JPS63313581A - Modified superoxide dismutase - Google Patents

Modified superoxide dismutase

Info

Publication number
JPS63313581A
JPS63313581A JP62147872A JP14787287A JPS63313581A JP S63313581 A JPS63313581 A JP S63313581A JP 62147872 A JP62147872 A JP 62147872A JP 14787287 A JP14787287 A JP 14787287A JP S63313581 A JPS63313581 A JP S63313581A
Authority
JP
Japan
Prior art keywords
sod
modified
compound
molecular weight
amino group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62147872A
Other languages
Japanese (ja)
Inventor
Hitoshi Ueno
均 上野
Kiyoshi Fukui
福井 喜代志
Hiroshi Fujiwara
寛 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62147872A priority Critical patent/JPS63313581A/en
Publication of JPS63313581A publication Critical patent/JPS63313581A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a modified SOD by bonding an SOD useful for the remedy of tissue disorder caused by O2<-> generated from oxygen molecule in a living body with a compound having pharmacological activity and useful as a drug. CONSTITUTION:A modified SOD (superoxide dismutase) is produced by bonding a carboxyl group (or amino group) of a compound having physiological activity to an amino group (or carboxyl group) of SOD using a carbodiimide and separating and purifying the objective substance e.g. by gel-filtration. The physiologically active compound is those having a molecular weight of 150-400, exhibiting anti-inflammatory action and having functional group such as amino group, carboxyl group, etc., e.g. indomethacin or ketoprofen. The SOD used as a starting material is human SOD produced e.g. by genetic engineering technique. The amount of the physiologically active compound to be bonded to SOD is preferably 1-10mol. per 1mol. of SOD.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生体内の酸素分子から発生したスーパーオキ
シド(0;)による組織障害の治療に有用な修飾スーパ
ーオキシドジスムターゼ(以下、SODと略す)に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to modified superoxide dismutase (hereinafter abbreviated as SOD) useful for the treatment of tissue damage caused by superoxide (0;) generated from oxygen molecules in living bodies. ).

〔従来技術の説明〕[Description of prior art]

スーパーオキシドジスムターゼ(SOD)は、下式に示
す不均化反応によってスーパーオキシド(0;)を消失
させる作用を持つ酵素である。
Superoxide dismutase (SOD) is an enzyme that has the effect of eliminating superoxide (0;) through a dismutation reaction shown in the following formula.

SOD 20; + 2 H”  −m−→0□+Hz O’z
従って、SODは、生体内で酸素分子から発生した0;
による組織障害、例えば、変形性関節炎、慢性関節リウ
マチ、放射線照射による障害、紫外線による障害、未熟
児酸素網膜症、白内障、アドリアマイシンなどの制癌剤
の副作用、虚血部分への血流再開に伴う障害などに対す
る有効な治療薬として注目されている。
SOD 20; + 2 H" -m-→0□+Hz O'z
Therefore, SOD is generated from oxygen molecules in the body;
Tissue damage caused by, for example, osteoarthritis, rheumatoid arthritis, damage caused by radiation exposure, damage caused by ultraviolet rays, oxygen retinopathy of prematurity, cataracts, side effects of anticancer drugs such as adriamycin, problems associated with resumption of blood flow to ischemic areas, etc. It is attracting attention as an effective treatment for.

このようにSODが医薬として有望であるにもかかわら
ず、SODの血流内半減期が非常に短い(約5分)ため
に、その薬理活性が充分に発揮されない場合が多い。
Although SOD is thus promising as a medicine, its pharmacological activity is often not fully demonstrated because its half-life in the bloodstream is very short (about 5 minutes).

SODの血流内半減期が非常に短い原因としては、その
分子量(32,000)が腎糸球体の濾過限界値(分子
量で約50.000)よりも小さいために血中から速や
かに消失し、尿中に排泄されることが考えられている。
The reason why SOD has a very short half-life in the bloodstream is that its molecular weight (32,000) is smaller than the filtration limit of the renal glomerulus (approximately 50,000 in molecular weight), so it disappears quickly from the blood. , is thought to be excreted in the urine.

