JPS63312972A - Apparatus for producing thin film - Google Patents

Apparatus for producing thin film

Info

Publication number
JPS63312972A
JPS63312972A JP15091187A JP15091187A JPS63312972A JP S63312972 A JPS63312972 A JP S63312972A JP 15091187 A JP15091187 A JP 15091187A JP 15091187 A JP15091187 A JP 15091187A JP S63312972 A JPS63312972 A JP S63312972A
Authority
JP
Japan
Prior art keywords
crucible
filament
heating
thin film
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15091187A
Other languages
Japanese (ja)
Inventor
Makoto Shinohara
真 篠原
Toshinori Takagi
俊宜 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP15091187A priority Critical patent/JPS63312972A/en
Publication of JPS63312972A publication Critical patent/JPS63312972A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To uniformly heat a crucible and to decrease electric power consumption by heating and evaporating the material for vapor deposition in the crucible while rotating the crucible in the inside of a filament formed to enclose the outside circumferential wall of the crucible in a vacuum atmosphere. CONSTITUTION:The crucible 1 housing the material M for vapor deposition in a vacuum chamber 3 is heated by the filament 2 for heating which is formed to enclose the outside circumferential wall of the crucible and is connected to a power supply 8. The above-mentioned material M for vapor deposition is thereby heated and evaporated and the evaporated material is injected from an injection hole 1a of the crucible 1 to form a thin film on a substrate (not shown). The crucible 1 of the above-mentioned apparatus for forming thin films is rotated on the inside of the filament 2 by driving of an electric motor 5 disposed on the outside of the vacuum chamber 3. The entire part of the crucible 1 is thereby uniformly heated even if the filament 2 is deviated to a part of the circumference of the crucible 1 by a deformation, etc. The filament 2 is, therefore, shortened as far as possible and the electric power consumption thereof is reduced.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、るつぼ内の蒸着材料を真空雰囲中で加熱する
ことにより、その材料を蒸発させて基板表面に薄膜を形
成する装置に関し、特に、クラスタイオンビーム法を適
用した薄膜製造装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an apparatus for forming a thin film on a substrate surface by heating a deposition material in a crucible in a vacuum atmosphere to evaporate the material. In particular, the present invention relates to a thin film manufacturing apparatus using the cluster ion beam method.

〈従来の技術〉 一般に、この種の装置において、蒸着材料の加熱は、そ
の材料を収容するるつぼを加熱することによって行われ
ている。従来、このるつぼを加熱する方法としては、第
4図に示すように、るつぼ41の周囲をジグザグ状のフ
ィラメント42(素材として、タングステンもしくはタ
ンタル等が適用される。)により囲い、このフィラメン
ト42に大電流を通電し、ジュール熱により加熱を行な
う抵抗加熱法や、るつぼ41に高電圧を印加し、フィラ
メント42からの熱電子を引き寄せること1により加熱
を行う電子衝撃法が挙げられる。
<Prior Art> Generally, in this type of apparatus, the vapor deposition material is heated by heating a crucible containing the material. Conventionally, as shown in FIG. 4, the method of heating this crucible is to surround a crucible 41 with a zigzag-shaped filament 42 (tungsten, tantalum, etc. is used as the material), and to heat the crucible 42. Examples include a resistance heating method in which a large current is applied and heating is performed using Joule heat, and an electron impact method in which heating is performed by applying a high voltage to the crucible 41 and drawing hot electrons from the filament 42.

〈発明が解決しようとする問題点〉 ところで、上述した2つの方法によれば、いづれも、通
電時においてフィラメント42の変形が生じ、フィラメ
ント42がるつぼ41の周囲の一部に偏ってしまうこと
がある。このため、るつぼ41全体を均一に加熱できな
いという問題がある。
<Problems to be Solved by the Invention> By the way, according to the two methods described above, deformation of the filament 42 occurs during energization, and the filament 42 may be biased to a part of the periphery of the crucible 41. be. Therefore, there is a problem that the entire crucible 41 cannot be heated uniformly.

