JPS63312582A - Piezoelectric valve - Google Patents

Piezoelectric valve

Info

Publication number
JPS63312582A
JPS63312582A JP14754887A JP14754887A JPS63312582A JP S63312582 A JPS63312582 A JP S63312582A JP 14754887 A JP14754887 A JP 14754887A JP 14754887 A JP14754887 A JP 14754887A JP S63312582 A JPS63312582 A JP S63312582A
Authority
JP
Japan
Prior art keywords
valve
movable plates
piezoelectric
voltage
movable plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14754887A
Other languages
Japanese (ja)
Inventor
Shigeru Shirai
滋 白井
Yukinori Ozaki
行則 尾崎
Yoshio Yamamoto
山本 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14754887A priority Critical patent/JPS63312582A/en
Publication of JPS63312582A publication Critical patent/JPS63312582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)

Abstract

PURPOSE:To have no influence of liquid pressure and dynamic pressure produced by flowing of a fluid by providing a plurality of movable plates which are flexed in the direction of board thickness when voltage is applied, valve elements and valve ports confronting a part of a moving path for the valve elements. CONSTITUTION:When voltage is applied, the movable plates of plural movable plates 10 to which voltage is applied are flexed in the direction of board thickness and shifted laterally, confronting valve element 14 and valve ports 15. The flexure of the movable plates 10 is changed depending upon the magnitude of voltage to change the opening degree of the valve ports 15. As the valve elements 14 are disposed vertically to a flexible shaft 12 on extension substantially parallel to a flexible shaft of the movable plates 10, dynamic pressure produced by flowing of a fluid exerts stress in the direction substantially parallel to the flexible shaft 12 of the movable plates 10 through the valve elements 14. The rigidity for bending stress in the direction substantially parallel to the flexible shaft 12 of the movable plate 10 is large to hardly be influenced by dynamic pressure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電圧を印加するとたわむ可動板にて流体を制
御する圧電弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a piezoelectric valve that controls fluid with a movable plate that bends when a voltage is applied.

従来の技術 従来のこの種の圧電弁は、第10図に示すように、はり
合わせた一対の強誘電体よりなる弁作動板1に弁体2を
設け、前記弁体2に対向するように弁座3が構成されて
おり、この弁作動板1に印加する電圧によって電歪横効
果で弁作動板1がたわみ、弁体2が弁座3との揚程aを
可変することで、流量の制御をするようになっていた。
2. Description of the Related Art As shown in FIG. 10, a conventional piezoelectric valve of this type has a valve actuating plate 1 made of a pair of ferroelectric materials bonded together, and a valve body 2 provided thereon so as to face the valve body 2. The valve seat 3 is configured, and the voltage applied to the valve actuating plate 1 causes the valve actuating plate 1 to bend due to the electrostrictive transverse effect, and the valve body 2 changes the lift height a with the valve seat 3, thereby controlling the flow rate. I was starting to take control.

(例えば、特公昭55−30143号公報) しかしながら上記のような構成では、弁体2に作用する
流体の流れによる動圧の応力を弁作動板1の板厚方向を
受ける構成なので、弁作動板1の剛性が渣れの動圧に弱
く第11図の如く電圧に対する流量特性が歪んでしまっ
たりするという問題点を有していた。つまり、印加電圧
による弁作動板1のたわみ以外に流れの動圧によってた
わみ歪が左右されやすい構成であった。
(For example, Japanese Patent Publication No. 55-30143) However, in the above configuration, since the dynamic pressure stress due to the flow of fluid acting on the valve body 2 is received in the thickness direction of the valve actuation plate 1, the valve actuation plate The rigidity of No. 1 is weak against the dynamic pressure of the scum, and the flow rate characteristics with respect to voltage are distorted as shown in FIG. 11, which is a problem. In other words, in addition to the deflection of the valve operating plate 1 due to the applied voltage, the deflection strain was easily affected by the dynamic pressure of the flow.

さらに第12図に示すように、バイモルフ型電歪素子板
4の片持ち支持自由端に弁体5を設け、弁体5のほぼ遠
心方向に切換流路6,7を形成し、流路6,7の開口部
8.9に対して弁体5がスライドする切換弁があった。
Furthermore, as shown in FIG. 12, a valve body 5 is provided at the cantilever-supported free end of the bimorph type electrostrictive element plate 4, and switching channels 6 and 7 are formed in the substantially centrifugal direction of the valve body 5. There was a switching valve in which the valve body 5 slides with respect to the opening 8.9 of the valve.