従って、SODの薬理活性を充分に発揮させるために、
ポリエチレングリコール(Pyatok。
Therefore, in order to fully demonstrate the pharmacological activity of SOD,
Polyethylene glycol (Pyatok.

P、S、et  al、;Re5earch  C。P, S, et al, ;Re5earch C.

mmunications  in  Chemica
l  Pathology  and  Pharma
cology、29,113 (1980))、アルブ
ミン(Wong、に、et  at、;Agent  
、and  Actions、10,231(1980
))、フィコール(McCord、J。
mmunications in Chemica
l Pathology and Pharma
cology, 29, 113 (1980)), albumin (Wong, et at; Agent
, and Actions, 10, 231 (1980
)), Ficoll (McCord, J.

M、et  al、;Proceedings  。M, et al; Proceedings.

f  National  Academic  5c
ience  of  American、工1,11
59 (1980))、ポリアルキレングリコール(特
開昭58−32826)やイヌリン(特開昭6l−24
9388)などを用いてSODを巨大分子化させ、この
腎糸球体の濾過を阻止することによってSODの血中半
減期を増加させる試みがなされている。
f National Academic 5c
ience of American, Engineering 1, 11
59 (1980)), polyalkylene glycol (JP-A-58-32826) and inulin (JP-A-6L-24).
Attempts have been made to increase the half-life of SOD in the blood by turning SOD into a macromolecule using compounds such as 9388) and blocking its filtration in renal glomeruli.

また、スチレンマレイン酸(平均分子量1,600)な
どでSODを修飾し、これを静注すると、この修飾SO
Dが血清蛋白質(例えば、アルブミン、グロブリンなど
)と非共有的に結合して巨大分子化するという性質を利
用して、SODの腎糸球体の濾過を阻止する試み(井上
正康ら;第37回蛋白質構造討論会講演要旨集、61ペ
ージ(1986))もなされている。
In addition, when SOD is modified with styrene maleic acid (average molecular weight 1,600) and is injected intravenously, this modified SO
An attempt to prevent SOD from being filtered through renal glomeruli by utilizing the property that D binds non-covalently to serum proteins (e.g., albumin, globulin, etc.) and becomes a macromolecule (Masayasu Inoue et al.; No. 37) A collection of lecture abstracts from the Protein Structure Conference, page 61 (1986)) has also been published.

しかしながら、これらの巨大分子化SOD、スチレンマ
レイン酸結合SODなどの修飾SODには、SOD修飾
に伴うSODの活性低下や得られた修飾SODの広い分
子量分布による分子量の不均一性が認められるという問
題がある。
However, these modified SODs such as macromolecular SODs and styrene-maleic acid-bonded SODs have problems such as decreased activity of SOD due to SOD modification and non-uniformity of molecular weight due to wide molecular weight distribution of the obtained modified SODs. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、生体内の酸素分子から発生した0;に
よる組織障害の治療に有用なSODと医薬として有用な
薬理活性を存する化合物とから得られた修飾SOD (
以下、T修飾5ODJと略す)を提供するものである。
The purpose of the present invention is to obtain modified SOD (SOD) which is useful for the treatment of tissue damage caused by oxygen generated from oxygen molecules in the living body and a compound that has pharmacological activity useful as a medicine.
(hereinafter abbreviated as T-modified 5ODJ).

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、前記の問題点を解決するために鋭意研究
した結果、本発明のSODと薬理活性を有する化合物と
からなる修飾5OD(f修飾5ODJ)は、その合成及
び分離精製が容易であり、SOD修飾に伴うSOD活性
の低下や得られたr修飾5ODJの広い分子量分布によ
る分子量の不均一性は殆ど認められず、また、r修飾S
As a result of intensive research to solve the above-mentioned problems, the present inventors found that the modified 5OD (f-modified 5ODJ) consisting of SOD and a pharmacologically active compound of the present invention is easy to synthesize, separate and purify. There was almost no molecular weight heterogeneity due to a decrease in SOD activity due to SOD modification or a wide molecular weight distribution of the obtained r-modified 5ODJ.
.