なお、加熱方法として電子衝撃法を採用した場合、フィ
ラメント42の偏りにより、フィラメント42からの熱
電子がるつぼ41の一部に集中すると、その部分が蒸散
してしまう。従って、その蒸散物を含んだ薄膜が形成さ
れることになり、薄膜の品質が低下するという問題もあ
る。
Note that when an electron impact method is employed as a heating method, if the thermoelectrons from the filament 42 are concentrated in a part of the crucible 41 due to the bias of the filament 42, that part will evaporate. Therefore, a thin film containing the evaporated matter is formed, resulting in a problem that the quality of the thin film deteriorates.

このような問題を解決するために、現状では、るつぼ4
1を均一に加熱するべく、るつぼ41を囲ってなるジグ
ザグ状のフィラメント42をより密にする方法が採られ
ているが、この場合、フィラメント42の長さが長くな
るので、フィラメント42を必要温度に加熱するのに大
電力が必要となるという新たな問題が生じている。
In order to solve such problems, currently, the crucible 4
In order to uniformly heat the crucible 1, a method has been adopted in which the zigzag-shaped filament 42 surrounding the crucible 41 is made denser. A new problem has arisen in that large amounts of electricity are required to heat the water.

本発明の目的は、可及的短いフィラメントで蒸着材料を
収容するるつぼを均一に加熱でき、もって、その消費電
力の軽減を図ることのできる、薄膜製造装置を提供する
ことにある。
An object of the present invention is to provide a thin film manufacturing apparatus that can uniformly heat a crucible containing a vapor deposition material using a filament as short as possible, thereby reducing its power consumption.

く問題点を解決するための手段〉 上記の目的を達成するため構成を、実施例に対応する第
1図および第2図を参照しつつ説明すると、本発明は、
蒸着材料Mを収容するるつぼ1を備えた薄膜製造装置に
おいて、るつぼ1をフィラメント(加熱用フィラメント
)2の内側で回転させる手段(電動機)5を備えたこと
を特徴としている。
Means for Solving the Problems> The structure for achieving the above object will be described with reference to FIGS. 1 and 2 corresponding to the embodiment.
A thin film manufacturing apparatus equipped with a crucible 1 containing a vapor deposition material M is characterized in that a means (electric motor) 5 for rotating the crucible 1 inside a filament (heating filament) 2 is provided.

〈作用〉 フィラメント2による加熱時に、るつぼ1を回転させる
ことにより、フィラメント2が変形してるつぼ1の周囲
の一部に偏ったとしても、フィラメント2からの熱量が
るつぼ1の一部に集中することなくるつぼ1全体を均一
に加熱できる。
<Function> By rotating the crucible 1 during heating by the filament 2, even if the filament 2 is deformed and biased to a part of the periphery of the crucible 1, the amount of heat from the filament 2 is concentrated in a part of the crucible 1. The entire crucible 1 can be heated evenly without any heating.

〈実施例〉 本発明の実施例を、以下、図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は本発明実施例の要部縦断面図、第2図はそのる
つぼ周辺の斜視図であって、クラスタイオンビーム法に
よる電子衝撃加熱法を用いた装置に本発明を適用した例
を示している。
FIG. 1 is a vertical cross-sectional view of a main part of an embodiment of the present invention, and FIG. 2 is a perspective view of the vicinity of the crucible, showing an example in which the present invention is applied to an apparatus using an electron impact heating method using a cluster ion beam method. It shows.

噴射孔1aを備え、かつ、薄着材料Mを収容するるつぼ
1は、真空チャンバ3外部の接地側に配設された電動機
5の回転軸54によって、絶縁がいし52および導電性
支柱51を介して真空チャンバ3内に支持されている。
The crucible 1, which is equipped with an injection hole 1a and accommodates the thinly deposited material M, is evacuated via an insulating insulator 52 and a conductive column 51 by a rotating shaft 54 of an electric motor 5 disposed on the ground side outside the vacuum chamber 3. It is supported within chamber 3.

