、以降、スイツチ5の手動開成によ
り、サミスター4の発熱が停止され、バイメタル
接点8が適宜冷却されるまで、該接点8を閉状態
に自己保持するように作動する。
After the switch 5 is turned on, the load current flowing into the load circuit passes through the thermistor 4, and in response, the thermistor 4 generates heat and heats the bimetal contact 8, but the load current reaches a predetermined value. When the increase is greater than that, the sufficiently heated bimetallic contact 8 closes and forms a bypass for the load 7.
This cuts off the load current flowing to the load 7,
At the same time, by increasing the current flowing through the thermistor 4 (by the amount by which the load 7 is bypassed), the bimetal contact 8 is ensured to close due to further heating, and from then on, the manual opening of the switch 5 is performed. As a result, the bimetallic contact 8 is self-maintained in the closed state until the heat generation of the thermistor 4 is stopped and the bimetallic contact 8 is appropriately cooled.

しかしながら、かかる実公昭52−28113号公報
開示の構成では、バイメタル接点8の閉成時に負
荷7が該接点8経由で側路されることから、マグ
ネツト界磁方式の直流電動機や誘電動機等のよう
に、電源遮断時、即ち、減速時に発電機として作
動する機器が負荷として接続されている場合に
は、該機器での減速時の発電作用に由来する逆起
電力がバイメタル接点8経由で短絡的に側路され
てしまい、その結果、該接点8を通過する過大の
側路電流により、該接点8が短期間に損傷を被る
こととなり、ほとんど実用に耐え難い。
However, in the configuration disclosed in Japanese Utility Model Publication No. 52-28113, the load 7 is bypassed via the bimetal contact 8 when the bimetal contact 8 is closed. In addition, when the power is cut off, that is, when a device that operates as a generator during deceleration is connected as a load, the back electromotive force derived from the power generation action during deceleration in the device may cause a short circuit via the bimetal contact 8. As a result, the contact 8 will be damaged in a short period of time due to the excessive bypass current passing through the contact 8, making it almost impossible to put it into practical use.

そこで、実際の回路構成では、第1B図に示さ
れるように、側路中に電流制限用の抵抗器9を挿
入することが必要的であつて、この場合、該抵抗
器9の抵抗値は負荷7での逆起電力由来の側路電
流を適値に制限する観点から、該起電力依存で決
定されるべきものであるところ、その決定は、バ
イメタル接点8の閉成時に形成される自己保持回
路経由でサミスター4に通ずる自己保持電流をも
制約することとなるので、抵抗器9に関して逆起
電力の面から高抵抗値が要請される場合には、自
己保持電流の不足を招き、両者の値に妥協点を見
い出し得ないことがしばしばであり、そのこと
は、一般に負荷7に通ずる負荷電流を十分に確保
する観点から、サミスター4の抵抗値を負荷7の
それよりも相当に小さく選定すべき事情に起因し
て、抵抗器9の抵抗値がサミスター4の自己保持
電流に対して多大の寄与率を有するという成り行
きによつて、一層深刻なものとなつており、総じ
て、適用可能な負荷が相当に制約されるばかり
か、設計作業がやりにくいという欠点があつた。
Therefore, in the actual circuit configuration, as shown in FIG. 1B, it is necessary to insert a current limiting resistor 9 into the bypass, and in this case, the resistance value of the resistor 9 is From the viewpoint of limiting the bypass current derived from the back electromotive force in the load 7 to an appropriate value, it should be determined depending on the electromotive force, but the determination is based on the self-current generated when the bimetal contact 8 is closed. This also limits the self-holding current that passes through the thermistor 4 via the holding circuit, so if a high resistance value is required for the resistor 9 in terms of back electromotive force, this will lead to a lack of self-holding current, and both It is often not possible to find a compromise in the value of This situation is made even more serious by the fact that the resistance value of the resistor 9 has a large contribution rate to the self-holding current of the thermistor 4 due to the circumstances in which it is applicable. The disadvantage was that not only the load was considerably restricted, but also the design work was difficult to carry out.

