JPS6331402A - Re-adhesion control method for inverter controlled electric motor car on sliding - Google Patents

Re-adhesion control method for inverter controlled electric motor car on sliding

Info

Publication number
JPS6331402A
JPS6331402A JP61167790A JP16779086A JPS6331402A JP S6331402 A JPS6331402 A JP S6331402A JP 61167790 A JP61167790 A JP 61167790A JP 16779086 A JP16779086 A JP 16779086A JP S6331402 A JPS6331402 A JP S6331402A
Authority
JP
Japan
Prior art keywords
frequency
inverter
motor
modulation factor
previously set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61167790A
Other languages
Japanese (ja)
Inventor
Kosuke Yuya
油谷 浩助
Mitsuru Yamada
満 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP61167790A priority Critical patent/JPS6331402A/en
Publication of JPS6331402A publication Critical patent/JPS6331402A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To enable an adhesion to be used at its maximum, by making the ratio of motor voltage to inverter frequency small for a previously set time, in case where total axle sliding takes place continuously as often as a previously set frequency within a previously set time. CONSTITUTION:From a frequency arithmetic section 17, the output of the rotating frequency fR1-fR4 of respective motors and reference rotating frequency fR is generated. Besides, a current command value IMP and reference slip frequency fSP are computed by a current/slip frequency pattern generating section 19 according to mass-com command CM, the bearing load VL of a car body, and the reference rotating frequency fR. Then, inverter frequency fINV and reference modulation factor rp are computer by the reference slip frequency fSP and correction slip frequency fS according to current deviation IM. When total axle sliding is generated continuously by previously set frequency within a previously set time, then arithmetic is performed on modulation factor reducing factor KR by a sliding detection arithmetic section 25. Then, the modulation factor (r) of the product of the modulation factor reducing factor KR and the reference modulation factor rp is kept for a set time, and is slowly returned to the reference modulation factor rp.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は可変電圧可変周波数インバータにより制御され
る誘導電動機で駆動される電気車において、動輪がレー
ルとの間で全軸滑走を起こした時の電気車制御方法に関
する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is applicable to an electric vehicle driven by an induction motor controlled by a variable voltage variable frequency inverter, when the driving wheels slip on all axes with respect to the rails. This invention relates to an electric vehicle control method.

(従来の技術) 近年パワーエレクトロエックスの発達により電気車の主
電動機として可変電圧可変周波数インバータ(以下、V
VVFインバータと称する)により制御される誘導電動
機が用いられている。
(Prior art) With the recent development of power electrox, variable voltage variable frequency inverters (hereinafter referred to as V
An induction motor controlled by a VVF inverter (VVF inverter) is used.

第1図はVVVFインバータ車両の代表的主回路構成例
で、パンタグラフ1からしゃ断器2゜フィルタリアクト
ル3及びフィルタコンデンサ4を介して入力電流をイン
バータ5に加え、後述するインバータ制御部からの信号
に基づいてインバータ5を運転することにより車両用誘
導電動機7゜8、 9. 10を駆動する。なお、第1
図の11゜12.13.14は誘導電動機7. 8. 
9. 10の回転数を検出するパルスジェネレータであ
り。
Figure 1 shows a typical main circuit configuration example of a VVVF inverter vehicle, in which an input current is applied from a pantograph 1 to an inverter 5 via a breaker 2, a filter reactor 3, and a filter capacitor 4, and a signal from an inverter control section (described later) is input to the inverter 5. By operating the inverter 5 based on this, the vehicle induction motor 7°8, 9. Drive 10. In addition, the first
11゜12.13.14 in the figure is the induction motor 7. 8.
9. It is a pulse generator that detects 10 rotations.

