JPS63313117A - Spectacles lens - Google Patents

Spectacles lens

Info

Publication number
JPS63313117A
JPS63313117A JP14991987A JP14991987A JPS63313117A JP S63313117 A JPS63313117 A JP S63313117A JP 14991987 A JP14991987 A JP 14991987A JP 14991987 A JP14991987 A JP 14991987A JP S63313117 A JPS63313117 A JP S63313117A
Authority
JP
Japan
Prior art keywords
correction area
vision correction
lens
astigmatism
near vision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14991987A
Other languages
Japanese (ja)
Inventor
Masato Shimagami
正人 島上
Takeshi Saito
武 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP14991987A priority Critical patent/JPS63313117A/en
Publication of JPS63313117A publication Critical patent/JPS63313117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eyeglasses (AREA)

Abstract

PURPOSE:To reduce the astigmatism of a sideward visual field by swelling a lens surface smoothly and reducing the swelling downward at a part where a far-sightedness correction area changes into a short-sightedness correction area. CONSTITUTION:A far-sight spectacles lens 1 has a far-sightedness correction area 2 and a short-sightedness correction area 3, which have a common meridian 4, and respective astigmatism contours which encircle the short-sightedness correction area 3 shift in center upward more and more as they are outside and outside and forms convex from the optical center of the short-sightedness correction area 3 toward the outside. The spectacles lens is smaller in the astigmatism in the sideward visual field as compared with a progressive focus lens, and the distortion of an image in the sideward visual field is reduced correspondingly. Further, the astigmatism is varied smoothly at the intermediate part between the far-sightedness correction area 2 and short-sightedness correction area, so the discontinuity of an image of a double focus lens is eliminated and the distortion of the image due to the astigmatism at the intermediate part is a little and causes no problem in practical use.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、眼鏡レンズに係り、特には、遠用視矯正領域
と近用視矯正領域とを備えた眼鏡レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a spectacle lens, and particularly to a spectacle lens having a distance vision correction region and a near vision correction region.

[従来の技術] 従来、この種の遠近両用のamレンズとして、二重焦点
レンズや累進焦点レンズが知られている。
[Prior Art] Conventionally, bifocal lenses and progressive focus lenses have been known as this type of bifocal am lens.

周知のように、二重焦点レンズは、上方視野に遠方視矯
正用のレンズを、下方視野に近方視矯正用の凸レンズを
それぞれ配した構造になっており、例えば、白玉と呼ば
れるレンズの下部に、小玉と呼ばれる屈折率の高い凸レ
ンズ部分を融着等することによって接合されている。
As is well known, a bifocal lens has a structure in which a lens for correcting distance vision is arranged in the upper field of view and a convex lens for correcting near vision in the lower field of vision. A convex lens portion with a high refractive index called a small bead is joined by fusing or the like.

一方、累進焦点レンズは、1枚のレンズで、はぼ上下方
向に連続的に度数が変化し、前記二重焦点レンズと同様
に、上方視野が遠方視矯正用、下方視野が近用視矯正用
に設定されている(例えば、特開昭55−118013
 、特開昭56−128916 ) 、このような累進
焦点レンズは、一つのレンズ面の中に連続的な焦点をも
たせるため、像の歪みの原因となる非点収差が生じる。
On the other hand, a progressive focal lens is a single lens whose power changes continuously in the vertical direction, and like the bifocal lens, the upper field of view is for distance vision correction, and the lower field of view is for near vision correction. (for example, JP-A-55-118013
, Japanese Patent Application Laid-Open No. 56-128916), since such a progressive focus lens has a continuous focal point within one lens surface, astigmatism, which causes image distortion, occurs.

この非点収差をレンズ全面にわたって除去するのは原理
的に不可能であるが、レンズ上の任意の線上で非点収差
をなくすることは可能である。そこで、従来の累進焦点
レンズは、上方視野から下方視野への上下方向に、非点
収差が0になる線(へそ線)を設定している。
Although it is impossible in principle to eliminate this astigmatism over the entire lens surface, it is possible to eliminate it along any arbitrary line on the lens. Therefore, in the conventional progressive focus lens, a line (umbilicus line) where the astigmatism becomes 0 is set in the vertical direction from the upper visual field to the lower visual field.