D」の血中半減期も顕著に増加することを見出し、本発
明を完成するに至った。
It was discovered that the blood half-life of "D" was also significantly increased, and the present invention was completed.

即ち、本発明は、スーパーオキシドジス゛ムターゼ(S
OD)と薬理活性を有する化合物とから得られた修飾S
ODであって、その化合物がSODとの反応性を示す官
能基を有することを特徴とする修飾SODに関するもの
である。
That is, the present invention provides superoxide dismutase (S
Modified S obtained from OD) and a compound with pharmacological activity
The present invention relates to a modified SOD, which is characterized in that the compound has a functional group that exhibits reactivity with SOD.

以下、本発明について詳しく説明する。The present invention will be explained in detail below.

本発明でSODの修飾に用いる薬理活性を有する化合物
は、好ましくは、水に不溶性かまたは水に溶解しにくい
ものであった方がよい。
The compound having pharmacological activity used for modifying SOD in the present invention is preferably insoluble in water or hardly soluble in water.

そのような化合物としては、SOD活性を阻害しない化
合物であり、かつSODとの結合が可能となる官能基(
例えば、アミノ基またはカルボキシル基)を有するもの
やその塩であってもよいが、好ましくは、SODとの反
応後も疎水性基を有することによって血清蛋白質(例え
ば、アルブミン、グロブリンなどの血中濃度の高い蛍白
質)と非共有的な結合が可能である化合物がよい。
Such a compound is a compound that does not inhibit SOD activity and has a functional group (
For example, it may be a substance having a hydrophobic group (for example, an amino group or a carboxyl group) or a salt thereof, but it is preferable that it has a hydrophobic group even after the reaction with SOD, so that the blood concentration of serum proteins (e.g., albumin, globulin, etc.) Compounds that can non-covalently bind to the fluorescent substance (highly fluorescent matter) are preferred.

また、薬理活性を有する化合物は、r修飾SOD」の分
子量の均一性をさらに高めて純度が高い医薬として用い
るためにも、低分子であることがさらに好ましい。
Further, it is more preferable that the compound having pharmacological activity is a low-molecular compound in order to further increase the uniformity of the molecular weight of the "r-modified SOD" and use it as a highly pure drug.

そのようなものとしては、分子量が150〜400の範
囲に含まれる抗炎症作用を有する化合物(例えば、イン
ドメタシン、ケトプロフェン、ナプロキセン、メフェナ
ム酸、イブプロフェン、フルルビプロフェン、アロクロ
フェナック、チノリジン、フルフェナム酸、フェンブフ
ェン、アスピリン、アセメタシン、トルフェナム酸、チ
アプロフェン酸、フェノプロフェン、プラノプロフェン
などのアミノ基またはカルボキシル基を有するもの)及
び化合物の塩(例えば、ジクロツェナフナトリウム、ト
ルメチンナトリウムなど)を好適に挙げることができる
Such compounds include compounds with anti-inflammatory properties having a molecular weight in the range of 150 to 400 (e.g., indomethacin, ketoprofen, naproxen, mefenamic acid, ibuprofen, flurbiprofen, alloclofenac, tinoridine, flufenamic acid). , fenbufen, aspirin, acemethacin, tolfenamic acid, tiaprofenic acid, fenoprofen, pranoprofen, etc.) and salts of compounds (e.g., diclozenaf sodium, tolmetin sodium, etc.) are preferred. can be mentioned.