15は電動機電流検出器、16は電動機電圧検出器、6
はインバータ5を構成するGT○(ゲートターンオフ)
サイリスタである。従来このようなVVVFインバータ
車両の制御部としては第2図の回路構成が採用されてい
る。すなわち、第2図において17はパルスジェネレー
タ11,12゜13.14(第1図に示す)の出力PG
I〜PG4が入力されると、これらの信号から各電!l
J機の回転周波数fR1,fR2,fR3,fa+  
及び基準回転周波数1尺 を算出する周波数演算部であ
る。カ行時には回転周波数fR1、rR2、fR3、〔
叫   のうちの最小値を2回生時には最大値を選択し
て出力する。18はブレーキ指令MCを出力するマスコ
ン、19はマスコン指令MC及び車両の応荷重(乗車率
によって変化する)VLに応じて電流指令値■MPと基
準すべり周波数rsPを算出する電流・ずベリ周波数パ
ターン発生部。
15 is a motor current detector, 16 is a motor voltage detector, 6
is GT○ (gate turn-off) that constitutes inverter 5.
It is a thyristor. Conventionally, the circuit configuration shown in FIG. 2 has been adopted as a control section of such a VVVF inverter vehicle. That is, in FIG. 2, 17 is the output PG of the pulse generators 11, 12° 13.14 (shown in FIG. 1).
When I to PG4 are input, each electric! l
Rotational frequency fR1, fR2, fR3, fa+ of J machine
and a frequency calculation unit that calculates the reference rotation frequency 1 shaku. When moving, the rotational frequencies fR1, rR2, fR3, [
The minimum value of the screams is selected and the maximum value is selected and output during the second regeneration. 18 is a master controller that outputs a brake command MC, and 19 is a current/slip frequency pattern that calculates a current command value MP and a reference slip frequency rsP according to the master controller command MC and the variable load VL of the vehicle (which changes depending on the occupancy rate). Occurrence part.

20は電流・すべり周波数パターン発生部19から出力
される電流指令値IMPと電動機電流検出部15から出
力される電動機電流IMに応じて補正すべり周波数fs
を演算する補正すべり周波数演算部、21は回転周波数
fQ の急激な変化を制限する変化率リミッタである。
20 is a corrected slip frequency fs according to the current command value IMP outputted from the current/slip frequency pattern generation section 19 and the motor current IM outputted from the motor current detection section 15.
21 is a change rate limiter that limits sudden changes in the rotational frequency fQ.

電動機電流検出部15の出力はインバータ出力電流であ
るので、同一インバータで駆動される誘導電動機の個数
で電流値を割った値を電動機電流1間とする。インバー
タ周波数f INV は回生時、変化率リミッタ21の
出力fROから電流・すべり周波数パターン発生部19
の出力である基準すべり周波数fspと補正すべり周波
数演算部の出力である乙fsを減算して得る。22はイ
ンバータ周波数flN+/ に対応する変調率を求める
変調率演算部で、23はインバータ周波数fKV  及
び変調率演算部の出力γからインバータ5のサイリスタ
ゲート信号を発生するパルス幅変調(PWM)制御を行
うPWM変調部である。24は周波数演算部17から誘
導電動機7、 8. 9. 10の回転周波数rR1,
f’R2,fR3゜rR十 を得て、それら回転周波数
の時間変化率(微分値)及び回転周波数差から車輪の滑
走を検知し滑走検知信号を出力する滑走検知部である。
Since the output of the motor current detection section 15 is an inverter output current, the motor current 1 is defined as the value obtained by dividing the current value by the number of induction motors driven by the same inverter. During regeneration, the inverter frequency f INV is determined from the output fRO of the rate of change limiter 21 by the current/slip frequency pattern generator 19
It is obtained by subtracting the reference slip frequency fsp, which is the output of , and fs, which is the output of the corrected slip frequency calculation section. 22 is a modulation rate calculation unit that calculates a modulation rate corresponding to the inverter frequency flN+/, and 23 is a pulse width modulation (PWM) control that generates a thyristor gate signal for the inverter 5 from the inverter frequency fKV and the output γ of the modulation rate calculation unit. This is the PWM modulation section that performs the PWM modulation. 24 from the frequency calculation unit 17 to the induction motors 7, 8. 9. 10 rotational frequency rR1,
This is a skid detection section that obtains f'R2, fR3°rR0, detects wheel skid from the time rate of change (differential value) of these rotational frequencies and the rotational frequency difference, and outputs a skid detection signal.

