JPS63313633A - Horizontal type continuous casting method - Google Patents

Horizontal type continuous casting method

Info

Publication number
JPS63313633A
JPS63313633A JP15099487A JP15099487A JPS63313633A JP S63313633 A JPS63313633 A JP S63313633A JP 15099487 A JP15099487 A JP 15099487A JP 15099487 A JP15099487 A JP 15099487A JP S63313633 A JPS63313633 A JP S63313633A
Authority
JP
Japan
Prior art keywords
mold
molten steel
solidified shell
continuous casting
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15099487A
Other languages
Japanese (ja)
Inventor
Masaaki Naruishi
成石 正明
Toshio Fujimura
俊生 藤村
Fumio Sudo
数土 文夫
Takuo Imai
今井 卓雄
Shinji Kojima
小島 信司
Yutaka Shinjo
新庄 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP15099487A priority Critical patent/JPS63313633A/en
Publication of JPS63313633A publication Critical patent/JPS63313633A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/045Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting
    • B22D11/0455Bidirectional horizontal casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a cast slab having shallow cold shut mark and good surface characteristic by casting while flowing as circling molten steel pouring in a mold from pouring hole vertically at width direction of center part of the mold. CONSTITUTION:By unevenly arranging a feed nozzle 8 of a tundish at near any side wall 6A in front or rear side from center of width direction at the upper face in the mold 6, the molten steel 2 develops the circular flow 2A toward the arrow direction. As in the center part of the mold 6, the new molten steel 2 is continuously supplied and flowed as circling, solidification in there is behind that at the other part and the solidified shell 12A at break point 16 is made to thin. In the solidified shell 12A shifted to right and left directions by drawing cast slab, as the thickness formed at initial stage is thin, interface with a secondary solidified shell formed on the initial solidified shell after cutting at the break point 16 is shallow and also the cold shut mark on the cast slab is shallow.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水平型連続鋳造方法に係り、特にコールドシャ
ットマークと称されている鋳片の表面欠陥を防止し、表
面性状の良好な鋳片を得ろことができる水平型連続鋳造
方法に関し、鋼の連続鋳造分野に広(利用される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a horizontal continuous casting method, and in particular prevents surface defects in slabs called cold shut marks, and produces slabs with good surface quality. Regarding the horizontal continuous casting method that can be used to obtain the desired results, it is widely used in the field of continuous steel casting.

〔従来の技術〕[Conventional technology]

連続鋳造分野において、従来の垂直もしくは湾曲型の連
続鋳造法に代って、水平配置された連続鋳造鋳型を用い
鋳片を水平に引抜いて鋳造する水平連続鋳造法が提案さ
れ、矩形もしくは正方形断面の鋳片を鋳造することが行
われている。
In the field of continuous casting, instead of the conventional vertical or curved continuous casting method, a horizontal continuous casting method has been proposed in which a horizontally arranged continuous casting mold is used to pull out and cast slabs horizontally. Casting of slabs is carried out.

これらの水平連続鋳造法では、従来の垂直もしくは湾曲
型の連続鋳造法が高さ30〜40mに達する建家と、こ
れに伴う大重量を支持する構造物の建設に大なる費用を
要するのに対し、建家高さを低くすることができ、設備
費が割安であるという利点から脚光をあびているもので
ある。
With these horizontal continuous casting methods, conventional vertical or curved continuous casting methods require large costs to construct buildings that reach heights of 30 to 40 meters and structures that support the associated large weight. On the other hand, it is attracting attention because of its advantages of being able to lower the height of the building and having relatively low equipment costs.

水平連続鋳造法も、初期の鋳型一方からの鋳片の引抜き
を行う形式から、特開昭58−138544号に開示さ
れている如く鋳型の両端部からそれぞれ反対方向に引抜
く方法が提案され生産能力の向上が達成されている。
The horizontal continuous casting method also changed from the initial method of pulling the slab from one side of the mold to a method of pulling the slab from both ends of the mold in opposite directions, as disclosed in JP-A No. 58-138544, and production progressed. Capacity improvements have been achieved.

