JPS63314322A - Marine vessel with damping device - Google Patents

Marine vessel with damping device

Info

Publication number
JPS63314322A
JPS63314322A JP15039387A JP15039387A JPS63314322A JP S63314322 A JPS63314322 A JP S63314322A JP 15039387 A JP15039387 A JP 15039387A JP 15039387 A JP15039387 A JP 15039387A JP S63314322 A JPS63314322 A JP S63314322A
Authority
JP
Japan
Prior art keywords
crankshaft
diesel engine
ship
hull
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15039387A
Other languages
Japanese (ja)
Inventor
Kazuhisa Yanagi
和久 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15039387A priority Critical patent/JPS63314322A/en
Publication of JPS63314322A publication Critical patent/JPS63314322A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/06Engines with means for equalising torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To reduce unbalanced moment by installing two rotary weights which is interlocked by a crankshaft facing in the ship longitudinal direction in the diesel engine mounted on a marine vessel and rotated in a hull longitudinal section at each angular velocity of once and double over rotational frequency of the crankshaft. CONSTITUTION:A diesel engine to be mounted on a marine vessel as the main engine is set up so as to cause the crankshaft 1 to be directed in the ship longitudinal direction. And, each of flywheels 7a and 7b is tightly attached to both ends in front and in the rear of the crankshaft 1 along both ends in front and in the rear of the diesel engine. And, each of longitudinal counter weights 2a and 2b is set up in these flywheels 7a and 7b so as to become opposite phase with each other. In this constitution, in and around a run, there is provided with a turning shaft in the width horizontal direction, while a rotary weight 10, rotating in a hull longitudinal section at an angular velocity of one time over rotational frequency of the crankshaft 1, is set up. In addition, in and around the top of a superstructure, there is provided with another rotary weight 11 rotating at the angular velocity of two times over the crankshaft likewise.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主機としてディーゼル機関を搭載する船舶に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ship equipped with a diesel engine as a main engine.

〔従来の技術〕[Conventional technology]

一般に主機としてディーゼル機関を船尾部機関室内に搭
載している船舶では、ディーゼル機関が往復動機関であ
る為、その可動部分の慣性力によって主機クランク軸回
転数の1倍および2倍の周波数を持つ不平衡偶力を発生
しており、この不平衡偶力は通常それぞれ不平衡1次モ
ーメントおよび不平衡2次モーメントと呼ばれる。
Generally speaking, on ships equipped with a diesel engine as the main engine in the stern engine room, the diesel engine is a reciprocating engine, so due to the inertia of its moving parts, it has a frequency of one and two times the main engine crankshaft rotation speed. An unbalanced couple is generated, which are usually called an unbalanced first moment and an unbalanced second moment, respectively.

コノアンバランスモーメントによって船舶に発生する振
動を減殺する為に従来第6〜8図に示すような防振型デ
ィーゼル機関が搭載されている。尚第6〜8図は従来の
防振型ディーゼル機関を示すもので、第6図はそのディ
ーゼル機関のクランク軸およびコンバインドバランサの
機構を説明するための模式図。第7図はそのディーゼル
機関の側面図、第8図は第7図の■−■線に?85矢視
断面図である。即ち、第6〜8図に示すように主機とし
てのディーゼル機関5に於いて、そのクランク軸1は船
長方向に向くように搭載され、同クランク軸1の前後端
部にはディーゼル機関5の前後端面に沿い、それぞれフ
ライホイール7a、7bが固着されている。
Conventionally, a vibration-proof diesel engine as shown in FIGS. 6 to 8 has been installed in order to reduce vibrations generated in a ship due to the unbalanced moment. 6 to 8 show a conventional vibration-proof diesel engine, and FIG. 6 is a schematic diagram for explaining the mechanism of the crankshaft and combined balancer of the diesel engine. Figure 7 is a side view of the diesel engine, and Figure 8 is on the ■-■ line in Figure 7? FIG. 85 is a sectional view taken along the arrow 85. That is, as shown in FIGS. 6 to 8, a diesel engine 5 serving as the main engine is mounted with its crankshaft 1 facing in the direction of the ship's ship, and the front and rear ends of the crankshaft 1 are provided with the front and rear ends of the diesel engine 5. Flywheels 7a and 7b are fixed along the end faces, respectively.