インバータ制御電気車は前述したようにパルスジェネレ
ータ11.12,13.14の出力信号PGI〜PG4
から基準となる回転周波数fRを求めるが、同一のイン
バータで駆動される誘導電動機7〜10に対応するすべ
ての動輪が滑走する全軸滑走が起こると2回転周波数f
Qは列車速度に対応しなくなり大滑走に発展する。した
がって。
As mentioned above, the inverter-controlled electric vehicle uses the output signals PGI to PG4 of the pulse generators 11.12 and 13.14.
The reference rotational frequency fR is calculated from 2.If all axes slide, in which all the driving wheels corresponding to induction motors 7 to 10 driven by the same inverter slide, the rotational frequency fR becomes 2.
Q no longer corresponds to the train speed, leading to a large skid. therefore.

全軸滑走が発生した場合すみやかに再粘着させる必要が
ある。従来1回生中に全軸滑走が発生した場合、第3図
に示すように滑走検知部24の全軸滑走検知信号SDを
受けて電流・すべり周波数パターン発生部19が電流指
令値部、を定められた割合だけしぼりその結果電動機電
流■関が減少し滑走中の動輪が再粘着する。全軸滑走が
終了し全軸滑走検知信号がなくなると電流・すべり周波
数パターン発生部19の電流指令値しρが徐々に復帰し
、それと乏もに電動機電流IMも復帰する。
If sliding on all axes occurs, it is necessary to reattach it immediately. Conventionally, when all-axis skidding occurs during the first regeneration, as shown in FIG. As a result, the motor current decreases and the sliding wheels re-stick. When all axes skid ends and all axes skid detection signals disappear, the current command value ρ of the current/slip frequency pattern generating section 19 gradually returns, and at the same time, the motor current IM also returns.

(発明が解決しようとする問題点) 全軸滑走が発生ずると、車輪・レール間の粘着係数がわ
ずかに低下して全軸滑走が発生した場合も、大きく粘着
係数が低下した場合も常に予め定められた一定の割合で
電動機電流1間を減少させる結果、車輪・レール間の粘
着係数の最低値に合わせた制御となり、駆動力の低下が
大きい。
(Problem to be solved by the invention) When all-axle skidding occurs, the adhesion coefficient between the wheels and rails slightly decreases. As a result of reducing the motor current 1 at a predetermined constant rate, control is performed in accordance with the lowest value of the adhesion coefficient between the wheels and the rail, resulting in a large drop in driving force.

(問題点を解決するだめの手段) 本発明の目的は、インバータ制御電気車が回生中に全軸
滑走を起こし、インバータ制御のための電動機回転周波
数「Rが列車速度に対応しなくなることのないようにす
みやかに滑走軸の再粘着を促し、全軸滑走が連続して多
発する場合はその場の粘着係数を考慮した電動機トルク
に引き下げて再滑走を起こしにくくするとともに2粘着
力を最大限に利用するための電気車制御方法を提案する
ことにある。
(Means for Solving Problems) An object of the present invention is to prevent an inverter-controlled electric train from causing all axes to skid during regeneration and causing the motor rotation frequency "R" for inverter control to no longer correspond to the train speed. If all axes skid repeatedly, the motor torque is reduced to take into account the adhesion coefficient at that point to make re-adhesion less likely to occur, and to maximize adhesion. The purpose is to propose an electric vehicle control method for use.