この方法を第3図(A)、(B)によ口説明する。This method will be explained with reference to FIGS. 3(A) and 3(B).

溶鋼2を収容する取鍋あるいはタンディツシュ等の容V
iJ4の下方には水平方向にその端部を向けた鋳型6が
水平に配置されている。容N4と鋳型6はフィードノズ
ル8により溶tf42の洩れがないように連通している
。鋳型6、容器4は振動装置10によって左右に振動さ
れ、溶鋼2が凝固した鋳片12は、ピンチロール14に
よって左右に引抜かれる。
Capacity V of ladle or tundish etc. that accommodates molten steel 2
Below iJ4, a mold 6 is horizontally arranged with its end directed in the horizontal direction. The container N4 and the mold 6 are communicated through a feed nozzle 8 so that there is no leakage of the molten TF42. The mold 6 and the container 4 are vibrated left and right by a vibrating device 10, and the slab 12 in which the molten steel 2 has solidified is pulled out left and right by pinch rolls 14.

ところが、第3図にて示す双方引抜型の水平連鋳機にお
いては、形成された鋳片12が左右のビンチロール14
によって引抜かれるので、鋳型6内のほぼ中央部分に形
成された薄い初期凝固シェル12Aが振動装置10の振
動の方向が変化する毎に破断し第4図(A)に示す如く
ブレークポイント16となって左右に引離される。かく
して引離された左右の凝固シェル12A間の水冷された
鋳型6の表面上に、第4図(B)にて示す如く再び新し
い2次凝固シェル12Aが成長する。
However, in the horizontal continuous casting machine of both drawing types shown in FIG.
As a result, the thin initial solidified shell 12A formed approximately in the center of the mold 6 breaks every time the direction of vibration of the vibration device 10 changes, forming a break point 16 as shown in FIG. 4(A). It is pulled apart from side to side. On the surface of the water-cooled mold 6 between the left and right solidified shells 12A separated in this way, a new secondary solidified shell 12A grows again, as shown in FIG. 4(B).

従って従来の水平連鋳方法によると、左右に形成される
凝固シェル12Aは、厳密には第4図(A)、(B)に
示される如き過程を経て、次第に凝固シェルを厚くして
鋳片12として第3図(A)に示されろ如く左右に引抜
かれろ。
Therefore, according to the conventional horizontal continuous casting method, the solidified shells 12A formed on the left and right sides go through the process shown in FIGS. 12, pull it out to the left and right as shown in FIG. 3(A).

しかし上記、凝固シェル12A形成時に生ずる破断によ
る「ちぎれ現象」およびその後に成長する2次凝固シェ
ルによって、鋳片12の表面上にいわゆる「コールドシ
ャットマーク」と称せられる表面欠陥として残る。
However, due to the above-mentioned "tearing phenomenon" caused by the breakage that occurs during the formation of the solidified shell 12A and the secondary solidified shell that grows thereafter, surface defects called "cold shut marks" remain on the surface of the slab 12.

このコールドシャットマークが浅い場合には圧延時に圧
着されるが、深い場合には圧延後も製品に疵として残る
ために、鋳片表面を切削して除去する必要がある。
If this cold shut mark is shallow, it will be crimped during rolling, but if it is deep, it will remain on the product as a flaw even after rolling, so it is necessary to remove it by cutting the surface of the slab.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、双方引抜き式の水平型連続鋳造におけ
る上記従来技術による鋳片表面に発生する「コールドシ
ャットマーク」の発生を防止し得る効果的な連続鋳造方
法を提供するにある。
An object of the present invention is to provide an effective continuous casting method that can prevent the occurrence of "cold shut marks" on the surface of a slab according to the above-mentioned conventional technique in horizontal type continuous casting of a double-draw type.