[発明が解決しようとする問題点] しかしながら、前者の二重焦点レンズは、凹レンズと凸
レンズの境目で屈折力が急激に変わるために、像の不連
続(像のジャンプ)が起こるという使用上の煩わしさが
ある。また、凹レンズと凸レンズとの境目が、外見的に
目立つので、見栄えが悪いという欠点もある。
[Problems to be Solved by the Invention] However, the former bifocal lens has a problem in use that image discontinuity (image jump) occurs because the refractive power changes rapidly at the boundary between the concave lens and the convex lens. It's annoying. Another disadvantage is that the boundary between the concave lens and the convex lens is visually noticeable, resulting in poor appearance.

一方、後者の累進焦点レンズは、二重焦点レンズに見ら
れるような像の不連続やレンズの境目が目立つという不
具合はないが、へそ線以外の部分、即ち、眼鏡レンズの
両側部(側方視野部)で非点収差が太き(なって、その
部分で像の歪みが著しくなり、左右を見る時に著しい「
船酔い感Jを生じるという欠点がある。
On the other hand, the latter progressive-focus lenses do not have the problems of image discontinuity and conspicuous boundaries between the lenses that are found in bifocal lenses, but they do not have the problem of image discontinuity or noticeable border between the lenses, but they do The astigmatism becomes thick (the visual field), and the image distortion becomes significant in that area, resulting in noticeable distortion when looking left and right.
It has the disadvantage of causing a feeling of seasickness.

ところで、二重焦点レンズで、その境目をぼかし、幅の
狭い同心状の曲面でつないだレンズに、rブレンドレン
ズjと呼ばれるものがある(米国特許第2,405,9
89号)、この種のレンズは、境目をぼかしたために、
外観上、二重焦点であることが目立ちにくいという長所
があるが、境目をつなぐ曲面部分には、光学的な機能を
全くもたせていないため、像のジャンプは通常の二重焦
点と同様に起こる。
By the way, there is a bifocal lens that blurs the boundary and connects them with narrow concentric curved surfaces called r blend lens j (U.S. Patent No. 2,405,9).
No. 89), this type of lens blurs the boundaries, so
It has the advantage that it is hard to notice that it is a bifocal in appearance, but the curved surface that connects the border has no optical function, so the image jumps occur in the same way as a normal bifocal. .

本発明は、このような従来の欠点を解消するものであっ
て、遠用視矯正領域と近用視矯正領域と・の境目が目立
たず、像の不連続性がなく、二重焦点よりも明視できる
範囲が広(、しかも、側方視野における像の歪みがない
眼鏡レンズを提供することを目的としている。
The present invention solves these conventional drawbacks, and the boundary between the distance vision correction area and the near vision correction area is not noticeable, there is no image discontinuity, and it is more effective than bifocal. The objective is to provide a spectacle lens that has a wide range of clear vision (and has no image distortion in the lateral field of view).

[問題点を解決するための手段] 本発明者らは、上述したような従来の遠近両用眼鏡レン
ズの欠点を解消すぺ(鋭意研究した結果、次のような結
論を得た。
[Means for Solving the Problems] The inventors of the present invention have conducted intensive research to eliminate the drawbacks of the conventional bifocal lenses as described above, and have come to the following conclusion.

二重焦点レンズは、凹レンズと凸レンズとの境目で屈折
力が急激に変わるために、像の不連続を生じているが、
遠用視矯正領域および近用視矯正領域を個々にみれば非
点収差がなく見やすい、逆に、従来の累積焦点レンズは
、レンズの上下方向に沿ってへそ線を設定しているので
、明視できる範囲が広く、上下方向は見やすいが、レン
ズ左右に非点収差が押しつけられて、側方が著しく見に
くくなっている9人間の眼には調節能力があるので、僅
かな非点収差による像のぼけは気にならないが、非点収
差の急激な変化による像の歪みは使用者に不快感を与え
、時には危険でもあるから避けなければならない。
With bifocal lenses, the refractive power changes rapidly at the boundary between the concave and convex lenses, resulting in image discontinuity.
If you look at the distance vision correction area and the near vision correction area individually, there is no astigmatism and it is easy to see.On the other hand, with conventional cumulative focus lenses, the navel line is set along the vertical direction of the lens, so it is easy to see. The visible range is wide and it is easy to see in the vertical direction, but astigmatism is imposed on the left and right sides of the lens, making it extremely difficult to see from the side9.Human eyes have the ability to accommodate, so images due to slight astigmatism Although blurring is not a concern, image distortion due to sudden changes in astigmatism causes discomfort to the user and is sometimes dangerous, so it must be avoided.