(作用) 本発明はVVVFインバータによる誘導電動機駆動電気
車において1回生中に動輪が全軸滑走を起こした場合、
全軸滑走を検知すると、車輪の軸減速度から粘着係数を
算出し電動機電圧V、とインバータ周波数rlNV  
の比VM / f +Nvを小さくすることによって粘
着係数以下に電動機トルクを下げ、全軸滑走が終了後電
動機電圧V とインバータ周波数ftFJVの比VVI
/ r(Nv  を徐々に復帰する制御方式において、
上記全軸滑走が予め定められた時間内に予め定められた
回数続けて全軸滑走が発生した場合には電動機電圧■ 
とインバータ周波数rlNV の比VM / f IN
Vを小さくすることによって電動機トルクを粘着係数に
対応する値に下げるとともに、予め定められた時間上記
の値を保持し、上記時間経過後徐々に電動機電圧vMと
インバータ周波数f INV  の比VM / r I
NVを復帰させる電気車の制御方法である。
(Function) The present invention provides an electric vehicle driven by an induction motor using a VVVF inverter, in the event that all axes of the driving wheels skid during the first regeneration.
When all axes skid is detected, the adhesion coefficient is calculated from the wheel axle deceleration and the motor voltage V and inverter frequency rlNV are calculated.
By reducing the ratio VM/f +Nv, the motor torque is lowered below the adhesion coefficient, and after all axis sliding is completed, the ratio VVI of motor voltage V and inverter frequency ftFJV is reduced.
/ r (In a control method that gradually returns Nv,
If all axes skid occurs a predetermined number of times in a row within a predetermined time, the motor voltage ■
and the ratio of inverter frequency rlNV VM/f IN
By decreasing V, the motor torque is lowered to a value corresponding to the adhesion coefficient, and the above value is held for a predetermined period of time, and after the elapse of the above period of time, the ratio of motor voltage vM to inverter frequency f INV is gradually reduced to VM/r. I
This is a method of controlling an electric vehicle to restore NV.

(実施例) 以下本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第4図は本発明による電気車制御装置におけるインバー
タ制御部の構成例を示すもので第2図と同一のものは同
一の記号で示す、第4図で、17はパルスジェネレータ
11〜14(m1図に示す)の出力信号PGI〜PG4
が入力されると、これらの入力信号から各電動機の回転
周波数fR1〜[呵 及び基準回転周波数[λを算出す
る周波数演算部であり1回転周波数「Rは1回生時には
電動機の回転周波数rR1〜f芒 のうちの〕長大値「
Rを選択し出力する。18はブレーキ指令MCヲ出力す
ルマスコン、19はマスコン指令M C。
FIG. 4 shows an example of the configuration of the inverter control section in the electric vehicle control device according to the present invention. Components that are the same as those in FIG. 2 are indicated by the same symbols. In FIG. output signals PGI to PG4 (shown in the figure)
is input, the frequency calculation unit calculates the rotational frequency fR1~[2] and the reference rotational frequency [λ of each motor from these input signals. ] long value of the awn
Select R and output. 18 is a master controller that outputs a brake command MC, and 19 is a master controller command MC.

車両の応荷重VL及び回転周波数r1< に応じて電流
指令値IMF  及び基準すべり周波数fspを算出す
る電流・ずべり周波数パターン発生部、20は電流指令
値IMρと電動機電流 IMとの電流偏差乙工開に応じ
て補正ずべり周波数△fsを算出する補正すべり周波数
演算部、21は周波数演算部17の出力fRの時間変化
率を1:11限する変化率リミッタであり、22はイン
バータ周波数rINv  に対応する基準変調率rpを
算出゛する変調率演算部。
A current/slip frequency pattern generation unit that calculates a current command value IMF and a reference slip frequency fsp according to the variable load VL and rotational frequency r1< of the vehicle; 20 is a current deviation between the current command value IMρ and the motor current IM; 21 is a change rate limiter that limits the time rate of change of the output fR of the frequency calculation unit 17 to 1:11, and 22 is a change rate limiter that calculates the corrected slip frequency △fs according to the inverter frequency rINv. A modulation rate calculation unit that calculates a corresponding reference modulation rate rp.