またこれらのフライホイール7a、7bには、前部カウ
ンタウェイト2aと後部カウンタウエイト2bとが、そ
れぞれ前後に対をなし逆位相になるように取り付けられ
ている。
Further, a front counterweight 2a and a rear counterweight 2b are attached to these flywheels 7a, 7b in pairs in the front and rear, respectively, so that they are in opposite phases.

そしてこれらの前部カウンタウェイト2a′と後部カウ
ンタウェイト2bとは、ディーゼル機関5の上下・左右
方向の不平衡1次モーメントを減殺するように設置され
る。一方デイーゼル機関5の前後端面に於けるクランク
軸1の上方には、前後1対のコンバインドバランサ6a
、6bが配設されている。コンバインドバランサ6aは
、1次バランサ3a12次バランサ4aおよび4bから
構成されるとともに、コンバインドバランサ6bはコン
バインドバランサ6aの1次バランサ3aと対をなす1
次バランサ3bト同じくコンバインドバランサ6aの2
次バランサ4a、4bとそれぞれ対をなす2次バランサ
4C14dとから構成されている。
The front counterweight 2a' and the rear counterweight 2b are installed so as to reduce the unbalanced first moment of the diesel engine 5 in the vertical and horizontal directions. On the other hand, above the crankshaft 1 on the front and rear end surfaces of the diesel engine 5, there are a pair of front and rear combined balancers 6a.
, 6b are arranged. The combined balancer 6a is composed of a primary balancer 3a, a secondary balancer 4a and 4b, and the combined balancer 6b is a pair of primary balancer 3a of the combined balancer 6a.
Next balancer 3b and also combined balancer 6a 2
It is composed of secondary balancers 4a and 4b and secondary balancers 4C14d each forming a pair.

そして、コンバインドバラン・す5a、5bはいずれも
第8図に示すように、カム軸9.カム軸駆動チェーン8
、図示しないカム軸駆動歯車等からなる。駆動機溝によ
って駆動される。
As shown in FIG. 8, the combined baluns 5a and 5b each have a camshaft 9. Camshaft drive chain 8
, a camshaft drive gear (not shown), etc. Driven by a drive groove.

また、第6図に示すように一対の1次バランサ3a、3
bはそれぞれ一対のカウンタウェイト2a、2bと同位
相の位置に設けられていて、クランク軸10回転と同期
しながら逆方向に回転駆動されるようになっている。
Further, as shown in FIG. 6, a pair of primary balancers 3a, 3
b are provided at positions in the same phase as the pair of counterweights 2a and 2b, respectively, and are driven to rotate in opposite directions in synchronization with 10 rotations of the crankshaft.

さらに、二組の2次バランサ4a、4bと4c、4dと
はクランク軸1の2倍の角速度で回転、駆動されるよう
になっている。
Further, the two sets of secondary balancers 4a, 4b and 4c, 4d are rotated and driven at twice the angular velocity of the crankshaft 1.

上述の構成により従来の防振型ディーゼル機関付船舶で
は、クランク軸1が回転すると前部カウンタウェイト2
aと後部カウンタウェイト2bとに於いて上下・左右方
向のモーメントが発生する。これらのモーメントによっ
てディーゼル機関5の上下方向および左右方向への不平
轡1次モーメントが減殺される。
With the above-mentioned configuration, in a conventional ship equipped with a vibration-proof diesel engine, when the crankshaft 1 rotates, the front counterweight 2
A and rear counterweight 2b generate vertical and horizontal moments. These moments reduce the primary moments of unbalance in the vertical and horizontal directions of the diesel engine 5.