(例えば、特開昭61−38278号公報) しかしながらこのような構成においても、流体圧および
流体の流れによる動圧を弁体5に受けその力で電歪素子
板がたわむように作用し、流体圧や動圧に影響されない
ということに対しては充分ではなかった。つまり、バイ
モルフなどたわみ方向の剛性が弱いことは周知の事実で
あるがいずれの構成も動圧によって受ける力が電圧によ
ってたわむ方向と同じ方向であることに起因する。
(For example, Japanese Unexamined Patent Publication No. 61-38278) However, even in such a configuration, the valve element 5 receives fluid pressure and dynamic pressure due to the flow of the fluid, and the electrostrictive element plate acts to bend due to the force. It was not sufficient to be unaffected by pressure or dynamic pressure. In other words, although it is a well-known fact that bimorphs have weak rigidity in the direction of deflection, this is due to the fact that the force received by dynamic pressure is in the same direction as the direction of deflection due to voltage in any configuration.

このほか複数の圧電部材、弁座、弁体を有した圧電式流
量制御装置なども上記と同様の問題があった。(例えば
、特開昭59−140980号公報)発明が解決しよう
とする問題点 本発明はかかる従来の問題点を解消するもので、流体圧
や流体の流れによる動圧の影響を受けにくく、かつ複数
の弁体を有するタイプの圧電弁を提供することを目的と
する。
In addition, piezoelectric flow control devices having a plurality of piezoelectric members, valve seats, and valve bodies have the same problems as above. (For example, Japanese Unexamined Patent Publication No. 59-140980) Problems to be Solved by the Invention The present invention solves these conventional problems, and is less susceptible to the influence of fluid pressure and dynamic pressure due to fluid flow. It is an object of the present invention to provide a piezoelectric valve having a plurality of valve bodies.

問題点を解決するための手段 上記問題点を解決するために本発明の圧電弁は、少なく
とも一部が支持され、電圧を加えると前記支持された個
所をたわみ軸として板厚方向にたわむ可動板と、前記た
わみ軸とほぼ平行な延長上に前記たわみ軸に対して垂直
に設けられた弁体と、前記弁体の移動経路の一部に対向
させた弁口とをそれぞれ複数有してなる圧電弁という構
成を儂えたものである。
Means for Solving the Problems In order to solve the above problems, the piezoelectric valve of the present invention has a movable plate that is at least partially supported, and when a voltage is applied, the movable plate deflects in the thickness direction about the supported portion as a deflection axis. and a valve body provided perpendicularly to the deflection axis on an extension substantially parallel to the deflection axis, and a plurality of valve ports facing a part of the movement path of the valve body. This is a modified version of a piezoelectric valve.

作用 本発明は上記した構成によって、電圧を加えると可動板
は板厚方向にたわみ、弁体は弁口に対向しながら横にず
れる。電圧の大小により可動板のたわみ量が変化し弁口
の開口度合も変化する。弁体は、可動板のたわみ軸とほ
ぼ平行な延長上にたわみ軸に対して垂直に設けられてい
るため、流体の流れによる動圧は弁体を介して可動板の
たわみ軸とほぼ平行な方向に応力を及ぼすことになる。
Function: With the above-described configuration, the movable plate deflects in the thickness direction when voltage is applied, and the valve body shifts laterally while facing the valve port. The amount of deflection of the movable plate changes depending on the magnitude of the voltage, and the degree of opening of the valve port also changes. The valve body is installed perpendicular to the deflection axis of the movable plate on an extension that is almost parallel to the deflection axis, so the dynamic pressure due to the fluid flow is transmitted through the valve body and is almost parallel to the deflection axis of the movable plate. This will exert stress in the direction.

そこで可動板のたわみ軸とほぼ平行な方向の曲げ応力に
対する剛性は、板厚方向の剛性と比較して格段と大きい
ため動圧の影響を受けにくい圧電弁が得られることにな
るのである。
Therefore, the stiffness against bending stress in a direction substantially parallel to the deflection axis of the movable plate is much greater than the stiffness in the plate thickness direction, making it possible to obtain a piezoelectric valve that is less susceptible to the effects of dynamic pressure.