この考案は、上記従来技術での適用可能な負荷
への制約や設計作業のやりにくさの問題点に鑑
み、負荷電流依存で発熱するヒーターからの熱に
応動する熱変形体に設けられたブレーク接点の開
成による負荷電流の遮断に連動して閉成し、ヒー
ターを含む自己保持回路に自己保持電流を通ずる
メーク接点を付設することで、自己保持回路形成
時に、自己保持回路と負荷との電気的接続を断つ
ことにより、上記問題点を解消し、適用可能な負
荷への制約を取り除き、設計作業をやり易くした
優れたサーマルプロテクターを提供せんとするも
のである。
In view of the limitations of applicable loads and the difficulty of design work in the conventional technology mentioned above, this idea was developed using a break provided in a thermally deformable body that responds to heat from a heater that generates heat depending on the load current. By attaching a make contact that closes when the load current is interrupted by opening the contact and passes the self-holding current to the self-holding circuit including the heater, when forming the self-holding circuit, the electrical connection between the self-holding circuit and the load is reduced. The present invention aims to provide an excellent thermal protector that solves the above-mentioned problems by cutting off the physical connection, removes restrictions on applicable loads, and facilitates design work.

第2図はこの考案の一実施例であるサーマルプ
ロテクターの構成を示す。同図において、1乃至
6は第1図における1乃至6と同一の構成要素を
示す。7は自己保持回路の入力端子であつて、電
源(図示せず)に接続される。8及び9はバイメ
タル6のメーク接点であつて、該接点8は入力端
子7に、また、該接点9はヒーター3の一端に接
続される。
FIG. 2 shows the structure of a thermal protector which is an embodiment of this invention. In the figure, numerals 1 to 6 indicate the same components as 1 to 6 in FIG. Reference numeral 7 is an input terminal of the self-holding circuit, and is connected to a power source (not shown). 8 and 9 are make contacts of the bimetal 6; the contact 8 is connected to the input terminal 7, and the contact 9 is connected to one end of the heater 3.

いま、負荷回路中のヒーター3に流れる負荷電
流が過電流となると、バイメタル6が点線で示す
ごとくに膨脹変形し接点8,9間が電気的に接続
される。したがつて、電源に接続される入力端子
7から接点8及び9を通じてヒーター3の一端に
至り該ヒーター経由で電源に戻る自己保持回路が
形成されるために、負荷電流に代つて、該自己保
持回路を通過する自己保持電流による発熱によつ
て該バイメタル6の膨脹変形が維持される。かく
して、入力端子7への電源供給を遮断するまで負
荷回路が遮断状態に保持される。
Now, when the load current flowing through the heater 3 in the load circuit becomes an overcurrent, the bimetal 6 expands and deforms as shown by the dotted line, and the contacts 8 and 9 are electrically connected. Therefore, a self-holding circuit is formed that goes from the input terminal 7 connected to the power supply through the contacts 8 and 9 to one end of the heater 3 and returns to the power supply via the heater, so that the self-holding circuit flows in place of the load current. The expansion deformation of the bimetal 6 is maintained by the heat generated by the self-holding current passing through the circuit. In this way, the load circuit is maintained in the cut-off state until the power supply to the input terminal 7 is cut off.

第3図はこの考案の一実施例であるサーマルプ
ロテクターの使用例を示す。同図において、10
はこの考案の一実施例であるサーマルプロテクタ
ー、11は電源であつて一端は入力端子1に、他
端は電源スイツチ12の一端に接続され、更に、
該スイツチの他端は入力端子7に接続されるとと
もに電動機の主巻線13を通じて入力端子2に接
続される。いま、電源スイツチ12を閉じると、
正常な運転状態では電源11、電源スイツチ1
2、主巻線13、接点5及び4、ヒーター3を通
じて電源11に至る負荷回路に負荷電流が流れて
電動機(図示せず)が駆動される。一方、負荷電
流が過電流になると、バイメタル6が膨脹変形し
て、接点8,9間を電気的に接続し、その状態を
保持するので、負荷電流が遮断され、電動機が停
止する。かかる状態を点検者等が検知して電源ス
イツチ12を開くことによつて、ヒーター3を通
過する電流が遮断されるために、バイメタル6が
復元して接点5,4間が電気的に接続され、サー
マルプロテクター10内の負荷回路が形成され
る。次に、点検者等が電動機を点検修理し、過電
流の原因を除去した後、再び電源スイツチ12を
閉じると、該負荷回路を通じて主巻線13に負荷
電流が流れるために電動機が駆動される。
FIG. 3 shows an example of the use of a thermal protector which is an embodiment of this invention. In the same figure, 10
is a thermal protector which is an embodiment of this invention, 11 is a power source, one end is connected to the input terminal 1, the other end is connected to one end of the power switch 12, and further,
The other end of the switch is connected to input terminal 7 and also to input terminal 2 through main winding 13 of the motor. If you close the power switch 12 now,
Under normal operating conditions, power supply 11, power switch 1
2. A load current flows through the main winding 13, the contacts 5 and 4, and the heater 3 to the load circuit leading to the power source 11, thereby driving a motor (not shown). On the other hand, when the load current becomes an overcurrent, the bimetal 6 expands and deforms to electrically connect the contacts 8 and 9 and maintain that state, thereby cutting off the load current and stopping the motor. When an inspector or the like detects this state and opens the power switch 12, the current passing through the heater 3 is cut off, so that the bimetal 6 is restored and the contacts 5 and 4 are electrically connected. , a load circuit within the thermal protector 10 is formed. Next, when an inspector or the like inspects and repairs the motor and removes the cause of the overcurrent and closes the power switch 12 again, the motor is driven because the load current flows to the main winding 13 through the load circuit. .