以上の結論をもとに得られた本発明に係る眼鏡レンズは
、従来の二重焦点レンズと累進焦点レンズの長所を合わ
せ持つもので、その構成は以下のようになっている。
The spectacle lens according to the present invention obtained based on the above conclusion has both the advantages of conventional bifocal lenses and progressive focal lenses, and its configuration is as follows.

q すなわち、本発明は、レンズを構成する二つのレンズ面
のうち、少なくとも一方のレンズ面にそれぞれ回転対称
な曲面で構成された遠用視矯正領域と近用視矯正領域と
を備えた眼鏡レンズにおいて、前記遠用視矯正領域と前
記近用視矯正領域とが滑らかな曲面で連結され、遠用視
矯正領域の光学中心と近用視矯正領域の光学中心とを結
ぶ子午線上の主曲率方向の平均度数が、前記両光学中心
間で一つの極値を待ち、そのレンズ面での等非点収差曲
線は近用視矯正領域を囲む曲線群をなし、かつ、非点収
差の最大値が加入度数の2倍以下に設定されていること
を特徴としている。
q That is, the present invention provides a spectacle lens having a distance vision correction area and a near vision correction area each formed of a rotationally symmetrical curved surface on at least one of the two lens surfaces constituting the lens. , the distance vision correction area and the near vision correction area are connected by a smooth curved surface, and the direction of principal curvature is on the meridian connecting the optical center of the distance vision correction area and the optical center of the near vision correction area. The average power of It is characterized by being set to less than twice the addition power.

本発明に係る眼鏡レンズに使用される光学材料は、光学
ガラスまたは光学プラスチックのいずれであってもよい
0例えば、光学プラチックの材料としては、ジエチレン
グリコールビスアリルカーボネートなどの脂肪族系のビ
ニル単量体が用いられる。その他、好ましい材料として
、屈折率が1゜50以上であり、かつ架橋構造形成性の
有機化合物であって、芳香環を含むラジカル重合可能な
多官能有機ビニル単量体が用いられる。このような単量
体として、テレフタル酸ビスアリルエステル、イソフタ
ル酸ビスアリルエステル、トリメリット酸トリアリルエ
ステル等が例示される。
The optical material used in the eyeglass lens according to the present invention may be either optical glass or optical plastic. For example, the optical plastic material may include aliphatic vinyl monomers such as diethylene glycol bisallyl carbonate. is used. In addition, as a preferable material, a polyfunctional organic vinyl monomer containing an aromatic ring and capable of radical polymerization is used, which is an organic compound having a refractive index of 1.50 or higher and capable of forming a crosslinked structure. Examples of such monomers include bisallyl terephthalate, bisallyl isophthalate, triallyl trimellitate, and the like.

遠用視矯正領域と近用視矯正領域とを連結する滑らかな
曲面は、03級の連続性を持った曲面であることが好ま
しい、ここで、03級の曲面とは、曲面の滑らかさを解
析的に表示したガウス(Gauss)の種数表示である
(例えば、基礎数学講座 16巻「微分幾何学1 共立
出版(昭和31年初版)6.7.86真に記載されてい
る)。
The smooth curved surface connecting the distance vision correction area and the near vision correction area is preferably a curved surface with continuity of class 03. Here, the curved surface of class 03 refers to the smoothness of the curved surface. This is Gauss's genus representation expressed analytically (for example, it is described in Fundamental Mathematics Course Vol. 16, "Differential Geometry 1, Kyoritsu Shuppan (first edition 1955), 6.7.86").

遠用視矯正領域の光学中心と近用視矯正領域の光学中心
とを結ぶ子午線上の各点における主曲率方向は、子午線
と、子午線に対してほぼ直交する方向とに設定されるの
が好ましい。
The principal curvature direction at each point on the meridian connecting the optical center of the distance vision correction area and the optical center of the near vision correction area is preferably set to the meridian and a direction substantially perpendicular to the meridian. .

本発明に係る眼鏡レンズは、遠用視矯正領域の光学中心
と近用視矯正領域の光学中心とを結ぶ子午線上の主曲率
方向の平均度数が、前記両光学中心間で一つの極値を持
つ、これは、眼鏡レンズの前面を例に採って説明すれば
、近用視矯正領域がレンズ面で盛り上がっていることを
意味する。以下、第2図に従って説明する。
In the spectacle lens according to the present invention, the average power in the principal curvature direction on the meridian connecting the optical center of the distance vision correction area and the optical center of the near vision correction area has one extreme value between the two optical centers. Taking the front surface of a spectacle lens as an example, this means that the near vision correction area is raised on the lens surface. This will be explained below with reference to FIG.