実施例 以下、本発明の実施例を添付図面にもとづいて説明する
。第1図〜第3図において、10は圧電セラミック材料
からなるバイモルフ素子の可動板で、この可動板10の
一部は支持体11で支持されている。可動板10は電圧
を印加した際この支持体11で支持された個所をたわみ
軸12として板厚方向13にたわむように支持されてい
る。さらに弁体14は、たわみ軸12とほぼ平行な延長
上にたわみ軸12に対して垂直に可動板10に固着して
設けられている。弁口15は弁体14の移動経路16の
一部に対向して構成されている。
Embodiments Hereinafter, embodiments of the present invention will be described based on the accompanying drawings. In FIGS. 1 to 3, reference numeral 10 denotes a movable plate of a bimorph element made of a piezoelectric ceramic material, and a part of this movable plate 10 is supported by a support 11. The movable plate 10 is supported so that when a voltage is applied, the movable plate 10 is deflected in the thickness direction 13 with the portion supported by the support 11 serving as a deflection axis 12. Further, the valve body 14 is fixed to the movable plate 10 on an extension substantially parallel to the deflection shaft 12 and perpendicular to the deflection shaft 12. The valve port 15 is configured to face a part of the movement path 16 of the valve body 14.

なお可動板10.弁体14.弁口15はそれぞれ複数配
置された構成で、第1図がその一例を斜視図的に示し、
第2図、第3図は可動板10.弁体14.弁口15の1
ユニツトを取り出して示したものである。
Note that the movable plate 10. Valve body 14. A plurality of valve ports 15 are arranged, and FIG. 1 shows an example thereof in a perspective view.
FIGS. 2 and 3 show the movable plate 10. Valve body 14. Valve port 15-1
This figure shows the unit taken out.

上記構成において、印加電圧が零の状態では可動板10
は平坦であり、弁体14は弁口15全体に覆い彼さって
いる。したがって流体の流れを閉塞した状態である。可
動板10に電圧を加えると電圧の大きさに応じて可動板
10のたわみ量が変化する。可動板10のたわみに応じ
て弁体14が弁口15の真上から横にずれる量を変化さ
せるため、弁口14の開口面積を変えて流体流量を可変
するよう作用する。
In the above configuration, when the applied voltage is zero, the movable plate 10
is flat, and the valve body 14 covers the entire valve port 15. Therefore, the fluid flow is blocked. When a voltage is applied to the movable plate 10, the amount of deflection of the movable plate 10 changes depending on the magnitude of the voltage. In order to change the amount by which the valve body 14 is laterally displaced from directly above the valve port 15 in accordance with the deflection of the movable plate 10, the opening area of the valve port 14 is changed to vary the fluid flow rate.

この場合流体の流れは、第3図矢印の方向あるいはその
逆方向いずれも可能である。また、流体の圧力および流
体の流れによる動圧は可動板10のたわみ軸12と平行
な方向に作用する。これは可動板12の剛性が最も大き
い方向に作用することになるため、動圧によって可動板
10がたわんだりすることがなく動圧の影響をほとんど
受けないですむという効果がある。 また電圧を加える
と可動板10は板厚方向にたわみ、弁体14は弁口15
に対向しながら横にずれ、弁口15から流出もしくは弁
口15へ流入する流れを邪魔するものは何もなく直進流
路が形成できる構成であるから、流路圧損が極めで小さ
い圧電弁を実現〒きるという特有の効果がある。また可
動板10をバイモルフ型圧′?を素子板で構成した際、
バイモルフは周知の通り圧電体を二枚はり合わせた構造
で電圧を印加すると一方が縮み他方が伸びるためたわみ
変位量を比較的大きくとれ、可動板の長さも短くてよい
ため小型コンパクトな圧電弁にできる。
In this case, the fluid can flow either in the direction of the arrow in FIG. 3 or in the opposite direction. Further, the fluid pressure and the dynamic pressure due to the fluid flow act in a direction parallel to the deflection axis 12 of the movable plate 10. Since this acts in the direction in which the rigidity of the movable plate 12 is greatest, the movable plate 10 does not bend due to dynamic pressure and has the effect of being almost unaffected by the dynamic pressure. Furthermore, when a voltage is applied, the movable plate 10 bends in the thickness direction, and the valve body 14 bends at the valve port 15.
Since the configuration is such that a straight flow path can be formed without anything interfering with the flow flowing out from or flowing into the valve port 15, a piezoelectric valve with extremely small pressure loss in the flow path is used. It has the unique effect of being realized. Also, the movable plate 10 is placed under a bimorph type pressure'? When composed of element plates,
As is well known, bimorph has a structure in which two pieces of piezoelectric material are glued together, and when a voltage is applied, one contracts and the other expands, allowing for a relatively large amount of deflection, and the length of the movable plate can be short, making it a small and compact piezoelectric valve. can.