23はインバータ周波数rlnv  及び変調率γを入
力しPWM制御を行うPWM変調部で第1図のインバー
タ5にゲート信号を与える。25は電動機の回転周波数
fR1〜r騎、電動機電圧検出器16の出力である電動
機電圧VM、インバータ周波数f INVを受けて全軸
滑走の場合にレール・車輪間の粘着係数を考慮し粘着係
数以下の適切な値に電動機トルクを設定する変調率低減
率KRを算出する滑走検知演算部である9次に上記のよ
うに構成されたインバータ制御部に基づき全軸滑走時の
VVVFインバータ車両の制御とその作用について第5
図に基づいてのべる3回生中にレール・車輪間の粘着係
数μ(1軸当たりのけん引力Fと軸重Wの比F/W)が
低下し全動輪の滑走が発生すると、滑走検知演算部25
によって全軸滑走が検知されその場合の粘着係数μが次
式によって計算される。
23 is a PWM modulation section which inputs the inverter frequency rlnv and modulation rate γ and performs PWM control, and provides a gate signal to the inverter 5 shown in FIG. 25 is the rotational frequency fR1~r of the motor, the motor voltage VM which is the output of the motor voltage detector 16, and the inverter frequency f INV, and in the case of all axes sliding, the adhesion coefficient between the rail and the wheels is taken into account and the adhesion coefficient is below. The control of the VVVF inverter vehicle during skidding on all axes is based on the inverter control unit configured as described above, which is the skid detection calculation unit that calculates the modulation rate reduction rate KR to set the motor torque to an appropriate value. Part 5 about its effect
If the adhesion coefficient μ between the rail and the wheels (ratio F/W of traction force F and axle load W per axle) decreases during the third regeneration based on the figure, and all driving wheels skid, the skid detection calculation unit 25
All-axis sliding is detected by , and the adhesion coefficient μ in that case is calculated by the following equation.

η  :歯車装置の伝達効率 G  :歯車の歯数比 P  :誘導電動機の極数 ’r、A:最大軸減最大全減速度動機のトルク(N−m
) Iw :車輪軸の慣性モーメント(Kg−rn、)fR
DM:最大軸減速塵を示す車軸に対する電動機の回転周
波数の微分値(負の値となる)W聞 :最大軸減速塵を
示す車軸の軸重(1)DM :最大軸減速塵を示す車軸
の車輪径(m)SM :最大軸減速塵を示す車軸に対す
る電動機のすべり V間  :電動機相電圧(V) 11間 :インバータ周波数(Hz) rwn  :最大軸減速塵を示す車軸に対する電動機の
回転周波数(Hz) R1、Xl :T型等価回路による誘導電動機の一次側
の抵抗とりアクタンス(Ω) (第6図に示す) R2,X2:T型等価回路による誘導電動機の二次側の
一次換算抵抗とりアクタン ス(Ω)(第6図に示す) 次に電動機トルクTMを粘着係数に換算した。設定粘着
係数μeを(4)式から求め、粘着係数μと設定粘着係
数μeの比μ/μeを求める。このμ/μeから変調率
低減率KRを(5)式より求め滑走検知演算部25から
出力する。
η: Transmission efficiency of the gear system G: Gear ratio P: Number of poles of the induction motor 'r, A: Maximum shaft deceleration, maximum full deceleration torque of the motor (N-m
) Iw : Moment of inertia of wheel shaft (Kg-rn, )fR
DM: Differential value of the rotational frequency of the motor with respect to the axle that shows the maximum axle deceleration dust (becomes a negative value) W: Axle load of the axle that shows the maximum axle deceleration dust (1) DM: Axle load that shows the maximum axle deceleration dust Wheel diameter (m) SM: Slip of the motor with respect to the axle showing maximum axle deceleration dust V: Motor phase voltage (V) Between 11: Inverter frequency (Hz) rwn: Rotational frequency of the motor with respect to the axle showing maximum axle deceleration dust ( Hz) R1, Xl: Resistance on the primary side of the induction motor using a T-type equivalent circuit Actance (Ω) (shown in Figure 6) R2, X2: Primary equivalent resistance on the secondary side of the induction motor using a T-type equivalent circuit Actance (Ω) (shown in FIG. 6) Next, the motor torque TM was converted into an adhesion coefficient. The set adhesion coefficient μe is determined from equation (4), and the ratio μ/μe of the set adhesion coefficient μe to the set adhesion coefficient μe is determined. The modulation rate reduction rate KR is calculated from this μ/μe using equation (5) and output from the skid detection calculation section 25.