また1次バランサ3a、3bはクランクN1の回転と同
期しながら逆方向に回転しているので、これらの1次バ
ランサ3a、3bにより発生するモーメントによって上
記の不平(l!1lr1次モーメントはさらに減殺され
る。
Furthermore, since the primary balancers 3a and 3b rotate in the opposite direction in synchronization with the rotation of the crank N1, the moment generated by these primary balancers 3a and 3b further reduces the above-mentioned complaints (l!1lr primary moment be done.

さらにに二組の2次バランサ4a、4bと4c。Furthermore, there are two sets of secondary balancers 4a, 4b and 4c.

4dとはクランク軸1の2倍の角速度で回転駆動される
ので、上下方向の不平衡2次モーメントも減殺される。
4d is rotationally driven at twice the angular velocity of the crankshaft 1, so the unbalanced secondary moment in the vertical direction is also reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の防振型ディーゼル機関付船舶では
、バランサの構成要素としてそのディーゼル機関の前部
と後部の両方に対をなす多数の部品とこれらの部品を駆
動するのに複雑な駆動系が必要とされるので、製作コス
トが高いうえに機器の信頼性の低下を招くという問題点
がある。
However, in conventional vessels equipped with anti-vibration diesel engines, the balancer requires a large number of paired parts at both the front and rear of the diesel engine, and a complex drive system to drive these parts. Therefore, there are problems in that the manufacturing cost is high and the reliability of the device is reduced.

本発明は、上述の問題点の解決をはかろうとするもので
、防振効果を損なうことなく、バランサの構造および駆
動系を簡素化することにより、製作コストの低減および
機器の信頼性の向上をはかった制振装置付き船舶を提供
することを目的とする。
The present invention aims to solve the above-mentioned problems, and by simplifying the structure and drive system of the balancer without impairing the anti-vibration effect, it reduces manufacturing costs and improves the reliability of the equipment. The purpose of this invention is to provide a ship equipped with a vibration damping device.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記問題点を解決するもので主機としてそのク
ランク軸が船長方向を向くようにディーゼル機関を搭載
する船舶に於いて、ディーゼル機関に付随するバランサ
の代わりに、上記ディーゼル機関の1次および2次不平
衡モーメントを減殺し得るように、船舶のその船尾端部
付近に配設され、船体縦断面内をクランク軸回転数の1
倍の角速度で回転する単一の回転重錘と、船舶の上部構
造物頂部付近に配設され船体縦断面内をクランク軸回転
数の2倍の角速度で回転する単一の回転重錘と、これら
を駆動する為の駆動系を具えていることを特徴としてい
る。
The present invention solves the above-mentioned problems, and in ships equipped with a diesel engine as the main engine with its crankshaft facing the ship's ship, the primary and In order to reduce the secondary unbalance moment, it is installed near the stern end of the ship and rotates within the longitudinal section of the ship by 1 of the crankshaft rotation speed.
a single rotating weight that rotates at twice the angular speed; a single rotating weight that is disposed near the top of the ship's superstructure and rotates within the longitudinal section of the ship at an angular speed that is twice the number of revolutions of the crankshaft; It is characterized by having a drive system for driving these.

〔作 用〕[For production]

上述の本発明の防振装置付き船舶では、船体縦断面内に
設けられた2個の回転重錘がそれぞれクランク軸回転数
の1倍および2倍の角速度で回転することにより、上記
ディーゼル機関の不平衡1次モーメントおよび2次モー
メントが減殺される。
In the above-mentioned ship equipped with a vibration isolator of the present invention, the two rotary weights provided in the vertical section of the ship rotate at angular velocities of one and two times the crankshaft rotation speed, respectively, thereby reducing the speed of the diesel engine. Unbalanced first and second moments are reduced.