本発明のSODとしては、ウシ、ヒトなどの動物、ホウ
レン草などの植物、及びセラチアなどの微生物に由来す
るものを用いることができる、が、ヒトに対する抗原性
を考慮した医薬の「修飾5ODJとしては、ヒトSOD
を用いることが好ましい。
As the SOD of the present invention, those derived from animals such as cows and humans, plants such as spinach, and microorganisms such as Serratia can be used. , human SOD
It is preferable to use

そのようなヒトSODとしては、ヒト赤血球、胎盤など
のSODを用いることもできるが、近年、遺伝子工学技
術を応用して生産されたヒ)SOD(例えば、特開昭6
1−111690など)を用いると、大量に安定した試
料を得られるのでさらに好ましい。
As such human SOD, SOD of human red blood cells, placenta, etc. can be used, but in recent years, human SOD produced by applying genetic engineering technology (for example,
1-111690, etc.) is more preferable because a stable sample can be obtained in large quantities.

本発明の「修飾SO,DJの製造におけるSODと薬理
活性を有する化合物との結合割合は、1分子のSOD当
たりその化合物が1〜10分子がよい。
The binding ratio of SOD and a compound having pharmacological activity in the production of modified SO and DJ of the present invention is preferably 1 to 10 molecules of the compound per 1 molecule of SOD.

その結合方法としては、カルボジイミド(例えば、1−
エチル−3−ジメチルアミノプロとルカルボジイミド塩
酸、1−ベンジル−3−ジメチルアミノプロピルカルボ
ジイミドトシル酸など)を用いて、薬理活性を有する化
合物のカルボキシル基(またはアミノ基)をSODのア
ミノ基(またはカルボキシル基)に結合させる〔例えば
、Marnet、’D、et  al、;Nature
 (London)、292,301−306)従来公
知の一最的方法を挙げることができる。
The bonding method is carbodiimide (for example, 1-
ethyl-3-dimethylaminopropylcarbodiimide hydrochloride, 1-benzyl-3-dimethylaminopropylcarbodiimide tosylic acid, etc.) to convert the carboxyl group (or amino group) of a pharmacologically active compound to the amino group (or amino group) of SOD. carboxyl group) [e.g., Marnet, 'D, et al.; Nature
(London), 292, 301-306).

このようにして、薬理活性を有する化合物とSODとを
結合した後、r修飾5ODJは、蛋白質の一触的な分離
精製法として用いられるゲル濾過、イオン交換樹脂充填
カラム、クロマトグラフィー、高圧液体クロマトグラフ
ィー、透析などによって得ることができる。
After binding a pharmacologically active compound and SOD in this way, the r-modified 5ODJ is processed through gel filtration, ion-exchange resin-filled columns, chromatography, and high-pressure liquid chromatography, which are used as methods for the immediate separation and purification of proteins. It can be obtained by chemistries, dialysis, etc.

そして、その純度は、ゲル電気泳動法、吸光スペクトル
法によって検討することができる。
The purity can be examined by gel electrophoresis or absorption spectroscopy.

〔実施例〕〔Example〕

以下、実施例によって本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 抗炎症作用を有する低分子の疎水性化合物であるケトプ
ロフェン溶液(分子量は254.1mfのエチレングリ
コールに10mgを懸i)1mffiとN−エチル−N
’ −(3−ジメチルアミノプロピル)カルボジイミド
塩酸(以下、EDCと略す)溶液(1m2の蒸留水に5
mgを溶解)1m2とを混合し、pHを約5に調整し、
室温で約1時間反応させた。
Example 1 A solution of ketoprofen, a low-molecular hydrophobic compound with anti-inflammatory effects (10 mg suspended in ethylene glycol with a molecular weight of 254.1 mf), 1 mffi and N-ethyl-N
'-(3-dimethylaminopropyl)carbodiimide hydrochloric acid (hereinafter abbreviated as EDC) solution (5% in 1 m2 of distilled water)
(dissolved mg) in 1 m2, adjust the pH to about 5,
The reaction was allowed to take place at room temperature for about 1 hour.

この反応液中に、特開昭61−111690に示された
ヒトCu、Zn−3OD生産菌E、c。
In this reaction solution, human Cu, Zn-3OD producing bacteria E and c shown in JP-A No. 61-111690 were added.