電動機5は、その駆動によりるつぼ1を矢印の方向に回
転させることができる。真空チャンバ3の底部における
電動機5の回転軸54の貫通部には、真空シール部53
が設けられており、電動機5を駆動した状態においても
、真空チャンバ3内の真空奪回状態を維持できる。
The electric motor 5 can rotate the crucible 1 in the direction of the arrow by driving the electric motor 5. A vacuum seal portion 53 is provided at the bottom of the vacuum chamber 3 through which the rotating shaft 54 of the electric motor 5 passes.
is provided, so that the vacuum recovery state in the vacuum chamber 3 can be maintained even when the electric motor 5 is driven.

導電性支柱51には、真空チャンバ3外部のるつぼ用電
源6に接続端子7を介して接続されたブラシ4(素材と
して、例えばリン青銅を使用する。)が挟み込まれてお
り、導電性支柱51が回転している状態であっても、る
つぼ用電源6から電圧をるつぼ1に印加できる。
A brush 4 (for example, phosphor bronze is used as a material) connected to a crucible power source 6 outside the vacuum chamber 3 via a connecting terminal 7 is sandwiched between the conductive columns 51 . Even when the crucible 1 is rotating, voltage can be applied to the crucible 1 from the crucible power source 6.

るつぼ1の側壁周囲は、ジグザグ状の加熱用フィラメン
ト2(素材として、タングステンもしくはタンタル等を
使用する。)によって囲まれている。この加熱用フィラ
メント2は、接続端子9を介して真空チャンバ3外部の
フィラメント用電源8に接続されている。
The side wall of the crucible 1 is surrounded by a zigzag heating filament 2 (made of tungsten, tantalum, or the like). This heating filament 2 is connected to a filament power source 8 outside the vacuum chamber 3 via a connecting terminal 9.

なお、絶縁がいし52の外周面には凹凸部が設けられて
おり、その外周面上における導電性支柱51と回転軸5
3との間の絶縁沿面距離をかせいでいる。
Note that the outer circumferential surface of the insulating insulator 52 is provided with an uneven portion, and the conductive support column 51 and the rotating shaft 5 on the outer circumferential surface are
3. This increases the insulation creepage distance between the

次に作用を説明する。電動機5を駆動し、るつぼ1を矢
印の方向に回転した状態で、るつぼ1にるつぼ用電源6
からの電圧をブラシ4および導電性支柱51を介して印
加するとともに、加熱用フィラメント2にフィラメント
用電源8からの電流を供給する。その結果、加熱用フィ
ラメント2が加熱され、その熱電子が高電圧状態のるつ
ぼ1に引き寄せられてるつぼ1が加熱される。ここで、
通電時に加熱用フィラメント2が変形し、一部に偏りが
生じたとしても、るつぼ1が回転しているので、るつぼ
1全体を均一に加熱できる。つまり、加熱用フィラメン
ト2の長さが短い場合であっても、るつぼ1全体を均一
に加熱できる。なお、本実施例の場合、例えば加熱用フ
ィラメント2の長さを従来の装置に対して1/2の長さ
にすれば、加熱時に要する消費電力を、従来の装置の約
70%程度に軽減できる。
Next, the effect will be explained. While driving the electric motor 5 and rotating the crucible 1 in the direction of the arrow, the crucible power source 6 is connected to the crucible 1.
is applied via the brush 4 and the conductive column 51, and a current from the filament power source 8 is supplied to the heating filament 2. As a result, the heating filament 2 is heated, and the thermoelectrons thereof are attracted to the crucible 1 in a high voltage state, thereby heating the crucible 1. here,
Even if the heating filament 2 is deformed during energization and becomes partially uneven, the entire crucible 1 can be heated uniformly because the crucible 1 is rotating. That is, even if the length of the heating filament 2 is short, the entire crucible 1 can be heated uniformly. In the case of this embodiment, for example, if the length of the heating filament 2 is reduced to 1/2 that of the conventional device, the power consumption required for heating can be reduced to about 70% of that of the conventional device. can.