〔実ゐ例〕[Actual example]

以下図面により、本発明の一実施例としての制振装置付
き船舶について説明すると、第1図はその船舶に主機と
して搭載されるディーゼル機関のクランク軸および1次
・2次バランサの割振装置の機構を説明するための模式
図、第2図はその割振装置およびその駆動機構の模式図
、第3図は、船体の前後振動応答の特性を示す線図、第
4.5図は、船体の上下振動モードを示す模式図である
、。第1・2図に示すように、主機として搭載されるデ
ィーゼル機関に於いて、そのクランク軸1は、船長方向
に向くように搭載され、同クランク軸1の前後端部には
ディーゼル機関5の前後端面に沿いそれぞれフライホイ
ール7a、7bが固着されている。また、これらのフラ
イホイール7a、7bには前部カウンタウェイト2aと
後部カウンタウェイト2bとがそれぞれ前後に対をなし
、逆位相になるように配設されており、これらの前部カ
ウンタウェイト2aと後部カウンタウェイト2bとはデ
ィーゼル機関5の上下・左右方向の不平衡1次モーメン
トを減殺するように、その取付位置が設定されている。
Below, a ship equipped with a vibration damping device as an embodiment of the present invention will be explained with reference to the drawings. Figure 1 shows the mechanism of the crankshaft of the diesel engine installed as the main engine in the ship and the mechanism of the allocation device for the primary and secondary balancers. Fig. 2 is a schematic diagram of the allocation device and its drive mechanism, Fig. 3 is a line diagram showing the characteristics of longitudinal vibration response of the hull, and Fig. 4.5 is a diagram showing the longitudinal vibration response of the hull. FIG. 3 is a schematic diagram showing vibration modes. As shown in Figures 1 and 2, in a diesel engine installed as the main engine, the crankshaft 1 is mounted so as to face in the direction of the ship's ship, and the diesel engine 5 is mounted at the front and rear ends of the crankshaft 1. Flywheels 7a and 7b are fixed along the front and rear end surfaces, respectively. In addition, a front counterweight 2a and a rear counterweight 2b are arranged in pairs in the front and rear of these flywheels 7a and 7b, respectively, and are arranged in opposite phases. The mounting position of the rear counterweight 2b is set so as to reduce the unbalanced first moment of the diesel engine 5 in the vertical and horizontal directions.

一方、船尾端部付近には船幅水平方向に回転軸を有し、
主機クランク軸回転数の1倍の角速度で船体縦断面内を
回転する回転重鎚10が配設されている。また、上部構
造物頂部付近には船幅水平方向に回転軸を有し、主機ク
ランク軸回転数の2倍の角速度で船体縦断面内を回転す
る回転重錘11が配設されている。そして、この回転重
錘10および11は第2図に回転重錘10を例にとって
説明するが、同図中に示すような駆動機構12 aなど
によって駆動される。
On the other hand, near the stern end there is a rotation axis in the horizontal direction of the ship's width.
A rotary hammer 10 is provided that rotates within the longitudinal section of the hull at an angular velocity that is one times the rotational speed of the main engine crankshaft. Further, a rotating weight 11 is disposed near the top of the superstructure and has a rotating shaft in the horizontal direction of the ship's width, and rotates within the longitudinal section of the ship at an angular velocity twice the number of revolutions of the main engine crankshaft. The rotary weights 10 and 11 will be explained using the rotary weight 10 as an example in FIG. 2, and are driven by a drive mechanism 12a as shown in the figure.

本実施例の制振装置付き船舶は上述の如く構成されてい
るので、従来と同様、クランク軸1が回転すると前部カ
ウンタウェイト2aと後部カウンタウェイト2bとに於
いて、上下方向・左右方向のモーメントが発生する。
Since the ship with the damping device of this embodiment is constructed as described above, when the crankshaft 1 rotates, the front counterweight 2a and the rear counterweight 2b move in the vertical and horizontal directions. A moment occurs.

これらのモーメントによってディーゼル機関5の上下方
向および左右方向の不平衡1次モ゛−メントが減殺され
る。
These moments reduce the unbalanced first order moments of the diesel engine 5 in the vertical and horizontal directions.