また可動板10が片持ち支持型であることも弁体振幅を
大きくとるには効果がある。 また可動板10に印加す
る電圧が一方向の場合、弁体14も弁口15に対して片
側一方向にのみ変位し弁口開口度を可変する。印加電圧
が正逆二方向の場合、弁体14も左右両方向に変位する
。とくに可動板10に印加する電圧周波数を可動板10
の共振周波数にて制御することによって、非共振周波数
電圧の場合と比較して可動板振幅が大きくなるため、比
較的低い電圧にできたり短い可動板にでき小型化できる
などの効果がある。
Furthermore, the fact that the movable plate 10 is of a cantilever type is also effective in increasing the amplitude of the valve body. Further, when the voltage applied to the movable plate 10 is unidirectional, the valve body 14 is also displaced in only one direction on one side with respect to the valve port 15, thereby varying the degree of opening of the valve port. When the applied voltage is in two directions, forward and reverse, the valve body 14 is also displaced in both left and right directions. In particular, the voltage frequency applied to the movable plate 10 is
By controlling the movable plate at the resonant frequency, the amplitude of the movable plate becomes larger compared to the case of a non-resonant frequency voltage, so there are effects such as a relatively low voltage, a short movable plate, and miniaturization.

また可動板の共振周波数を5 Q Hzや60Hzの商
用電源周波数に合わすことで、制御回路を簡単にするこ
ともできる。共振周波数にて電圧制御をした際、弁体振
幅が変化して流体流量を制御できる理由は、第4図から
もわかる通り振幅が太きくなるにしたがって弁口開口面
積が大きいところまで及ぶためである。
Furthermore, by matching the resonant frequency of the movable plate to the commercial power frequency of 5 Q Hz or 60 Hz, the control circuit can be simplified. The reason why the fluid flow rate can be controlled by changing the amplitude of the valve body when controlling the voltage at the resonance frequency is that as the amplitude becomes thicker, the area of the valve opening increases, as shown in Figure 4. be.

さらにまた、第1図のように可動板10.弁体14、弁
口15をそれぞれ複数ユニット配置した構成において、
複数の可動板10に加える電圧の位相をずらして印加す
ることによって、流量の脈流を緩和できるという特有の
効果がある。このことを理解しやすくするために、第5
図(a) 、 (b)に横軸を時間、縦軸を流量として
流量波形を比較して示した。
Furthermore, as shown in FIG. 1, a movable plate 10. In a configuration in which a plurality of valve bodies 14 and valve ports 15 are each arranged,
By applying voltages to the plurality of movable plates 10 with different phases, there is a unique effect that pulsation of the flow rate can be alleviated. To make this easier to understand, the fifth
Figures (a) and (b) show a comparison of flow rate waveforms with time on the horizontal axis and flow rate on the vertical axis.

また可動板10に加える電圧を増減したときの電圧−流
量特性の一例を第6図に示す、従来のようにある流量に
達したとき流れの動圧の影響で弁開度が変動し特性が不
連続な異常変化を生じたりすることなく、スムーズな安
定した特性が得られるという効果がある。
Figure 6 shows an example of the voltage-flow characteristics when the voltage applied to the movable plate 10 is increased or decreased. The effect is that smooth and stable characteristics can be obtained without causing discontinuous abnormal changes.