〔問題点を解決するための手段〕[Means for solving problems]

上記鋳片の表面欠陥として現れるコールドシャットマー
クの深さは、初期凝固シェル12Aがブレークポイント
16にてちぎれる時の凝固シェル12A自体の厚みによ
って決定される。従ってコールドシャットマークの深さ
を低減するには、鋳型6内で初期に凝固する凝固シェル
の厚みを極力薄い状態に保持する必要がある。
The depth of the cold shut mark appearing as a surface defect on the slab is determined by the thickness of the solidified shell 12A itself when the initially solidified shell 12A is torn off at the break point 16. Therefore, in order to reduce the depth of the cold shut mark, it is necessary to keep the thickness of the solidified shell that initially solidifies in the mold 6 as thin as possible.

初期の凝固シェルの厚みを薄(する一つの対策として溶
鋼の過熱度を高くする方法がある。一般に凝固シェルの
成長速度は、鋳型の水冷条件が一定ならば溶鋼の過熱度
により影響され、過熱度が高い程、凝固シェルの成長速
度は遅くなる。しかしながら過熱度を高くすると、鋳型
内で生成する凝固シェル厚が薄くなる結果、鋳造速度を
低くとらざる得ないという他の問題が発生する。
One way to reduce the initial thickness of the solidified shell is to increase the degree of superheating of the molten steel.In general, the growth rate of the solidified shell is influenced by the degree of superheating of the molten steel if the water cooling conditions of the mold are constant; The higher the degree of superheating, the slower the growth rate of the solidified shell. However, increasing the degree of superheating causes another problem, such as a reduction in the thickness of the solidified shell produced in the mold, which necessitates lower casting speeds.

本発明者らは上記WI鋼の過熱度のほかに、溶鋼流速が
速い場合には凝固シェルの成長速度が遅くなることに春
目に、注入直後の溶鋼に旋回流動を生起させろこととし
、多くの実験を重ねた結果、本発明を完成することがで
きた。
In addition to the above-mentioned degree of superheating of WI steel, the present inventors realized that when the molten steel flow rate is high, the growth rate of the solidified shell becomes slow. As a result of repeated experiments, we were able to complete the present invention.

本発明の要旨とするところは次の如くである。The gist of the present invention is as follows.

すなわち、水平配置の鋳型中央部の注入孔から溶鋼を鋳
型内に注入し該鋳型の両端部からそれぞれ反対方向に鋳
片を引抜く水平型連続鋳造方法において、前記注入孔か
ら鋳型内に注入する溶鋼を前記鋳型中央部の幅方向にお
いて上下に旋回流動せしめつつ鋳造することを特徴とす
る水平型連続鋳造方法である。
That is, in a horizontal continuous casting method in which molten steel is injected into a mold through an injection hole in the center of a horizontally arranged mold and slabs are pulled out from both ends of the mold in opposite directions, the molten steel is injected into the mold through the injection hole. This is a horizontal continuous casting method characterized by casting molten steel while swirling it up and down in the width direction of the center of the mold.

上記要旨の如く、初期の凝固ンエル12Aの厚みを薄(
するために、注入溶鋼を鋳型6の中央部における、鋳型
長さ方向と直角、すなわち鋳型幅方向の領域で上下に旋
回流動させながら鋳造するものである。旋回流動させろ
具体的方法としては、次の2方法が最も有効である。
As mentioned above, the thickness of the initial solidification tube 12A is reduced (
In order to do this, the injected molten steel is cast while being swirled up and down in a region at right angles to the mold length direction, that is, in the mold width direction, at the center of the mold 6. As specific methods for creating swirling flow, the following two methods are most effective.

(イ)通常鋳型中央部の幅方向の中心に設けられている
タンディツシュ4のフィードノズル8を第1図(A)、
CB)に示す如く、前後いずれかの側壁近傍に偏在させ
ろ。
(A) The feed nozzle 8 of the tundish 4, which is usually provided at the center of the widthwise center of the mold, is shown in Fig. 1(A).
As shown in CB), place it unevenly near either the front or rear side wall.

(ロ)第2図に示す如く、タンディツシュ4のフィード
ノズル8を傾斜して、供給する注入溶鋼2を鋳型6の側
壁に衝突させる。
(b) As shown in FIG. 2, the feed nozzle 8 of the tundish 4 is tilted to cause the supplied molten steel 2 to collide with the side wall of the mold 6.