第2図は、レンズ中央部上下方向の子午線に沿ったレン
ズ断面を示している。同図において、実線Aは遠用視矯
正用の単焦点レンズのレンズ面であり、このレンズ面は
ほぼ球面になっている。一方、従来の累進焦点レンズは
、レンズ下方に近用視矯正領域Nを設けるために、同図
に1点鎖線Bで示したように、レンズの下方の曲率を次
第に太き(して凸レンズ効果を付与している。そのため
、近用視矯正領域Nにおいて曲線Aと曲線Bとの隔たり
が太き(なり、この隔たりをレンズの側方視野で吸収し
ているので、その部分で大きな非点収差が現れるのであ
る。
FIG. 2 shows a cross section of the lens taken along the meridian in the vertical direction at the center of the lens. In the figure, a solid line A is the lens surface of a single focus lens for correcting distance vision, and this lens surface is approximately spherical. On the other hand, in order to provide a near vision correction area N at the bottom of the lens, conventional progressive-focus lenses gradually increase the curvature at the bottom of the lens (as shown by the dashed line B in the figure) (thus creating a convex lens effect). Therefore, in the near vision correction area N, the gap between curve A and curve B is wide (and this gap is absorbed by the lateral field of the lens, so there is a large astigmatism in that area). Aberrations appear.

これに対し、本発明に係る眼鏡レンズは、第2図におい
て破線Cで示したように、遠用視矯正領域りから近用視
矯正領域Nに移行する部分で、レンズ面が滑らかに盛り
上がり、さらに下方に移るにしたがって次第に曲線Aに
近づいていくような曲線Cによって凸レンズ効果を与え
ている。したかって、近用視矯正領域Nでの曲線Cと曲
線Aとの隔たりが小さくなるから、それだけ側方視野の
非点収差が少なくなるのである。
On the other hand, in the spectacle lens according to the present invention, as shown by the broken line C in FIG. A convex lens effect is provided by a curve C that gradually approaches curve A as it moves further downward. Therefore, since the gap between the curve C and the curve A in the near vision correction region N becomes smaller, astigmatism in the lateral visual field is reduced accordingly.

ここで、遠用視矯正領域りの光学中心と近用視矯正領域
Nの光学中心とを結ぶ子午線上の主曲率方向の平均度数
の変化を見てみると、従来の累進焦点レンズは、上方か
ら下方に向かって曲率が次第に大きくなっているから、
第3図(a)に示したように、平均度数は極値を持たな
い、これに対し、本発明に係る眼鏡レンズは、遠用視矯
正領域りから近用視矯正領域Nへ移行する部分でレンズ
曲面を盛り上げているから、曲率の正負が逆転する箇所
が生じる。したがって、第3図[有])に示したように
、本発明の場合、遠用視矯正領域から近用視矯正領域へ
移る途中で、一旦、平均度数が下がり、その後、上昇す
るため、平均度数が一つの極値を持つのである。
Now, if we look at the change in the average power in the principal curvature direction on the meridian connecting the optical center of the distance vision correction area N and the optical center of the near vision correction area N, we can see that the conventional progressive focal lens Since the curvature gradually increases downward from
As shown in FIG. 3(a), the average dioptric power does not have an extreme value. In contrast, the spectacle lens according to the present invention has a portion that transitions from the distance vision correction region to the near vision correction region N. Because the curved surface of the lens is raised, there are places where the positive and negative curvatures are reversed. Therefore, as shown in FIG. 3, in the case of the present invention, the average dioptric power temporarily decreases during the transition from the distance vision correction area to the near vision correction area, and then increases. The frequency has one extreme value.

さらに、本発明に係る眼鏡レンズは、前記レンズ面での
等非点収差曲線が近用視矯正領域Nを囲む曲線群をなし
ている。これらの曲線群は、近用視矯正領域Nの光学中
心から外側に向かって凸状になっていることが好ましい
、ただし、等非点収差曲線の全てが必ずしも閉曲線であ
る必要はない。
Furthermore, in the spectacle lens according to the present invention, the isoastigmatism curves on the lens surface form a group of curves surrounding the near vision correction region N. It is preferable that these curve groups have a convex shape outward from the optical center of the near vision correction region N. However, all of the isoastigmatism curves do not necessarily have to be closed curves.

近用視矯正領域を囲む等非点収差曲線の曲線群は、外側
の等非点収差曲線になるほど、その中心が遠用視矯正領
域側にずれていることが好ましい。
In the group of isoastigmatism curves surrounding the near vision correction area, it is preferable that the center of the group of isoastigmatism curves shift toward the distance vision correction area as the isoastigmatism curves move outward.