1 i  W3110 (pUBE2)で生産し、精製
して得られたヒトCu、Zn−3ODを用いて調製した
溶液(SOD6mg150%エチレングリコール液1m
!、pH5〜6に調整)1mJl!を添加して、室温で
1晩反応させた。
1 i A solution prepared using human Cu, Zn-3OD produced and purified using W3110 (pUBE2) (6 mg SOD, 1 ml of 150% ethylene glycol solution)
! , adjusted to pH 5-6) 1 mJl! was added and reacted overnight at room temperature.

この反応液に0.5Mのトリス−塩酸緩衝液(pH7,
0)を数滴添加することによって反応液を中和し、反応
を停止した。
Add 0.5M Tris-HCl buffer (pH 7,
The reaction solution was neutralized by adding several drops of 0) to stop the reaction.

この反応停止液を遠心分離して(10,00Orpm、
5分間)得た上澄みを生理的食塩水で平衡化したセファ
デックスG−10(ファルマシア社製)を充填したカラ
ムC15C15x50に1回の精製につき1.5 m 
lを通して、修飾SOD分画を分離精製して、「修飾5
ODJを得た。
This reaction stop solution was centrifuged (10,00 Orpm,
The supernatant obtained (for 5 minutes) was transferred to a C15C15x50 column packed with Sephadex G-10 (manufactured by Pharmacia) equilibrated with physiological saline for 1.5 m per purification.
1 to separate and purify the modified SOD fraction.
I got ODJ.

このr修飾5ODJは、分子量1万以下の物質は通過す
る限外濾過膜を用いて濃縮した。
This r-modified 5ODJ was concentrated using an ultrafiltration membrane through which substances with a molecular weight of 10,000 or less pass.

「修飾5OD1の平均分子量は、約34.000であり
(酵素1分子当たりのケトプロフェンの平均結合数が2
60 nmにおけるr修飾5ODJと未修飾SODとの
差吸収スペクトルから計算すると約8分子であったので
)、はぼ均一な分子量の分布を示した。
“The average molecular weight of modified 5OD1 is approximately 34,000 (the average number of ketoprofen bonds per enzyme molecule is 2).
As calculated from the difference absorption spectrum between r-modified 5ODJ and unmodified SOD at 60 nm, it was about 8 molecules), indicating a nearly uniform molecular weight distribution.

r修飾5ODJの活性保持率は、ケトプロフェンを用い
た修飾前後のSODの比活性を大量の示した方法[Oy
anagui、Y、;Analytical  Bio
chemistry、142゜290−296 (19
84))に準じて求めた結果、90%以上であった。
The activity retention rate of r-modified 5ODJ was determined by a method [Oy
Anagui, Y; Analytical Bio
chemistry, 142°290-296 (19
84)), it was 90% or more.

「修飾5ODJの血流内半減期の測定は、次のようにし
て行った。
“The half-life of modified 5ODJ in the bloodstream was measured as follows.

ウィスター系ラット(♂、体重は250±30g)の2
匹に、生理食塩水に溶解したr修飾5OD1溶液を、1
匹当たりSODの蛋白質量とじて0、6 m gづつ総
頚静脈へ注入した。
Wistar rat (female, weight 250±30g) 2
The rats were given 1 ml of r-modified 5OD1 solution dissolved in physiological saline.
0 and 6 mg of SOD protein were injected into the common jugular vein per animal.

注入から、2分、5分、10分、20分、30分、40
分、50分、60分、150分経過時に0、2 m l
づつ採血し、その血漿中のSOD量を前記の大樋のSO
D活性測定法及びヒトCu、Zn−3ODに対するモノ
クローナル抗体を用いたSOD濃度測定法(特願昭6l
−201697)とで測定した。
2 minutes, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 40 minutes after injection
0, 2 ml after 50 minutes, 60 minutes, 150 minutes
Collect blood and measure the amount of SOD in the plasma using the SO of the large gutter.
D activity measurement method and SOD concentration measurement method using monoclonal antibodies against human Cu and Zn-3OD (Japanese Patent Application
-201697).