上記2態様について以下に説明する。The above two aspects will be explained below.

(イ)、第1図(A)、(B)に示す如く、フィードノ
ズル8の設置位置を、鋳型6の上面の幅方向中心より前
後いずれかの側壁6Aの近傍に偏在させることによって
、供給された溶鋼2は矢印方向に旋回流2Aを生じる。
(a) As shown in FIGS. 1(A) and 1(B), the feed nozzle 8 is unevenly located in the vicinity of the side wall 6A on either the front or back side of the upper surface of the mold 6 in the width direction. The molten steel 2 produced by this process produces a swirling flow 2A in the direction of the arrow.

しかして旋回流2Aの発生部の鋳型6の中心部は、連続
して新しい溶鋼2が供給され、しかも旋回流動している
ので他部より凝固が遅れる結果、第4図(A)に示す如
く、ブレークポイント16における凝固シェル12Aは
勿論、その他鋳型6の中心部近傍に生成されろ凝固シェ
ルは薄くなる。その結果、鋳片12の引抜きにより左右
に分離して移動する凝固シェル12Aは、その後次第に
凝固層が厚くなるが、初期に形成された凝固シェル12
Aの厚さが薄いので、ブレークポイント16におけるち
ぎれ後初期凝固シェル上に形成される2次凝固シェルと
の界面は浅く、従って鋳片に残存するコールドシャット
マークもきわめて浅い。
However, the center part of the mold 6 where the swirling flow 2A is generated is continuously supplied with new molten steel 2, and since the swirling flow is occurring, solidification is delayed compared to other parts, as shown in FIG. 4(A). The solidified shell 12A at the break point 16 as well as other solidified shells generated near the center of the mold 6 become thinner. As a result, the solidified shell 12A that separates and moves to the left and right as the slab 12 is pulled out has a solidified layer that gradually becomes thicker, but the solidified shell 12A that was formed initially
Since the thickness of A is small, the interface with the secondary solidified shell formed on the initial solidified shell after breaking off at the break point 16 is shallow, and therefore the cold shut mark remaining on the slab is also extremely shallow.

(ロ) 第2図に示す如く、フィードノズル8を傾斜さ
せろ場合も、注入W!Iw4流2Aは、側壁面6Aに衝
突して、矢印にて示す如く鋳型6の中心部にて旋回流動
を生起し、初期の凝固シェル12Aの厚みを薄くするこ
とができ、ひいてはコールドシャットマークの深さをき
わめて小にすることができた。
(b) As shown in FIG. 2, even when the feed nozzle 8 is tilted, the injection W! The Iw4 flow 2A collides with the side wall surface 6A and generates a swirling flow at the center of the mold 6 as shown by the arrow, making it possible to reduce the thickness of the initial solidified shell 12A and, in turn, to reduce the thickness of the cold shut mark. The depth could be made extremely small.

なお、この場合のフィードノズル8の傾斜角度は鋳型6
の中央部の前後いずれかの側壁に、鋳型中央部の幅方向
に限定領域で衝突するようにし、鋳型の長手方向に傾斜
することは避けなければならぬことは勿論である。
Note that the inclination angle of the feed nozzle 8 in this case is
Of course, it is necessary to collide with either the front or rear side walls of the central part of the mold in a limited area in the width direction of the central part of the mold, and to avoid tilting in the longitudinal direction of the mold.

〔実施例〕〔Example〕

150m@X 150+msの断面積を有する水平型連
続鋳造鋳型を使用し、50−φの内径を有するフィード
ノズルを従来ど°おり、鋳型幅方向の中心に設けた場合
と、本発明により幅方向の中心から鋳型長さ方向に直角
に45閣偏在させた場合について、その他の鋳造条件を
同一として、製造された鋳片の上面、底面、側面No、
 1 、側面Na2について、コールドシャットマーク
の深さを測定し、従来法と第1図(A)、(B)にて示
す本発明の効果を比較した。結果は第1表に示すとおり
であった。
A horizontal continuous casting mold with a cross-sectional area of 150 m@ For the case where 45 parts are unevenly distributed perpendicularly to the length direction of the mold from the center, the top surface, bottom surface, side surface No. of the manufactured slab with other casting conditions being the same,
1. The depth of the cold shut mark was measured on the side surface Na2, and the effects of the conventional method and the present invention shown in FIGS. 1(A) and 1(B) were compared. The results were as shown in Table 1.