このようにすることにより、視線が頻繁に通過する部分
である遠用視矯正碩域りと近用視矯正領域Nとの間の等
非点収差曲線の間隔が拡がり、非点収差の変化が緩慢に
なるから、遠用視矯正領域りと近用視矯正領域Nとの間
での像の歪みを少なくすることができる。
By doing this, the distance between the isoastigmatism curves between the distance vision correction area N and the near vision correction area N, which are areas through which the line of sight frequently passes, is widened, and changes in astigmatism are reduced. Since the correction is slow, distortion of the image between the distance vision correction area and the near vision correction area N can be reduced.

さらに、本発明に係る眼鏡レンズは、遠用視矯正領域り
と近用視矯正領域Nとの間の非点収差を少なくして、像
の歪みを目立たないようにするために、レンズ面の非点
収差の最大値を加入度数の2倍以下に設定している。好
ましくは、レンズ面の非点収差の最大値は加入度数以下
に設定される。
Furthermore, in the spectacle lens according to the present invention, in order to reduce astigmatism between the distance vision correction region N and the near vision correction region N, and to make image distortion less noticeable, the lens surface is The maximum value of astigmatism is set to less than twice the addition power. Preferably, the maximum value of astigmatism on the lens surface is set to be less than or equal to the addition power.

ここで、加入度数とは、遠用視矯正領域りの度数と近用
視矯正領域Nの度数との差をいう。
Here, the addition power refers to the difference between the power in the distance vision correction area and the power in the near vision correction area N.

以上のように構成された本発明に係る眼鏡レンズの非点
収差の分布例を、従来例のそれと比較して説明する。
An example of the distribution of astigmatism of the spectacle lens according to the present invention configured as described above will be explained in comparison with that of a conventional example.

第1図(a)は本発明に係る眼鏡レンズの等非点収差曲
線の分布例を示しており、第1図(6)は第1図(a)
の1−1線に沿つた非点収差の変化例を示している。
FIG. 1(a) shows an example of the distribution of the isoastigmatism curve of the spectacle lens according to the present invention, and FIG.
An example of change in astigmatism along line 1-1 is shown.

第1図(@において、1は遠近両用の眼鏡レンズ、2は
遠用視矯正領域、3は近用視矯正領域、4は遠用視矯正
領域2の光学中心と近用視矯正領域3の光学中心とを結
ぶ子午線をそれぞれ示している。
Figure 1 (@, 1 is a bifocal eyeglass lens, 2 is a distance vision correction area, 3 is a near vision correction area, and 4 is the optical center of the distance vision correction area 2 and the near vision correction area 3. Each meridian connecting the optical center is shown.

近用視矯正領域3を囲む各等非点収差曲線は、外側の等
非点収差曲線になるほど、その中心が上方にずれており
、近用視矯正領域3の光学中心から外側に向かって凸に
なっている。また、この例では、加入度数+2.0D(
ジオプター)に対し、非点収差の最大値は、1.0Dに
なっている。
In each of the isoastigmatism curves surrounding the near vision correction area 3, the center of each isoastigmatism curve is shifted upward as the outer isoastigmatism curve becomes more convex outward from the optical center of the near vision correction area 3. It has become. In addition, in this example, the addition power +2.0D (
diopter), the maximum value of astigmatism is 1.0D.

一方、第8図(6)、Q))および第9図(萄、(ハ)
は、本発明に係る眼鏡レンズとの比較のために、従来の
眼鏡レンズの等非点収差曲線の分布および非点収差の変
化を示している。特に、第8図(a)は従来の二重焦点
レンズの等非点収差曲線の分布、第8図(ロ)は第8図
(萄における■−■線に沿った非点収差の変化を示して
おり、第9図(萄は従来の累進焦点レンズの等非点収差
曲線の分布、第9図(ハ)は第9図(萄におけるI−1
線に沿った非点収差の変化を示している。
On the other hand, Fig. 8 (6), Q)) and Fig. 9 (萄, (c))
1 shows the distribution of the isoastigmatism curve and the change in astigmatism of a conventional eyeglass lens for comparison with the eyeglass lens according to the present invention. In particular, Fig. 8 (a) shows the distribution of the isoastigmatism curve of a conventional bifocal lens, and Fig. 8 (b) shows the change in astigmatism along the line ■-■ in the calf. Fig. 9 shows the distribution of the isoastigmatism curve of a conventional progressive focus lens, and Fig. 9 (c) shows the I-1 distribution of the conventional progressive focus lens.
It shows the variation of astigmatism along the line.