「修飾5ODJの血流内半減期を求めるために、これら
の血漿中のSODの相対活性及び相対濃度を時間に対し
てプロットした結果、その半減期は、相対活性及び相対
濃度のいずれの場合においても約2.5時間であった。
“To determine the half-life of modified 5ODJ in the bloodstream, we plotted the relative activity and relative concentration of these SODs in plasma against time, and found that in both cases of relative activity and relative concentration, the half-life is It also took about 2.5 hours.

実施例2 r修飾5ODJの作製方法は、ケトプロフェンのかわり
に抗炎症作用を有する低分子の疎水性化合物であるイン
ドメタシン(分子量は358)を用いた以外は実施例1
と同じである。
Example 2 The method for producing r-modified 5ODJ was the same as Example 1, except that indomethacin (molecular weight: 358), a low-molecular hydrophobic compound with anti-inflammatory effect, was used instead of ketoprofen.
is the same as

r修飾5ODJ(7)平均分子量は、約33,000で
あり(酵素1分子当たりのインドメタシンの平均結合数
が260 nmにおけるr修飾SOD。
The average molecular weight of r-modified 5ODJ (7) is approximately 33,000 (r-modified SOD with an average number of indomethacin bonds per enzyme molecule of 260 nm).

と未修飾SODとの差吸収スペクトルから計算すると約
3分子であったので)、はぼ均一な分子量の分布を示し
た。
(calculated from the difference absorption spectrum between SOD and unmodified SOD, it was about 3 molecules), indicating a nearly uniform molecular weight distribution.

r修飾5ODJの活性保持率は、インドメタシンを用い
た修飾前後のSOD比活性を実施例1と同様にして測定
した結果、95%以上であった。
The activity retention rate of r-modified 5ODJ was 95% or more as a result of measuring the SOD specific activity before and after modification using indomethacin in the same manner as in Example 1.

r修飾5ODJの血流内半減期は、ウィスター系ラット
(♂、体重は250±30g)の2匹を実施例1と同様
にして測定した結果、約40分であった。
The half-life of r-modified 5ODJ in the bloodstream was measured in the same manner as in Example 1 using two Wistar rats (female, weight 250±30 g), and was found to be approximately 40 minutes.

比較例1 未修飾のSODの血流内半減期を求めるために、実施例
1の場合と同様にして、ウィスター系ラット(♂、体重
は250±30g)を用いて血漿中のSODの相対活性
及び相対濃度を時間に対してプロットした結果、その半
減期は、相対活性及び相対濃度のいずれの場合において
も約5分であった。
Comparative Example 1 In order to determine the half-life of unmodified SOD in the bloodstream, the relative activity of SOD in plasma was determined using Wistar rats (male, body weight 250 ± 30 g) in the same manner as in Example 1. The half-life was approximately 5 minutes in both cases of relative activity and relative concentration.

〔発明の効果〕〔Effect of the invention〕

本発明のr修飾5ODJは、未修飾SODよりも遥かに
血流内半減期が改善されたものであり、SODの抗炎症
薬としての効果だけでなく、さらにこのSODの修飾に
用いられた薬理活性を有する化合物の医薬としての効果
をも期待できるものである。
The r-modified 5ODJ of the present invention has a much improved half-life in the bloodstream than unmodified SOD, and has not only the effect of SOD as an anti-inflammatory drug, but also the pharmacology used to modify this SOD. The active compound can also be expected to have a medicinal effect.