また、2個の回転重錘10.11をそれぞれ駆動機構1
2a、12bにより、それぞれ上記クランク軸1の1倍
および2倍の角速度で回転させるとともに遠心力が船体
縦断面内で発生する。ここで、この遠心力の大きさは、
それぞれ回転重錘1oおよび11の偏心重量と回転軸か
らの偏心距離の積に比例し、またその方向はそれぞれの
回転重錘の設置位置に於いて、船長方向と鉛直方向の両
方向にそれぞれ主機クランク軸1の回転数の1倍および
2倍の周波数を持つ力が作用する。
In addition, two rotating weights 10 and 11 are connected to the drive mechanism 1, respectively.
2a and 12b rotate at angular velocities that are once and twice that of the crankshaft 1, respectively, and centrifugal force is generated within the longitudinal section of the hull. Here, the magnitude of this centrifugal force is
The direction is proportional to the product of the eccentric weight of rotating weights 1o and 11 and the eccentric distance from the rotating shaft, and the direction is proportional to the main engine crank in both the longitudinal direction and the vertical direction at the installation position of each rotating weight. Forces with frequencies of one and two times the rotational speed of the shaft 1 act.

このとき、主機クランク軸1の回転数をRで表わすと、
回転重錘1O511の回転数はそれぞれnR(n−1又
は2)と書ける。
At this time, if the rotation speed of the main engine crankshaft 1 is represented by R, then
The number of rotations of the rotating weight 1O511 can be written as nR (n-1 or 2), respectively.

ここで、船舶の船体前後振動応答を調べると、例えば@
3図に示すようにN・・・横軸上にとった周波数(cp
m)、A・・・縦軸にとった振動加速度(ga I )
、丸・・・前後方向の起振力による前後方向加速度(g
a I )、BL−前後振動発生域、Bn* (n= 
1又は2)・・・回転重錘10.11の回転数域とする
と、Bt、はBn* (n−1又は2)より周波数の高
い領域でありBNR(n−1又は2)ではALは極めて
小さい。
Here, if we examine the longitudinal vibration response of the ship's hull, for example, @
As shown in Figure 3, N...frequency (cp
m), A... Vibration acceleration (ga I) taken on the vertical axis
, circle... Longitudinal acceleration (g
aI), BL-rear vibration generation area, Bn* (n=
1 or 2)...Assuming the rotation speed range of a rotating weight of 10.11, Bt is a region with a higher frequency than Bn* (n-1 or 2), and in BNR (n-1 or 2), AL is Extremely small.

すなわち、主機不平m1次モーメントおよび2次モーメ
ントの周波数域での船体前後振動応答はBnRの範囲に
於いて前後起振力があっても過大な前後振動を発生する
惧れは少ないことがわかる。
That is, it can be seen that the longitudinal vibration response of the hull in the frequency range of the main engine's first moment and second moment is unlikely to generate excessive longitudinal vibration even if there is a longitudinal vibration force in the BnR range.

次に13nR(n−1又は2)の範囲での船舶の船体上
下振動特性を調べると、BIR,B2Rでの船体上下振
動モードは例えば第4.5図に示すようなりIRの範囲
での船体上下振動モード15、B2Rの範囲での船体上
下振動モード16で示すことができる。
Next, when examining the hull vertical vibration characteristics of a ship in the range of 13nR (n-1 or 2), the hull vertical vibration mode at BIR and B2R is as shown in Figure 4.5. This can be shown as vertical vibration mode 15 and hull vertical vibration mode 16 in the range of B2R.

なお、第4図におけるムRは、回転重錘10と上下振動
モード15の船尾側の節との距離を示し、第5図におけ
るtnRは、主船体中立軸18から回転電蝕11までの
高さを示す。ここで回転重錘10.11で発生する遠心
力をそれぞれFIR、F2Rとすると、発生モーメント
M IR、M2Rは次に示す(1)式で表わすことがで
きる。
4 indicates the distance between the rotating weight 10 and the stern side node of the vertical vibration mode 15, and tnR in FIG. 5 indicates the height from the main hull neutral axis 18 to the rotating electrolytic erosion 11. Show that. Here, if the centrifugal forces generated by the rotating weights 10 and 11 are respectively FIR and F2R, the generated moments MIR and M2R can be expressed by the following equation (1).