第  1  表 第1表により明らかなとおり、本発明法による場合と従
来法との間には、コールドシャットマークの深さにおい
て明確な差異があり、本発明による鋳片のコールドシャ
ットマーク深さは、従来の約1/10に減少しているこ
とが判明した。
Table 1 As is clear from Table 1, there is a clear difference in the depth of the cold shut mark between the method of the present invention and the conventional method, and the depth of the cold shut mark of the slab according to the present invention is , was found to be reduced to about 1/10 of the conventional value.

次に上記と同一寸法の150+m++X 150mの断
面積を有する鋳型を使用し、本発明の他の態様である第
4図にて示す方法で50φ内径のフィードノズルを傾斜
し、その傾斜方向を鋳型の長手方向と直角の平面内で側
壁の下端から、その高さの173の点を指向させて配置
し、同一鋳造条件で連続鋳造し、製造した鋳片について
上面、底面、側面のコールドシャットマークの深さを測
定した。その結果を第1表で示す従来法と比較したとこ
ろ、第1表で示した結果とほぼ同一の従来法の約171
0程度に深さが低減していることを認めた。また本発明
の方法については、第1図で示すフィードノズルを偏在
させる態様と、第2図で示すフィードノズルを傾斜して
溶鋼を側壁に衝突させる態様との間に、効果においてほ
とんど差異が認められず、いずれも従来法に比し約17
1Oと、著しくコールドシャットマークの深さを低減す
ることができ、圧延後の鋼材の表面性状としてはきわめ
て良好で′あった。
Next, using a mold having a cross-sectional area of 150 + m The 173 points at the height of the side wall were oriented from the bottom end of the side wall in a plane perpendicular to the longitudinal direction, and continuous casting was performed under the same casting conditions. The depth was measured. When the results were compared with the conventional method shown in Table 1, it was found that approximately 171
It was observed that the depth had decreased to about 0. Furthermore, regarding the method of the present invention, there is almost no difference in effectiveness between the mode shown in Figure 1 in which the feed nozzles are unevenly distributed and the mode shown in Figure 2 in which the feed nozzles are tilted and the molten steel collides with the side wall. 17% compared to the conventional method.
1O, the depth of the cold shut mark could be significantly reduced, and the surface quality of the steel material after rolling was extremely good.

〔発明の効果〕〔Effect of the invention〕

従来の水平型連続鋳造法による場合、鋳型中心部近傍に
おける初期凝固シェルの左右への分離後の2次凝固シェ
ルの生成時に発生する。いわゆるコールドシャットマー
クが深く、圧延後の鋼材にも表面欠陥として残る問題を
解決するため、本発明では鋳型への溶鋼注入時に、鋳型
の中心部における鋳型幅方向の限定領域内で、上下に溶
鋼の旋回流動を生起せしめ、これにより初期に生成する
凝固シェル厚を薄くすることにより、これを解決し、下
記の効果を挙げることができた。
In the case of the conventional horizontal continuous casting method, this occurs when a secondary solidified shell is generated after the initial solidified shell is separated to the left and right in the vicinity of the center of the mold. In order to solve the problem of deep so-called cold shut marks, which remain as surface defects on steel products after rolling, in the present invention, when pouring molten steel into a mold, molten steel is poured vertically in a limited area in the mold width direction at the center of the mold. This problem was solved by generating a swirling flow and thereby reducing the thickness of the initially formed solidified shell, and the following effects were achieved.