また第1図では複数の弁口15は同じ流路断面積とした
が、それぞれ異なる定められた断面積に構成することに
より、可動板10に電圧を印加して開口した弁口15の
流路断面の大きさに応じた流量を確実に得ることができ
るという効果がある。
In addition, in FIG. 1, the plurality of valve ports 15 have the same flow path cross-sectional area, but by configuring them to have different predetermined cross-sectional areas, the flow path of the valve ports 15 opened by applying a voltage to the movable plate 10. This has the effect that a flow rate corresponding to the size of the cross section can be reliably obtained.

例えば、これをガス燃焼装置等に用いれば複数の弁口1
5を順次開口することによって、火力を多段階的に確実
に調節することができる。このように複数の弁口15の
流路断面積を異なる大きさに構成する代わりに、複数の
弁口15かまたはそれに通じる流路のうち少なくとも何
れかに流量を規制する一定の絞りを有した構成にしても
同様の効果がある。
For example, if this is used in a gas combustion device, multiple valve ports 1
By sequentially opening 5, the firepower can be reliably adjusted in multiple stages. In this way, instead of configuring the flow path cross-sectional areas of the plurality of valve ports 15 to have different sizes, at least one of the plurality of valve ports 15 or the flow path leading thereto has a certain restriction for regulating the flow rate. A similar effect can be achieved with the configuration.

また第1図のように複数の可動板10を並列に配置する
ことにより、可動板10へ電気接続する端子部が同じ方
向にまとめることができ、配線作業もやりやすいという
効果がある。
Further, by arranging a plurality of movable plates 10 in parallel as shown in FIG. 1, the terminal portions electrically connected to the movable plates 10 can be grouped in the same direction, which has the effect of making wiring work easier.

さらに本発明の他の実施例で特に可動板に関し第7図〜
第10図を用いて説明する。
Furthermore, in other embodiments of the present invention, particularly regarding the movable plate, FIGS.
This will be explained using FIG.

第7図は、複数の可動板10のたわみ軸から弁体14ま
での膣の長さが異なる組合せで構成された例で、弁体1
4の揺動スペースをむだなく配置でき圧電弁を小型コン
パクトに構成できるという効果がある。また第8図は複
数の可動板10を放釘状に配置した例で、第7図の場合
と同様の効果がある。
FIG. 7 shows an example in which the lengths of the vaginas from the bending axes of the plurality of movable plates 10 to the valve body 14 are different.
This has the effect that the 4 swing spaces can be arranged without waste, and the piezoelectric valve can be made small and compact. Further, FIG. 8 shows an example in which a plurality of movable plates 10 are arranged in a peg-like manner, and the same effect as in the case of FIG. 7 is obtained.

第9図および第10図の可動板15は、たわみ軸12近
傍側が圧電素子板18で形成され、弁体14近傍側は金
属板や樹脂板等ばね性を有した板17で形成されており
、圧電素子板18に電圧が印加されるとばね性の板17
の動きは、たとえて言うならば魚の尾ひれのごとくとな
り、弁体14の振幅変位をより拡大するよう作用し、圧
電体18をより小さくできるという効果がある。
The movable plate 15 shown in FIGS. 9 and 10 is formed of a piezoelectric element plate 18 on the side near the deflection shaft 12, and a plate 17 having spring properties such as a metal plate or a resin plate on the side near the valve body 14. , when a voltage is applied to the piezoelectric element plate 18, the spring plate 17
The movement resembles a fish's tail fin, and acts to further expand the amplitude displacement of the valve body 14, which has the effect of making the piezoelectric body 18 smaller.

発明の効果 以上のように本発明の圧電弁によれば次の効果が得られ
る。
Effects of the Invention As described above, the piezoelectric valve of the present invention provides the following effects.

(1)少なくとも一部が支持され、電圧を加えると前記
支持された個所をたわみ軸として板厚方向にたわむ可動
板と、前記たわみ軸とほぼ平行な延長上に前記たわみ軸
に対して垂直に設けられた弁体と、前記弁体の移動経路
の一部に対向させた弁口とをそれぞれ複数有してなる構
成としているので、流体の流れによる動圧の影響をほと
んど受けない安定した特性が得られるという効果がある
(1) A movable plate, at least partially supported, which deflects in the thickness direction with the supported portion as the deflection axis when a voltage is applied; Since the structure has a plurality of valve bodies and a plurality of valve ports facing a part of the movement path of the valve body, stable characteristics are hardly affected by dynamic pressure due to fluid flow. This has the effect that it can be obtained.