第7図は粘着係数・設定粘着係数比μ/μeに対する変
調率低減率KRを示す、変調率演算部22の出力である
基準変調率γpと低減率に8との積により変調率Tを?
Mる。その結果、電動機トルクは粘着係数を考慮した適
切な値に低減され動輪は再粘着する。全軸滑走が終了し
全軸滑走検知信号がなくなると変調率Tを徐々に復帰さ
せる。
FIG. 7 shows the modulation rate reduction rate KR with respect to the adhesion coefficient/set adhesion coefficient ratio μ/μe.
Mru. As a result, the electric motor torque is reduced to an appropriate value that takes into account the adhesion coefficient, and the driving wheels re-adhesion. When the all-axis sliding is completed and the all-axis sliding detection signal disappears, the modulation rate T is gradually restored.

全軸滑走が繰り返されると上記:fr!I御を繰り返す
が、予め定められた回数予め定められた時間内に続けて
全軸滑走が発生ずると、変調率低減率KRが演算され、
変調率演算部22の出力である基べ1変調率Tρとの積
をとり変1凋率γを得るとともに。
When all-axis sliding is repeated, the above: fr! I control is repeated, but if all axes skid occurs a predetermined number of times within a predetermined time, the modulation rate reduction rate KR is calculated,
The product of the base 1 modulation rate Tρ, which is the output of the modulation rate calculating section 22, is taken to obtain the base 1 modulation rate γ.

予め定められた時間その変調率γを保ち、その後基卆変
調率7pに徐々に復帰させる。なお、全軸滑走中は常時
粘性係数μを計算し、その粘着係数μがさらに下がった
場合にはその下がった値によって変調率低減率KRを求
める。
The modulation rate γ is maintained for a predetermined time and then gradually returned to the basic modulation rate 7p. The viscosity coefficient μ is constantly calculated during sliding on all axes, and when the viscosity coefficient μ further decreases, the modulation rate reduction rate KR is determined based on the decreased value.

第8図は全軸滑走時の各部の動作を時間に対して示した
ものである。車輪・レール間の粘着係数μが低下し全軸
が滑走すると、全軸滑走を検知し電動機電圧とインバー
タ周波数の比VM / flNvを低減し電動機トルク
を下げ、それによって全軸滑走が終了する。第8図の例
では全軸滑走が続けて発生し4回目になった時間で電動
機電圧とインバータ周波数の比VM / f INI/
を低減するとともに、その値を予め定められた時間Tp
の間保持しその後7間/fINV の値を徐々に復帰さ
せる。
FIG. 8 shows the operation of each part versus time during full-axis sliding. When the adhesion coefficient μ between wheels and rails decreases and all axes skid, all axes skid is detected and the ratio VM/flNv of motor voltage and inverter frequency is reduced to lower the motor torque, thereby ending all axes sliding. In the example shown in Figure 8, when all-axis skidding occurs for the fourth time, the ratio of motor voltage to inverter frequency VM / f INI /
at the same time as reducing the value at a predetermined time Tp.
After that, the value of /fINV is gradually restored for 7 days.

(発明の効果) 以上説明したように本発明を適用することにより。(Effect of the invention) By applying the present invention as explained above.