第1図と、第8図および第9図とを比較すると明らかな
ように、本発明に係る眼鏡レンズは、従来の累進焦点レ
ンズと比較して、側方視野における非点収差が小さくな
り、それだけ側方視野の像の歪みが少な(なる、また、
遠用視矯正領域2と近用視矯正領域3との中間部分で、
非点収差を滑らかに変化させているから、従来の2重焦
点レンズのような像の不連続性がない、なお、前記中間
部分での非点収差による僅かな像の歪みはあるが、人間
の眼の慣れにより、実使用上、問題とならない程度のも
のである。
As is clear from a comparison of FIG. 1 with FIGS. 8 and 9, the spectacle lens according to the present invention has smaller astigmatism in the lateral visual field than the conventional progressive focus lens, The distortion of the image in the lateral field of view is that much less (also,
In the intermediate part between the distance vision correction area 2 and the near vision correction area 3,
Because the astigmatism changes smoothly, there is no image discontinuity like in conventional bifocal lenses.Although there is slight image distortion due to astigmatism in the intermediate area, it is difficult for humans to This is not a problem in actual use as the eye gets used to it.

第1O図は、本発明に係る眼鏡レンズの焦点部分を、従
来例のそれと模式的に比較した図である。
FIG. 1O is a diagram schematically comparing the focal point of the spectacle lens according to the present invention with that of a conventional example.

図において、焦点部分は太線で示している。即ち、同図
(C)に示した本発明に係る眼鏡レンズは、同図(萄に
示した従来の二重焦点レンズに比べて段差がなく、かつ
、明視可能な範囲が広いという特徴を有し、同図(6)
に示した従来の累進焦点レンズに比べると側方の歪みが
少ないという特徴を有する。
In the figure, the focal point is indicated by a thick line. That is, the eyeglass lens according to the present invention shown in FIG. Same figure (6)
It is characterized by less lateral distortion than the conventional progressive focus lens shown in .

[実施例] 以下、本発明の実施例を述べる。[Example] Examples of the present invention will be described below.

第4図は第1実施例の等非点収差曲線の分布図、第5図
は第2実施例の等非点収差曲線の分布図を示している。
FIG. 4 shows a distribution diagram of the isoastigmatism curve of the first embodiment, and FIG. 5 shows a distribution diagram of the isastigmatism curve of the second embodiment.

これらの図において、第1図と同一部分は同一符号で示
している。
In these figures, the same parts as in FIG. 1 are designated by the same reference numerals.

これらの実施例に係るII鏡レンズの加入度数はともに
+2.0Dであり、非点収差の最大値は、第1実施例で
は1.5D、第2実施例では2.ODに設定されている
The addition powers of the II mirror lenses in these examples are both +2.0D, and the maximum value of astigmatism is 1.5D in the first example and 2.0D in the second example. It is set to OD.

近用視矯正領域3を囲む等非点収差曲線群は、第1実施
例では全て閉曲線によって構成されているが、第2実施
例では、外側の等非点収差曲線は閉曲線になっている。
In the first embodiment, the group of isoastigmatism curves surrounding the near vision correction region 3 are all closed curves, but in the second embodiment, the outer isastigmatism curves are closed curves.

第6図は、第1および第2実施例について、遠用視矯正
領域2の光学中心と近用視矯正領域3の光学中心とを結
んだ子午線に沿った主曲率方向の平均度数の分布をそれ
ぞれ示している。この図から明らかなように、両実施例
において、平均度数の掻値が認められる。
FIG. 6 shows the distribution of the average power in the principal curvature direction along the meridian connecting the optical center of the distance vision correction area 2 and the optical center of the near vision correction area 3 for the first and second embodiments. are shown respectively. As is clear from this figure, in both Examples, the average diopter value is observed.

第7図は、第1および第2実施例について、遠用視矯正
領域2の光学中心と近用視矯正領域3の光学中心とを結
んだ子午線に沿った非点収差の分布をそれぞれ示してい
る。いずれの実施例についても、遠用視矯正領域2およ
び近用視矯正領域3の各光学中心における非点収差は0
であり、遠用視矯正領域2と近用視矯正領域3との間で
、はぼ加入度数以下の範囲で非点収差が滑らかに変化し
ている。
FIG. 7 shows the distribution of astigmatism along the meridian connecting the optical center of the distance vision correction area 2 and the optical center of the near vision correction area 3 for the first and second embodiments, respectively. There is. In either embodiment, the astigmatism at each optical center of the distance vision correction area 2 and the near vision correction area 3 is 0.
The astigmatism changes smoothly between the distance vision correction region 2 and the near vision correction region 3 within a range equal to or less than the addition power.