Claims (3)

【特許請求の範囲】[Claims] (1)スーパーオキシドジスムターゼ(以下、SODと
略す)と薬理活性を有する化合物とから得られた修飾S
ODであって、その化合物がSODとの反応性を示す官
能基を有することを特徴とする修飾SOD。
(1) Modified S obtained from superoxide dismutase (hereinafter abbreviated as SOD) and a compound with pharmacological activity
A modified SOD, which is characterized in that the compound has a functional group that exhibits reactivity with SOD.
(2)薬理活性が抗炎症作用である特許請求の範囲第1
項記載の修飾SOD。
(2) Claim 1 in which the pharmacological activity is an anti-inflammatory effect
Modified SOD as described in Section.
(3)化合物の官能基がアミノ基またはカルボキシル基
である特許請求の範囲第1項または第2項記載の修飾S
OD。
(3) Modified S according to claim 1 or 2, wherein the functional group of the compound is an amino group or a carboxyl group.
O.D.
JP62147872A 1987-06-16 1987-06-16 Modified superoxide dismutase Pending JPS63313581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62147872A JPS63313581A (en) 1987-06-16 1987-06-16 Modified superoxide dismutase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62147872A JPS63313581A (en) 1987-06-16 1987-06-16 Modified superoxide dismutase

Publications (1)

Publication Number Publication Date
JPS63313581A true JPS63313581A (en) 1988-12-21

Family

ID=15440141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62147872A Pending JPS63313581A (en) 1987-06-16 1987-06-16 Modified superoxide dismutase

Country Status (1)

Country Link
JP (1) JPS63313581A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998058636A1 (en) * 1997-06-20 1998-12-30 G.D. Searle & Co. Analgesic methods using synthetic catalysts for the dismutation of superoxide radicals
US5871729A (en) * 1994-04-11 1999-02-16 Human Genome Sciences, Inc. Superoxide dismutase-4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871729A (en) * 1994-04-11 1999-02-16 Human Genome Sciences, Inc. Superoxide dismutase-4
CN1073154C (en) * 1994-04-11 2001-10-17 人体基因组科学有限公司 Superoxide dismutase-4
WO1998058636A1 (en) * 1997-06-20 1998-12-30 G.D. Searle & Co. Analgesic methods using synthetic catalysts for the dismutation of superoxide radicals

Similar Documents

Publication Publication Date Title
US4064118A (en) Blood substitute based on hemoglobin
JPH08502023A (en) Fractionation of polyalkylene oxide-conjugated hemoglobin solution
CN104231069B (en) Protein high molecular combination and preparation method thereof
JPH0770195A (en) Sugar-modified interferon
JPH07508727A (en) Polyoxymethylene-oxyethylene copolymer combined with biomolecules
JPH021808B2 (en)
KR0184858B1 (en) Polymyxin conjugates
ES2395894T3 (en) Mammalian hemoglobins compatible with blood plasma, cross-linked and conjugated with poly (alkylene oxides) as artificial medical oxygen carriers, their preparation and use
JPH02231078A (en) Superoxide dismutase modified with hyaluronic acid
JPS63313581A (en) Modified superoxide dismutase
WO2005103238A1 (en) Defibrase modified by polyethylene glycol
US20170349644A1 (en) Factor viii with extended half-life and reduced ligand-binding properties
US20210403897A1 (en) Chemical engineering of erythrocytes to display polypeptides and other biomacromolecules
JPH0195774A (en) Modified superoxide dismutase
TW200306207A (en) Avidin dimers effective in increasing the concentration of radioactive biotin in pretargeted radioimmunotherapy
RU2556378C2 (en) Conjugate of glycoprotein, possessing erythropoietin activity, with poly-1,4-ethylenepiperazine n-oxide derivatives (versions), pharmaceutical composition and method of conjugate obtaining
JPH02231077A (en) Superoxide dismutase modified with heparin
JPH02231076A (en) Superoxide dismutase modified with dextran
JPH02231075A (en) Superoxide dismutase modified with dextran sulfate
JPS6075499A (en) Neocarzinostatin derivative and its preparation
JPH0952843A (en) Therapeutic agent for acute renal failure
JP5713006B2 (en) Reversible cationization agent and solubilization method of thiosulfonate compound, protein and / or peptide
JPH04293482A (en) Complex of superoxide dismutase and fc
JPS5832826A (en) Modified superoxide dismutase
JP2643137B2 (en) Protease inhibitor / dextran conjugate