Mn* = FnRX inn  (n=1.2 )・
fil即ち、(1)式によって与えられるモーメントが
回転重錘10および11によって発生するので、それぞ
れ重量、偏心距離および位相を適当に設定することによ
って主機不平衡1次モーメントおよび2次モーメン、ト
を減殺することができる。
Mn* = FnRX inn (n=1.2)・
In other words, the moment given by equation (1) is generated by the rotating weights 10 and 11, so by appropriately setting the weight, eccentric distance, and phase, the main engine unbalance primary moment and secondary moment can be reduced. It can be reduced.

ところでディーゼル機関5の船長方向の長さをムとする
と、inn (n=1.2)とムの関係は、一般の場合
法に示す(2)式のようになることが多い。
By the way, if the length of the diesel engine 5 in the longitudinal direction is mu, the relationship between inn (n=1.2) and mu is often expressed as equation (2) shown in the general case law.

tnR>ム (n=1.2 )        ・+2
1従って、本実施例に於ける回転重錘10の遠心力FI
Rは従来の1次バランサ3a、3bの遠心力よりも小さ
くできる。同様にして回転重錘11の遠心力F2Rは従
来の2次バランサ4a、4b、4C14dの遠心力より
も小さくできる。従って、回転電蝕10や11の偏心重
量は、それぞれ3a、3bや4as4b、4C14dの
総偏心重量の%以下に軽量化することができる。更に2
個の回転重錘のみであるので、その駆動機構も簡素化す
ることができる。
tnR>mu (n=1.2) ・+2
1 Therefore, the centrifugal force FI of the rotating weight 10 in this example
R can be made smaller than the centrifugal force of the conventional primary balancers 3a and 3b. Similarly, the centrifugal force F2R of the rotating weight 11 can be made smaller than the centrifugal force of the conventional secondary balancers 4a, 4b, and 4C14d. Therefore, the eccentric weight of the rotary electrolytic corrosion 10 and 11 can be reduced to less than % of the total eccentric weight of 3a, 3b, 4as4b, and 4C14d, respectively. 2 more
Since there are only two rotating weights, the drive mechanism can also be simplified.

また、第5図において船尾端から船体上下振動モード1
6の船尾側の節の距離なtで示すと、一般の場合法に示
す(3)式が成立することが多い。
In addition, in Figure 5, the hull vertical vibration mode 1 from the stern end
When the distance between the nodes on the stern side of 6 is expressed as t, equation (3) shown in the general case law often holds true.

Lz*  )  l         ・・・(3)従
って、本実施例に於ける回転重錘11の偏心重量は、2
次パランサとして船尾端部付近に設置される回転重錘の
偏心重量と比較して軽量化することができる。
Lz*) l...(3) Therefore, the eccentric weight of the rotating weight 11 in this example is 2
The weight can be reduced compared to the eccentric weight of a rotary weight installed near the stern end as a secondary balancer.

このように本実施例の制振装置付き船舶では、ディーゼ
ル機関5の1次および2次起振力を減殺する割振装置1
3は船体の船尾端部付近に配設される単一の回転重錘1
0と上部構造頂部付近に配設される単一の回転重錘11
およびその駆動軸12により構成されるので、従来のよ
うにディーゼル機関5の前後端面にそれぞれ1次パラン
サ ・3a、3b、2次バランサ4a、4b、4c、4
dをそなえる必要がなくなるとともに機構を軽量化でき
るようになり、更に駆動系も簡素化することができる。
In this way, in the ship equipped with the vibration damping device of this embodiment, the vibration damping device 1 reduces the primary and secondary vibrational forces of the diesel engine 5.
3 is a single rotating weight 1 located near the stern end of the hull.
0 and a single rotating weight 11 located near the top of the superstructure.
and its drive shaft 12, so as in the past, there are primary balancers 3a, 3b, secondary balancers 4a, 4b, 4c, 4 on the front and rear end surfaces of the diesel engine 5, respectively.
d is no longer necessary, the mechanism can be made lighter, and the drive system can also be simplified.