[発明の効果] 以上の説明から明らかなように、本発明に係る眼鏡レン
ズは、遠用視矯正領域と近用視矯正領域とが滑らかな曲
面で連結され、遠用視矯正領域の光学中心と近用視矯正
領域の光学中心とを結ぶ子子線上の主曲率方向の平均度
数が、前記両光学中心間で一つの極値を待ち、そのレン
ズ面での等非点収差曲線は近用視矯正領域を囲む曲線群
をなし、かつ、非点収差の最大値が加入度数の2倍以下
に設定されているから、従来の2重焦点レンズのように
凹レンズと凸レンズの境目が目立ったり、像が不連続に
なるということがな(、累進焦点に近い明視範囲をもち
、かつ、各々の焦点が比較的広く、しかも、従来の累進
焦点レンズのように側方視野における像の著しい歪みが
なく、実用にたいへん適した眼鏡レンズである。
[Effects of the Invention] As is clear from the above description, in the spectacle lens according to the present invention, the distance vision correction region and the near vision correction region are connected by a smooth curved surface, and the optical center of the distance vision correction region is The average dioptric power in the principal curvature direction on the consonant line connecting the optical center of the near vision correction area reaches one extreme value between the two optical centers, and the isoastigmatism curve at that lens surface is the near vision correction area. It forms a group of curves surrounding the visual correction area, and the maximum value of astigmatism is set to less than twice the addition power, so the boundary between the concave and convex lenses is not noticeable like in conventional bifocal lenses, The image does not become discontinuous (it has a clear vision range close to that of a progressive focal point, each focal point is relatively wide, and there is no significant distortion of the image in the lateral field of vision as with conventional progressive focal lenses). This eyeglass lens is very suitable for practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の眼鏡レンズの等非点収差曲線の分布例
および非点収差の変化例を示した説明図、第2図は本発
明と従来例とのレンズ面の比較説明図、第3図は本発明
と従来例との主曲率方向の平均度数の変化例の比較説明
図、第4図は本発明の第1実施例の等非点収差曲線の分
布図、第5図は本発明の第2実施例の等非点収差曲線の
分布図、第6図は前記第1実施例および第2実施例の平
均度数の変化を示した説明図、第7図は前記第1実施例
および第2実施例の非点収差の変化を示した説明図、第
8図は従来の二重焦点レンズの等非点収差曲線の分布図
および非点収差の変化を示した説明図、第9図は従来の
累進焦点レンズの等非点収差曲線の分布図および非点収
差の変化を示した説明図、第10図は本発明に係る眼鏡
レンズの焦点部分を、従来例のそれと模式的に比較した
図である。 1・・・眼鏡レンズ、 2・・・遠用視矯正領域、 3・・・近用視矯正領域、 4・・・子午線。 出願人 東  し  株  式  会  社代理人 弁
理士 杉 谷   勉 @曾瞭疑ミC禎引奈(こ9 痺?@鉛        叫ゴ斐栂 第4図 第6図 第5 図 第7図
FIG. 1 is an explanatory diagram showing an example of distribution of the isoastigmatism curve and an example of change in astigmatism of the eyeglass lens of the present invention. FIG. 2 is an explanatory diagram comparing the lens surfaces of the present invention and a conventional example. Figure 3 is a comparative illustration of changes in the average power in the principal curvature direction between the present invention and the conventional example, Figure 4 is a distribution diagram of the isoastigmatism curve of the first embodiment of the present invention, and Figure 5 is the diagram of the present invention. A distribution diagram of the isoastigmatism curve of the second embodiment of the invention, FIG. 6 is an explanatory diagram showing changes in the average power of the first embodiment and the second embodiment, and FIG. 7 is a diagram of the distribution of the isoastigmatism curve of the second embodiment of the invention. FIG. 8 is an explanatory diagram showing the change in astigmatism of the second embodiment; FIG. The figure is an explanatory diagram showing the distribution of the isoastigmatism curve and the change in astigmatism of a conventional progressive focus lens, and Fig. 10 schematically shows the focal portion of the spectacle lens according to the present invention compared to that of the conventional example. This is a comparative diagram. DESCRIPTION OF SYMBOLS 1...Spectacle lens, 2...Distance vision correction area, 3...Near vision correction area, 4...Meridian. Applicant Higashi Shi Co., Ltd. Company Agent Patent Attorney Tsutomu Sugitani @ Soro Doubt Mi C Teihikina (Ko 9 Paralysis? @ Lead Keigo Hito Figure 4 Figure 6 Figure 5 Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)レンズを構成する二つのレンズ面のうち、少なく
とも一方のレンズ面にそれぞれ回転対称な曲面で構成さ
れた遠用視矯正領域と近用視矯正領域とを備えた眼鏡レ
ンズにおいて、前記遠用視矯正領域と前記近用視矯正領
域とが滑らかな曲面で連結され、遠用視矯正領域の光学
中心と近用視矯正領域の光学中心とを結ぶ子午線上の主
曲率方向の平均度数が、前記両光学中心間で一つの極値
を待ち、そのレンズ面での等非点収差曲線は近用視矯正
領域を囲む曲線群をなし、かつ、非点収差の最大値が加
入度数の2倍以下に設定されていることを特徴とする眼
鏡レンズ。
(1) A spectacle lens having a distance vision correction area and a near vision correction area each formed of a rotationally symmetrical curved surface on at least one of the two lens surfaces constituting the lens; The use vision correction area and the near vision correction area are connected by a smooth curved surface, and the average power in the principal curvature direction on the meridian connecting the optical center of the distance vision correction area and the optical center of the near vision correction area is , wait for one extreme value between the two optical centers, and the isoastigmatism curve on the lens surface forms a group of curves surrounding the near vision correction area, and the maximum value of the astigmatism is 2 of the addition power. A spectacle lens characterized by being set to less than twice as much.
(2)特許請求の範囲第1項において、遠用視矯正領域
と近用視矯正領域とを連結する滑らかな曲面は、C^3
級の曲面で構成されている眼鏡レンズ。
(2) In claim 1, the smooth curved surface connecting the distance vision correction area and the near vision correction area is C^3
Eyeglass lenses made of curved surfaces.
(3)特許請求の範囲第1項において、近用視矯正領域
を囲む等非点収差曲線の曲線群は、外側の等非点収差曲
線になるほど、その中心が遠用視矯正領域側にずれてい
る眼鏡レンズ。
(3) In claim 1, the center of the group of isoastigmatism curves surrounding the near vision correction area shifts toward the distance vision correction area as the isoastigmatism curves move outward. glasses lenses.
JP14991987A 1987-06-16 1987-06-16 Spectacles lens Pending JPS63313117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14991987A JPS63313117A (en) 1987-06-16 1987-06-16 Spectacles lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14991987A JPS63313117A (en) 1987-06-16 1987-06-16 Spectacles lens