(イ) 溶−の旋回流動を生起させろ具体的方法として
、フィードノズルを側壁近傍に偏在させる方法およびフ
ィードノズルを傾斜して溶鋼注入方向を側壁下部を指向
させる方法のいずれにおいても、従来の鋳型幅方向の中
心部から垂直に下方を指向して溶鋼を注入していた方法
に比し、製造鋳片に形成されるコールドシャットマーク
の深さは約1710に低減し、表面性状のきわめて良好
な鋳片を製造することができた。
(b) Generate swirling flow of the molten metal.Specific methods include placing the feed nozzle unevenly near the side wall, and tilting the feed nozzle to direct the molten steel injection direction toward the bottom of the side wall. Compared to the method in which molten steel was injected vertically downward from the center in the width direction, the depth of the cold shut mark formed on the manufactured slab was reduced to approximately 171 mm, resulting in extremely good surface quality. We were able to produce slabs.

(ロ) (イ)により従来の圧延前の鋳片の切削等の作
業が不要となり、労務費の節減、歩留の向上が可能とな
った。
(b) With (a), the conventional work such as cutting the slab before rolling becomes unnecessary, making it possible to reduce labor costs and improve yield.

(ハ)本発明による鋳型装置の製作費もしくは改造費は
僅少であって、本発明による効果によって償って余勢が
ある。
(c) The manufacturing cost or modification cost of the molding apparatus according to the present invention is small, and is more than compensated for by the effects of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明による水平型連続鋳造装置におけ
るフィードノズルを側壁近傍に偏在せしめた鋳型中心部
の、溶鋼の旋回流動状況を示す横断面図、第1図(B)
は同部分縦断面図、第2図は本発明法の他の態様である
フィードノズルを傾斜して溶鋼注入方向を側壁下部を指
向させた場合の鋳型中心部の溶鋼の旋回流動状況を示す
横断面図、第3図(A)、(B)は従来の水平型連続鋳
造装置を示し、(A)は鋳型中心部の溶鋼の注入状況お
よび凝固シェル生成状況を示す縦断面図、(Blは鋳型
中心部における横断面図、第4図(A)、(B)は従来
の水平型連続鋳造装置における鋳型中心部のブレークポ
イント近傍の凝固シェル生成状況を示し、(A)は初期
凝固シェル、(B)はブレークポイントにて破断後の2
次凝固シェル、のいずれも生成状況を説明する鋳型長さ
方向の模式断面図である。 2・・・溶鋼      2A・・・溶鋼旋回流4・・
・タンディツシュ  6・・・鋳型8・・・フィードノ
ズル 12・・鋳片12A・・・凝固シェル   16
・・・ブレークポイント矛 1図 (A) CB) 第 32 (A)
FIG. 1(A) is a cross-sectional view showing the swirling flow of molten steel in the center of the mold in which the feed nozzle is unevenly located near the side wall in a horizontal continuous casting apparatus according to the present invention, and FIG. 1(B)
is a vertical sectional view of the same part, and Fig. 2 is a cross-sectional view showing the swirling flow state of molten steel in the center of the mold when the feed nozzle is tilted and the molten steel injection direction is directed toward the lower part of the side wall, which is another embodiment of the method of the present invention. 3(A) and 3(B) show a conventional horizontal continuous casting apparatus, (A) is a vertical cross-sectional view showing the state of injection of molten steel and the state of solidified shell formation in the center of the mold, and (Bl is The cross-sectional views at the center of the mold, FIGS. 4(A) and 4(B), show the solidified shell formation near the break point at the center of the mold in a conventional horizontal continuous casting device, and (A) shows the initial solidified shell, (B) is 2 after breaking at the break point.
FIG. 3 is a schematic cross-sectional view in the longitudinal direction of the mold, illustrating how the next solidified shell is formed. 2... Molten steel 2A... Molten steel swirl flow 4...
・Tandish 6... Mold 8... Feed nozzle 12... Slab 12A... Solidified shell 16
...Break point arrow Figure 1 (A) CB) No. 32 (A)

Claims (3)