従って割振装置としての製作コストを低減できるととも
に機器の信頼性を大幅に向上させることができる。
Therefore, the manufacturing cost of the allocation device can be reduced, and the reliability of the device can be greatly improved.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したように本発明の制振装置付き船舶では、
船体縦断面内をそれぞれ主機クランク軸回転数の1倍お
よび2倍の角速度で回転する2個の回転重錘をその船尾
端部付近に配設することで、ディーゼル機関の発生する
不平衡1次モーメントや2次モーメントの減殺を実現で
きるので、割振装置やその駆動系が軽量化とともに簡素
化され、ディーゼル機関を搭載する船舶の割振装置の製
作コストを低減できるとともに、機器の信頼性を大幅に
高めることができるとい5効果がある。
As detailed above, in the ship equipped with the vibration damping device of the present invention,
By arranging two rotating weights near the stern end that rotate within the longitudinal section of the hull at angular velocities that are one and two times the main engine crankshaft speed, the primary unbalance generated by the diesel engine can be reduced. Since it is possible to reduce moments and secondary moments, the allocating device and its drive system are lighter and simpler, reducing the manufacturing cost of allocating devices for ships equipped with diesel engines, and greatly improving the reliability of the equipment. There are five effects that can be enhanced.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜5図は本発明の一実施例としての制振装置付き船
舶を示すもので、第1図はその船舶に主機として搭載さ
れるディーゼル機関のクランク軸および船尾端部付近に
配設される1次パランサと上部構造頂部付近に配設され
る2次バランサの制振装置を説明するための模式図、第
2図はその割振装置およびその駆動機構の模式図、第3
図は、船体の前後振動応答の特性を示す線図、第4.5
図は、船体の上下振動モードを示す模式図である。第6
〜8図は従来の防振型ディーゼル機関を示すもので、第
6図はそのディーゼル機関のクランク軸およびコンバイ
ンドバランサの機構を説明するための模式図、第7図は
、そのディーゼル機関の側面図、第8図は第7図の■−
■線に沿う矢視断面図である。 1・・・クランク軸、2a・・・前部カウンタウェイト
、2b・・・後部カウンタウェイト、3a、3b・・・
従来の1次バランサとしての重錘群、4a、4b、4c
、4d ・・・従来の2次バランサとしての重錘群、5
・・・ディーゼル機関、6a、6b・・・従来のコンバ
インドバランサ、7a、7b・・・フライホイール、8
・・・カム軸、駆動チェーン、9・・・カム軸、10・
・・1次バランサとしての回転重錘、11・・・1次バ
ランサとしての回転重錘、12 a・・・1次バランサ
の駆動軸、12 b・・・2次バランサの駆動軸、13
 a・・・1次バランサとしての制振装置、13 b・
・・2次バランサとしての制振装置、14・・・船体、
15.16・・・船体上下振動モード、17・・・上部
構造、18・・・主船体中立軸。
Figures 1 to 5 show a ship equipped with a vibration damping device as an embodiment of the present invention. A schematic diagram for explaining the vibration damping device of the primary balancer and the secondary balancer disposed near the top of the superstructure; FIG. 2 is a schematic diagram of the allocation device and its drive mechanism;
The figure is a diagram showing the characteristics of longitudinal vibration response of the hull, Section 4.5.
The figure is a schematic diagram showing the vertical vibration mode of the hull. 6th
Figures 8 to 8 show a conventional anti-vibration diesel engine, Figure 6 is a schematic diagram to explain the mechanism of the diesel engine's crankshaft and combined balancer, and Figure 7 is a side view of the diesel engine. , Figure 8 is the ■− of Figure 7.
3 is a cross-sectional view taken along the line. 1... Crankshaft, 2a... Front counterweight, 2b... Rear counterweight, 3a, 3b...
Weight group as conventional primary balancer, 4a, 4b, 4c
, 4d ... Weight group as a conventional secondary balancer, 5
...Diesel engine, 6a, 6b...Conventional combined balancer, 7a, 7b...Flywheel, 8
...Camshaft, drive chain, 9...Camshaft, 10.
... Rotating weight as a primary balancer, 11... Rotating weight as a primary balancer, 12 a... Drive shaft of the primary balancer, 12 b... Drive shaft of the secondary balancer, 13
a... Vibration damping device as a primary balancer, 13 b.
... Vibration damping device as a secondary balancer, 14... Hull,
15.16...Hull vertical vibration mode, 17...Superstructure, 18...Main hull neutral axis.