Publications (1)

Publication Number Publication Date
JPS63313117A true JPS63313117A (en) 1988-12-21

Family

ID=15485453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14991987A Pending JPS63313117A (en) 1987-06-16 1987-06-16 Spectacles lens

Country Status (1)

Country Link
JP (1) JPS63313117A (en)

Similar Documents

Publication Publication Date Title
US4240719A (en) Progressive ophthalmic lens
US4537479A (en) Progressive multifocal ophthalmic lens
US8287124B2 (en) Opthalmic lenses having reduced base out prism
JPH0239767B2 (en)
JP2000249992A (en) Progressive addition lens with regressive surface and its production
GB2595079A (en) Light scattering lens for treating myopia and eyeglasses containing the same
KR20010031468A (en) Myopia lens
JPS62500122A (en) multifocal lens
GB2273369A (en) Progressive multifocal opthalmic lens
GB2277997A (en) Progressive multifocal ophthalmic lens pair
KR20070100902A (en) Multi-focal ophthalmic lens with base in prism
US5953099A (en) Nonprogressive multi-focal ophthalmic lens
JPS62500613A (en) Spectacle lenses for half-eye glasses
US6254236B1 (en) Parabolic and hyperbolic aspheric eyewear
EP0461624A1 (en) Spectacle lens
JPH11125799A (en) Progressive focus lens for spectacles and spectacles using same
JPH06337380A (en) Progressive multifocus lens
WO1989004987A1 (en) Multi-focal lens equipped with small progressive-focal lens
CN115185105A (en) Myopia prevention and control lens and preparation method thereof
JPH07294859A (en) Progressive multi-focus lens
JPS63313117A (en) Spectacles lens
JPH0581886B2 (en)
JPH01243016A (en) Lens for spectacles and spectacles using said lens
JP3845709B2 (en) Variable refraction control glasses
JPH01133023A (en) Spectacle lens