インバータ制御電気車が回生中に車輪・レール間の粘着
係数の低下のため全軸滑走を起こした場合でもインバー
タ周波数をつくる基準回転周波数fRを列車速度に対応
する値に保ち、かつ車輪・レール間の利用粘着力を最大
に保つことができる。
Even if an inverter-controlled electric train causes all axes to skid due to a decrease in the adhesion coefficient between wheels and rails during regeneration, the reference rotation frequency fR that creates the inverter frequency is maintained at a value corresponding to the train speed, and the distance between wheels and rails is maintained. can maintain maximum adhesive strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はVVVFインバータ制御電気車の主回路概略図
、第2図は従来のVVVFインバータ劃御電側車の制御
部のブロック図、第3図は従来のVVVFインバータ電
気車の滑走時の再粘着制御の状態図、第4図は本発明に
よるインバータ制御部のブロック図、第5図は本発明に
よる滑走検知演算部の演算フローチャート、第6図は誘
導電動機のT型等価回路、第7図は粘着係数・設定粘着
係数比μ/μeに対する変調率低減率KR特性。 第8図は本発明による滑走時の再粘着ル制御の状態図で
ある。 1・・・パンタグラフ 2・・・しゃ断器 3・・・フィルタリアクトル 4・−・フィルタコンデンサ 5・・・インバータ 6・・・GTOサイリスク 7、 8. 9. 10・・・誘導電動機11.12,
13.14・・・パルスジェネレータ15・・・電動機
電流検出器 16・・・電動機電圧検出器 17・・・回転周波数演寡部 18・・・マスコン 19・・・電流・すべり周波数パターン発生部20・・
・補正すべり周波数演算部 21・・・変化率リミッタ 22・・・変調率演算部 23・・・PWM変調部 24・・・滑走検知部 25・・・滑走検知演算部 26・・・−次側の抵抗 27・・・−次側のりアクタンス 28・・・二次側の抵抗(−次側換算値)29・・・二
次側のりアクタンス(−次側換算値)30・・・励磁リ
アクタンス 指定代理人 日本国有鉄道総裁室法務課長小野澤卒藏 十r7  凹
Fig. 1 is a schematic diagram of the main circuit of a VVVF inverter-controlled electric car, Fig. 2 is a block diagram of the control section of a conventional VVVF inverter-controlled electric car, and Fig. 3 is a schematic diagram of the control section of a conventional VVVF inverter-controlled electric car. A state diagram of adhesion control, FIG. 4 is a block diagram of the inverter control section according to the present invention, FIG. 5 is a calculation flowchart of the skidding detection calculation section according to the present invention, FIG. 6 is a T-type equivalent circuit of the induction motor, and FIG. 7 is the modulation rate reduction rate KR characteristic with respect to the adhesion coefficient/set adhesion coefficient ratio μ/μe. FIG. 8 is a state diagram of readhesion control during skiing according to the present invention. 1... Pantograph 2... Breaker 3... Filter reactor 4... Filter capacitor 5... Inverter 6... GTO Cyrisk 7, 8. 9. 10...Induction motor 11.12,
13.14...Pulse generator 15...Motor current detector 16...Motor voltage detector 17...Rotation frequency controller 18...Mascon 19...Current/slip frequency pattern generator 20・・・
- Corrected slip frequency calculation unit 21... Rate of change limiter 22... Modulation rate calculation unit 23... PWM modulation unit 24... Skid detection unit 25... Skid detection calculation unit 26...-Next side Resistance 27...-Next side glue actance 28...Secondary side resistance (-Next side conversion value) 29...Secondary side Gli actance (-Next side conversion value) 30...Excitation reactance specification Agent: Director of Legal Affairs Division, Office of the President of Japan National Railways, Onozawa Sozojur7

Claims (1)

【特許請求の範囲】[Claims] 1台の可変電圧可変周波数インバータで複数台の誘導電
動機を駆動する電気車において、全軸滑走が発生した場
合に車輪軸減速度から粘着係数を算出し、電動機電圧と
インバータ周波数の比を小さくすることによって粘着係
数以下に電動機トルクを下げ、全軸滑走が終了後、上記
の電動機電圧とインバータ周波数の比を徐々に復帰させ
る制御をとるものにおいて、予め定められた時間内に予
め定められた回数続けて全軸滑走が発生した場合には電
動機電圧とインバータ周波数の比を小さくすることによ
って粘着係数に対応した電動機トルクに下げるとともに
、予め定められた時間上記電動機トルクを保った後、電
動機電圧とインバータ周波数の比を徐々に復帰させる制
御を行う電気車の制御方法
In an electric vehicle where multiple induction motors are driven by one variable voltage variable frequency inverter, when all axes slip, the adhesion coefficient is calculated from the wheel axle deceleration and the ratio of motor voltage to inverter frequency is reduced. In this system, the motor torque is lowered to below the adhesion coefficient, and after all axes have finished sliding, the ratio of the motor voltage to the inverter frequency is gradually restored. If all axes continue to skid, reduce the ratio of motor voltage and inverter frequency to reduce the motor torque to correspond to the adhesion coefficient, maintain the above motor torque for a predetermined period of time, and then reduce the motor voltage. Electric vehicle control method that gradually restores the inverter frequency ratio
JP61167790A 1986-07-18 1986-07-18 Re-adhesion control method for inverter controlled electric motor car on sliding Pending JPS6331402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61167790A JPS6331402A (en) 1986-07-18 1986-07-18 Re-adhesion control method for inverter controlled electric motor car on sliding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61167790A JPS6331402A (en) 1986-07-18 1986-07-18 Re-adhesion control method for inverter controlled electric motor car on sliding