Claims (1)

【特許請求の範囲】[Claims] クランク軸が船長方向を向くように、ディーゼル機関を
搭載した船舶に於いて、上記クランク軸に連動して各々
クランク軸回転数の1倍および2倍の角速度で船体縦断
面内を回転する2個の回転重錘を具えたことを特徴とす
る制振装置付き船舶。
In a ship equipped with a diesel engine, the crankshaft is oriented toward the ship's ship's length.In a ship equipped with a diesel engine, there are two parts that rotate within the longitudinal section of the hull in conjunction with the crankshaft at angular velocities of 1 and 2 times the number of revolutions of the crankshaft, respectively. A ship equipped with a vibration damping device characterized by being equipped with a rotating weight.
JP15039387A 1987-06-17 1987-06-17 Marine vessel with damping device Pending JPS63314322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15039387A JPS63314322A (en) 1987-06-17 1987-06-17 Marine vessel with damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15039387A JPS63314322A (en) 1987-06-17 1987-06-17 Marine vessel with damping device

Publications (1)

Publication Number Publication Date
JPS63314322A true JPS63314322A (en) 1988-12-22

Family

ID=15496007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15039387A Pending JPS63314322A (en) 1987-06-17 1987-06-17 Marine vessel with damping device

Country Status (1)

Country Link
JP (1) JPS63314322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167974A (en) * 2008-01-18 2009-07-30 Toyota Motor Corp Internal combustion engine and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009167974A (en) * 2008-01-18 2009-07-30 Toyota Motor Corp Internal combustion engine and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JPS58128546A (en) Flywheel for use in four-cylinder engine arranged in series
US4132513A (en) Rotary engine counterweight system
KR102398982B1 (en) Piston internal combustion engine with generator
JPS63314322A (en) Marine vessel with damping device
JPS63101539A (en) Balance shaft driving device for engine
JPS5847585B2 (en) Vibration prevention device for multi-cylinder engines
JPH03185220A (en) Parallel two-cylinder engine
JPS5837342A (en) Reduction of imbalance moment in diesel main engine
JPS636244A (en) Internal combustion engine with vibration control mechanism
JPS63125840A (en) Balancer device for v-type 8-cylinder engine
JPS61248937A (en) Vessel with vibration absorption type diesel engine
JPH08193643A (en) Balancer for v-type eight-cylinder four-cycle engine
JPH0217742B2 (en)
JPH0118914Y2 (en)
KR200154964Y1 (en) Balance shaft of an engine
JPS62233539A (en) Diesel engine associated with vibration suppressor
JPS588844A (en) Balancer for marine internal-combustion engine
JPH04307145A (en) Balancer unit in straight four-cylinder internal combustion engine for vehicle
JP2998472B2 (en) Vibration reduction device for 2-cycle 4-cylinder engine
JPH02583B2 (en)
JPH0328544A (en) Two-shaft rotating balancer for single cylinder engine
JPH0570733B2 (en)
JPS60231043A (en) Balancer device for marine diesel engine
JPS63208622A (en) Balancer device for serial-type four-cylinder engine
JPS60237240A (en) Vibration damping device for diesel engine for ship