なお、第2図に示す実施例において、バイメタ
ル6に代えて熱によつて変形する各種の感熱変形
体を使用することができる。
In the embodiment shown in FIG. 2, instead of the bimetal 6, various heat-sensitive deformable bodies that deform by heat can be used.

以上のごとく、この考案によれば、負荷電流依
存で発熱するヒーター3からの熱に応動する熱変
形体6に設けられたブレーク接点4,5の開成に
よる負荷電流の遮断に連動して閉成し、ヒーター
3を含む自己保持回路に自己保持電流を通ずるメ
ーク接点8,9を付設する構成としたことによ
り、負荷回路に流れる過電流がヒーター3を通過
して、ここでの発熱が増大し、これに応動して熱
変形体6が変形してグレーク接点4,5が開成
し、負荷を遮断する際に、これに連動するメーク
接点8,9の閉成により、負荷回路とは電気的に
全く独立の自己保持回路を形成することで、負荷
遮断時の逆起電力の自己保持回路への伝達を防止
できるので、適用可能な負荷に関して、該逆起電
力の観点からの制約を完全に取り除くことができ
るばかりか、該逆起電力由来の電流制限用の抵抗
器を自己保持回路中に挿入する必要もなく、ヒー
ター3の抵抗値を主として自己保持電流確保の観
点から決定できるので、設計作業を格段に容易化
できるという優れた効果が奏される。
As described above, according to this invention, the break contacts 4 and 5 provided on the thermally deformable body 6 respond to the heat from the heater 3, which generates heat depending on the load current, are opened and closed in conjunction with the interruption of the load current. However, by configuring the self-holding circuit including the heater 3 to include make contacts 8 and 9 for passing the self-holding current, the overcurrent flowing in the load circuit passes through the heater 3 and heat generation there increases. In response to this, the thermally deformable body 6 deforms and the gray contacts 4 and 5 open, and when the load is cut off, the make contacts 8 and 9 are closed in conjunction with this, and the load circuit is electrically disconnected. By forming a completely independent self-holding circuit in the self-holding circuit, it is possible to prevent the back electromotive force from being transmitted to the self-holding circuit when the load is cut off, thereby completely eliminating restrictions from the perspective of the back electromotive force regarding applicable loads. Not only can this be removed, there is no need to insert a current limiting resistor derived from the back electromotive force into the self-holding circuit, and the resistance value of the heater 3 can be determined mainly from the viewpoint of securing the self-holding current, making the design easier. This has the excellent effect of making work much easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従前の自動復帰式サーマルプロテクタ
ーの構成を示す。 同図において、3……ヒーター、4,5……接
点、6……バイメタル。 第1A図、第1B図は従前の手動復帰式サーマ
ルプロテクターの構成を示す。 図において、4……サミスター、5……スイツ
チ、6……電源、7……負荷、8……バイメタル
接点(メーク接点)、9……電流制限用の抵抗器。 第2図はこの考案の一実施例であるサーマルプ
ロテクターの構成を示す。 同図において、3……ヒーター、4,5,8,
9……接点、6……バイメタル。 第3図はこの考案の一実施例であるサーマルプ
ロテクターの使用例を示す。 同図において、11……電源、12……電源ス
イツチ、13……主巻線。
FIG. 1 shows the configuration of a conventional automatic return type thermal protector. In the figure, 3...heater, 4, 5...contact, 6...bimetal. FIGS. 1A and 1B show the configuration of a conventional manual reset type thermal protector. In the figure, 4... thermistor, 5... switch, 6... power source, 7... load, 8... bimetal contact (make contact), 9... resistor for current limiting. FIG. 2 shows the structure of a thermal protector which is an embodiment of this invention. In the same figure, 3... heater, 4, 5, 8,
9...Contact, 6...Bimetal. FIG. 3 shows an example of the use of a thermal protector which is an embodiment of this invention. In the figure, 11...power supply, 12...power switch, 13...main winding.