以上の実施例では、電動機5を真空チャンバ3外部の接
地側に配設しているが、真空チャンバ3内の底部に配設
してもよいことは言うまでもない。
In the above embodiment, the electric motor 5 is arranged on the ground side outside the vacuum chamber 3, but it goes without saying that it may be arranged at the bottom inside the vacuum chamber 3.

次に、本発明の他の実施例について第3図を参照しつつ
説明する。
Next, another embodiment of the present invention will be described with reference to FIG.

先の実施例では、1つの噴射孔1aを備えたるつぼ1を
加熱する例を示したが、第3図の実施例に示すように、
3つもしくは複数の噴射孔31a・・・31aをるつぼ
31の直径方向に設けておけば、るつぼ31の回転によ
り、より大きな面積を有する薄膜を得ることができる。
In the previous embodiment, an example was shown in which the crucible 1 equipped with one injection hole 1a was heated, but as shown in the embodiment in FIG.
If three or more injection holes 31a...31a are provided in the diametrical direction of the crucible 31, a thin film having a larger area can be obtained by rotating the crucible 31.

また、先の実施例では、クラスタイオンビーム法による
電子衝撃加熱法を用いた薄膜製造装置に本発明を適用し
た例を説明したが、本発明は、抵抗加熱法を用いた装置
にも適用でき、さらに、MBE(分子線ビームエピタキ
シ)装置にも適用できる。
Furthermore, in the previous embodiment, an example was explained in which the present invention was applied to a thin film manufacturing apparatus using an electron impact heating method using a cluster ion beam method, but the present invention can also be applied to an apparatus using a resistance heating method. Furthermore, it can also be applied to an MBE (molecular beam epitaxy) device.

〈発明の効果〉 以上説明したように、本発明によれば、るつぼ内の蒸着
材料を、るつぼの外周壁を囲ってなるフィラメントによ
り加熱する際、るつぼが回転するよう構成したから、加
熱時に、フィラメントが変形し、るつぼ周囲の一部に偏
ったとしても、フィラメントからの熱量がるつぼの一部
に集中することなくるつぼ全体を均一に加熱できる。従
って、フィラメントの長さを従来の装置に比して短くで
きることになり、加熱に要する消費電力の軽減を図るこ
とができる。
<Effects of the Invention> As explained above, according to the present invention, since the crucible is configured to rotate when the vapor deposition material in the crucible is heated by the filament surrounding the outer peripheral wall of the crucible, Even if the filament is deformed and localized to a part of the periphery of the crucible, the heat from the filament will not be concentrated in a part of the crucible and the entire crucible can be heated uniformly. Therefore, the length of the filament can be made shorter than in conventional devices, and the power consumption required for heating can be reduced.

なお、本発明をクラスタイオンビーム法による電子衝撃
加熱法を用いた装置に適用した場合、フィラメントの長
さが短い場合であっても、るつぼの一部にフィラメント
からの熱電子が集中することを抑えることができるので
、るつぼの一部が蒸散することを防止できる結果、品質
の良い薄膜を得ることができるという効果もある。
Note that when the present invention is applied to an apparatus using an electron impact heating method using a cluster ion beam method, even if the length of the filament is short, it is possible to prevent thermionic electrons from the filament from concentrating on a part of the crucible. As a result, it is possible to prevent a portion of the crucible from evaporating, and as a result, it is possible to obtain a thin film of good quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の要部縦断面図、第2図はそのる
つぼ周辺の斜視図、 第3図は本発明の他の実施例のるつぼ周辺の斜視図、 第4図は従来の装置のるつぼ周辺の斜視図である。 1・・・るつぼ 2・・・加熱用フィラメント 3・、・真空チャンバ 5・・・電動機 M・・・蒸着材料 特許出願人    株式会社島津製作所高木 俊宜 代 理 人    弁理士 西1)新 第1図 富3図 第4図 三 一
Fig. 1 is a vertical sectional view of the main part of an embodiment of the present invention, Fig. 2 is a perspective view of the vicinity of the crucible, Fig. 3 is a perspective view of the vicinity of the crucible of another embodiment of the present invention, and Fig. 4 is a conventional FIG. 2 is a perspective view of the vicinity of the crucible of the device. 1... Crucible 2... Heating filament 3... Vacuum chamber 5... Electric motor M... Evaporation material Patent applicant Shimadzu Corporation Toshiyo Takagi Attorney Patent attorney Nishi 1) Shindai 1 Zutomi 3 Figure 4 Figure 31