【特許請求の範囲】[Claims] (1)水平配置の鋳型中央部の注入孔から溶鋼を鋳型内
に注入し該鋳型の両端部からそれぞれ反対方向に鋳片を
引抜く水平型連続鋳造方法において、前記注入孔から鋳
型内に注入する溶鋼を前記鋳型中央部の幅方向において
上下に旋回流動せしめつつ鋳造することを特徴とする水
平型連続鋳造方法。
(1) In a horizontal continuous casting method in which molten steel is injected into the mold from an injection hole in the center of a horizontally arranged mold and slabs are pulled out from both ends of the mold in opposite directions, the molten steel is injected into the mold from the injection hole. 1. A horizontal continuous casting method, characterized in that the molten steel is cast while swirling up and down in the width direction of the center of the mold.
(2)前記鋳型中央部における溶鋼の旋回流動は前記注
入孔を形成するフイードノズルを該鋳型上面の幅方向中
心より前後いずれかの側壁近傍に偏在させることにより
生起する特許請求の範囲の第1項に記載の水平型連続鋳
造方法。
(2) The swirling flow of molten steel in the center of the mold is caused by unevenly distributing the feed nozzle forming the injection hole in the vicinity of either front or rear side wall from the widthwise center of the upper surface of the mold. Horizontal continuous casting method described in .
(3)前記鋳型中央部における溶鋼の旋回流動は前記注
入孔を形成するフイードノズルを傾斜させて注入溶鋼流
を該鋳型の前後いずれかの側壁に衝突させることにより
生起する特許請求の範囲の第1項に記載の水平型連続鋳
造方法。
(3) The swirling flow of the molten steel in the center of the mold is caused by tilting the feed nozzle forming the injection hole and causing the flow of the injected molten steel to collide with either the front or rear side wall of the mold. Horizontal continuous casting method described in Section.
JP15099487A 1987-06-17 1987-06-17 Horizontal type continuous casting method Pending JPS63313633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15099487A JPS63313633A (en) 1987-06-17 1987-06-17 Horizontal type continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15099487A JPS63313633A (en) 1987-06-17 1987-06-17 Horizontal type continuous casting method

Publications (1)

Publication Number Publication Date
JPS63313633A true JPS63313633A (en) 1988-12-21

Family

ID=15508960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15099487A Pending JPS63313633A (en) 1987-06-17 1987-06-17 Horizontal type continuous casting method

Country Status (1)

Country Link
JP (1) JPS63313633A (en)

Similar Documents

Publication Publication Date Title
US5603860A (en) Immersed casting tube
AU757475B2 (en) High speed continuous casting device and relative method
JPS63313633A (en) Horizontal type continuous casting method
JP2000263199A (en) Method for continuously casting molten steel
KR101962230B1 (en) A Submerged nozzle for continuous casting
JPH02284744A (en) Method and device for strip casting using dooble plate strip casting means
JPH10128506A (en) Immersion nozzle for continuous casting
JPH08155593A (en) Method for continuously casting thin cast slab and immersion nozzle for continuous casting
JPH02147150A (en) Mold for continuous casting
JP2663126B2 (en) Two-way drawing type horizontal continuous casting method
JPS63238951A (en) Mold for horizontally continuous casting
JPS60121051A (en) Continuous casting device for thin billet
JPS6114051A (en) Immersion nozzle for continuous casting
JPH01154849A (en) Mold for two directional drawing type horizontal continuous casting machine
JP2845706B2 (en) Molding equipment for continuous casting equipment
JP2856959B2 (en) Continuous casting method of steel slab using traveling magnetic field and static magnetic field
JPH01181948A (en) Twin directional drawing type horizontal continuous casting method
JPH01273654A (en) Nozzle for pouring molten metal
JP3064121B2 (en) Twin belt type continuous casting machine
JP2917733B2 (en) Continuous casting method and apparatus
JPH10180418A (en) Vertical continuous casting method for rectangular cross section aluminum alloy cast slab, and mold therefor
JP2002153947A (en) Method for continuously casting molten steel
JPS58187241A (en) Horizontal and continuous casting method of metal
JP2000508243A (en) Continuous casting method of metal and ingot mold for implementing it
JPS63313634A (en) Horizontal continuous casting method for cast billet