Publications (1)

Publication Number Publication Date
JPS6331402A true JPS6331402A (en) 1988-02-10

Family

ID=15856159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61167790A Pending JPS6331402A (en) 1986-07-18 1986-07-18 Re-adhesion control method for inverter controlled electric motor car on sliding

Country Status (1)

Country Link
JP (1) JPS6331402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118705A (en) * 1989-09-29 1991-05-21 Toyo Electric Mfg Co Ltd Electric vehicle control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944963A (en) * 1972-09-04 1974-04-27
JPS5833902A (en) * 1981-08-20 1983-02-28 Toshiba Corp Reidling protecting device for railway rolling stock
JPS59175303A (en) * 1983-03-25 1984-10-04 Toshiba Corp Controlling method for electric rolling stock
JPS6091805A (en) * 1983-10-21 1985-05-23 Hitachi Ltd Controller for railway train
JPS6192102A (en) * 1985-10-04 1986-05-10 Hitachi Ltd Readhesion controller of electric railcar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944963A (en) * 1972-09-04 1974-04-27
JPS5833902A (en) * 1981-08-20 1983-02-28 Toshiba Corp Reidling protecting device for railway rolling stock
JPS59175303A (en) * 1983-03-25 1984-10-04 Toshiba Corp Controlling method for electric rolling stock
JPS6091805A (en) * 1983-10-21 1985-05-23 Hitachi Ltd Controller for railway train
JPS6192102A (en) * 1985-10-04 1986-05-10 Hitachi Ltd Readhesion controller of electric railcar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118705A (en) * 1989-09-29 1991-05-21 Toyo Electric Mfg Co Ltd Electric vehicle control system

Similar Documents

Publication Publication Date Title
JP2555038B2 (en) Induction motor type electric vehicle controller
EP1986313B1 (en) Direct d.c. converter at the input side of a variable voltage variable frequency inverter driving an induction motor
EP0022267B1 (en) Control system for induction motor-driven car
RU2697355C1 (en) Electric vehicle drive control device and electric vehicle drive control method
WO2013088523A1 (en) Generator control device for hybrid vehicle
JPS6331402A (en) Re-adhesion control method for inverter controlled electric motor car on sliding
JPH07250403A (en) Controller for electric vehicle
JPH1118214A (en) Controller of electric vehicle
JPS6331403A (en) Re-adhesion control method for inverter controlled electric motor car on slip
JPH07118841B2 (en) Braking method of electric car
JP3554798B2 (en) Electric car control device
JP5240004B2 (en) Vehicle control device
JP6147380B2 (en) Generator control device for hybrid vehicle
JP3825647B2 (en) Current shunt controller
Mohan et al. Energy Regeneration in Induction Machine Drive during Braking
JP2017143654A (en) Electric car
JPS5910101A (en) Controlling method of brake force of electric motor vehicle
JP2000032614A (en) Controller for electric car
JPH04121004A (en) Controller for electric motor vehicle
JPS59169382A (en) Variable speed controller in vector control system
JPS6053555B2 (en) Regenerative braking method and device for induction motor
JP2015139239A (en) Motor drive device of electric vehicle
JPS61203802A (en) Induction motor type electric railcar controller
JPH07227008A (en) Controller for electric rolling stock
JPH0454801A (en) Controller for electric vehicle