Claims (1)

【実用新案登録請求の範囲】 電流の通過によつて発熱するヒーター3と、 ヒーター3が発する熱に応答して変形する感熱
変形体6と、 負荷回路中の負荷電流の通過によつて発熱する
ヒーター3からの熱に応動する感熱変形体6の変
形により開成し、負荷を電源から切り離して該負
荷電流を遮断するブレーク接点4,5とを有する
サーマルプロテクターにおいて、 ブレーク接点4,5の開成による負荷回路中の
負荷電流の遮断に連動して閉成し、ヒーター3を
含む自己保持回路に自己保持電流を通過させるメ
ーク接点8,9を付設したことを特徴とするサー
マルプロテクター。
[Claims for Utility Model Registration] A heater 3 that generates heat when a current passes through it; a heat-sensitive deformable body 6 that deforms in response to the heat generated by the heater 3; and a heat-sensitive deformable body 6 that generates heat when a load current passes through a load circuit. In a thermal protector having break contacts 4 and 5 that are opened by deformation of a heat-sensitive deformable body 6 in response to heat from a heater 3, and disconnect the load from the power source and cut off the load current, A thermal protector characterized in that it is equipped with make contacts 8 and 9 that close in conjunction with interruption of load current in a load circuit and allow the self-holding current to pass through the self-holding circuit including the heater 3.
JP1978020868U 1978-02-22 1978-02-22 Expired JPS6331476Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978020868U JPS6331476Y2 (en) 1978-02-22 1978-02-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978020868U JPS6331476Y2 (en) 1978-02-22 1978-02-22

Publications (2)

Publication Number Publication Date
JPS54124974U JPS54124974U (en) 1979-08-31
JPS6331476Y2 true JPS6331476Y2 (en) 1988-08-23

Family

ID=28852660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978020868U Expired JPS6331476Y2 (en) 1978-02-22 1978-02-22

Country Status (1)

Country Link
JP (1) JPS6331476Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314695B2 (en) * 2008-09-30 2013-10-16 ウチヤ・サーモスタット株式会社 Normal off-type protective element and control unit having the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49112175A (en) * 1973-02-28 1974-10-25
JPS5228112U (en) * 1975-08-15 1977-02-26

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228113Y2 (en) * 1972-11-16 1977-06-27

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49112175A (en) * 1973-02-28 1974-10-25
JPS5228112U (en) * 1975-08-15 1977-02-26

Also Published As

Publication number Publication date
JPS54124974U (en) 1979-08-31

Similar Documents

Publication Publication Date Title
US4389692A (en) Overload-protected switching apparatus for electrical starter system for combustion engines
ES2589308T3 (en) Electronic circuit breaker
JP5342641B2 (en) Thermal switch
US3562587A (en) Overheating control device for alternating current motor
US3141996A (en) Thermal protector
US5262749A (en) Electrical safety device
US4371910A (en) Safety device for electric consumers in motor vehicles
JPS6331476Y2 (en)
JPS60232630A (en) Bimetal protection switch
US4129893A (en) Thermoelectric generator overload protective device using hysterisis control
EP1312289A1 (en) A temperature controller for a liquid heater
JPH03207915A (en) Electric cigarette lighter having overload protecting device
US2426906A (en) Manual reset thermostatic switch in protective systems
JP2004206894A (en) Battery pack with built-in protection circuit
KR100508135B1 (en) Motor starting and protecting apparatus
EP0913017B1 (en) Circuit protection arrangements
GB2273007A (en) Improvements relating to thermally-responsive controls
CA1075344A (en) Burner control system with secondary safety switch
JP2641440B2 (en) Overload protection device
US6778372B2 (en) Controls for loads such as air conditioner compressors
US2372276A (en) Fluid fuel burner control apparatus
US3209809A (en) Burner installation controlled by a flame detector
JPH0341441Y2 (en)
JPH09273466A (en) Magnet switch excitation terminal for starter
JP2000060171A (en) Safe starter device in single-phase induction motor