Claims (1)

【特許請求の範囲】[Claims] るつぼ内の蒸着材料をそのるつぼの外周壁を囲ってなる
フィラメントを用いて真空雰囲中で加熱することにより
、その材料を上記るつぼ外部に蒸発させて基板表面に薄
膜を形成する装置において、上記るつぼを上記フィラメ
ントの内側で回転させる手段を備えたことを特徴とする
、薄膜製造装置。
In the apparatus for forming a thin film on the substrate surface by heating the vapor deposition material in the crucible in a vacuum atmosphere using a filament surrounding the outer peripheral wall of the crucible, the material is evaporated outside the crucible to form a thin film on the surface of the substrate. A thin film manufacturing apparatus comprising means for rotating a crucible inside the filament.
JP15091187A 1987-06-17 1987-06-17 Apparatus for producing thin film Pending JPS63312972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15091187A JPS63312972A (en) 1987-06-17 1987-06-17 Apparatus for producing thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15091187A JPS63312972A (en) 1987-06-17 1987-06-17 Apparatus for producing thin film

Publications (1)

Publication Number Publication Date
JPS63312972A true JPS63312972A (en) 1988-12-21

Family

ID=15507082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15091187A Pending JPS63312972A (en) 1987-06-17 1987-06-17 Apparatus for producing thin film

Country Status (1)

Country Link
JP (1) JPS63312972A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190590A (en) * 1990-04-10 1993-03-02 Matsushita Electric Industrial Co., Ltd. Vacuum coating apparatus
WO2015192551A1 (en) * 2014-06-17 2015-12-23 京东方科技集团股份有限公司 Rotary evaporation source device used for oled deposition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5190590A (en) * 1990-04-10 1993-03-02 Matsushita Electric Industrial Co., Ltd. Vacuum coating apparatus
WO2015192551A1 (en) * 2014-06-17 2015-12-23 京东方科技集团股份有限公司 Rotary evaporation source device used for oled deposition
US9970097B2 (en) 2014-06-17 2018-05-15 Boe Technology Group Co., Ltd. Rotary evaporation source apparatus for OLED evaporation

Similar Documents

Publication Publication Date Title
CA1131795A (en) Cold cathode semiconductor device
JP3126158B2 (en) Thin film cold cathode
US5908699A (en) Cold cathode electron emitter and display structure
JP3142388B2 (en) Cathode device
JPH0567441A (en) Flat-type display device using integral-control type electric-field emission
JPS61131331A (en) Electron beam apparatus
US5345141A (en) Single substrate, vacuum fluorescent display
JPH05504021A (en) Sealed field emission device
JPH06223707A (en) Silicon field emission device and its manufacture
CN1331180C (en) Electronic tansmitting element
JPS63312972A (en) Apparatus for producing thin film
JP2607251B2 (en) Field emission cathode
US5894187A (en) Field emission cold cathode having concentric cathode areas and feeder areas, and cathode ray tube having such a field emission cold cathode
JP2823834B2 (en) Crucible mechanism in vapor deposition equipment
JPH1055770A (en) Flat display screen and its manufacturing process
JP3502883B2 (en) Cold electron-emitting device and method of manufacturing the same
KR100286450B1 (en) Field emission emitter and method of manufacturing the same
JPH01320747A (en) X-ray tube
JP4312331B2 (en) Electron emission device
JP2606223B2 (en) Insulator
KR100852764B1 (en) Manufacturing method of a semiconductor vacuum tube
KR100260260B1 (en) Method of manufacturing fed
KR100257565B1 (en) Manufacture method of field emission display
JP2854642B2 (en) Cathode ray tube device
KR100266224B1 (en) Field emission device and the manufacturing method thereof and field emission display using it