(2)可動板と、弁体と、弁口とをそれぞれ複数有して
いるので、弁口を開口するタイミングによって多段階的
に流量を可変したり流れの脈流を緩和できるなど特有の
効果がある。
(2) Since it has multiple movable plates, valve bodies, and valve ports, it has unique effects such as varying the flow rate in multiple stages and mitigating flow pulsations depending on the timing of opening the valve ports. There is.

(3)電圧を加えると可動板は板厚方向にたわみ、弁体
は弁口に対向しながら横にずれ、弁口から流出もしくは
弁口へ流入する流れを邪魔するものは何もなく直進流路
が形成できる構成であるから、流路圧損が極めて小さい
圧電弁を実現できるという特有の効果がある。
(3) When a voltage is applied, the movable plate bends in the thickness direction, and the valve body shifts sideways while facing the valve port, so that there is nothing to obstruct the flow flowing out from or flowing into the valve port, and the flow flows straight. Since the structure is such that a passage can be formed, it has the unique effect of realizing a piezoelectric valve with extremely small passage pressure loss.

(4)可動板の曲げ剛性が最も高い方向に弁体を介して
流体動圧を受ける構成であるから、流体の流れ状態に関
係なく電圧により弁口開度を制御できるため、開閉弁・
切換弁はもとより流量比例制御弁など用途が広い。
(4) Since the movable plate is configured to receive fluid dynamic pressure via the valve body in the direction in which the bending rigidity is highest, the valve opening degree can be controlled by voltage regardless of the fluid flow state, so the opening/closing valve
It has a wide range of uses, including not only switching valves but also flow rate proportional control valves.

(5)電磁力やモータを使用した弁と比較して構成が簡
単で部品点数も少なく、また消費電力が小さい。
(5) Compared to valves that use electromagnetic force or motors, the structure is simpler, the number of parts is smaller, and the power consumption is lower.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における圧電弁の斜視図
、第2図は同圧電弁の部分平面図、第3図は同圧電弁の
部分断面図、第4図は同圧電弁を一定周波数電圧制御し
たときの流量可変原理説明図、第5図(a)、 (b)
は同圧電弁の流量波形比較説明図、第6図は同圧電弁の
代表流量特性図、第7図〜第10図は本発明のさらに他
の実施例における圧電弁の部分平面図および正面図、第
11図は従来の圧電弁の正面断面図、第12図は同圧電
弁の代表流量特性図、第13図は他の従来の圧電弁の正
面断面図である。 10・・・可動板、11・・・支持体、12・・・たわ
み軸、134・・・板厚方向、14・・・弁体、15・
・・弁口、16・・・移動経路。 代理人の氏名  弁理士 中尾敏男 ばか1名10−一
可動叛 /l−一一叉符株 /2−−たわみ釉 ノ3−−1りし々4贋り1り 16− 待動藤豚 10−一可動雇 第 4 図 方。 薬 5 図 第6図 カ 第7図 第9図
Fig. 1 is a perspective view of a piezoelectric valve according to a first embodiment of the present invention, Fig. 2 is a partial plan view of the piezoelectric valve, Fig. 3 is a partial sectional view of the piezoelectric valve, and Fig. 4 is a partial sectional view of the piezoelectric valve. Figure 5 (a), (b) is an explanatory diagram of the principle of varying the flow rate when controlled by constant frequency voltage.
6 is a typical flow rate characteristic diagram of the same piezoelectric valve, and FIGS. 7 to 10 are partial plan views and front views of piezoelectric valves according to still other embodiments of the present invention. , FIG. 11 is a front sectional view of a conventional piezoelectric valve, FIG. 12 is a typical flow characteristic diagram of the same piezoelectric valve, and FIG. 13 is a front sectional view of another conventional piezoelectric valve. DESCRIPTION OF SYMBOLS 10... Movable plate, 11... Support body, 12... Deflection shaft, 134... Plate thickness direction, 14... Valve body, 15...
... Valve port, 16... Movement route. Name of agent: Patent attorney Toshio Nakao Idiot 1 person 10 - 1 movable rebellion / 1 - 1 single cross stock / 2 - bending glaze 3 - 1 rishishi 4 counterfeit 1 ri 16 - waiting Fujibuta 10 - One mobile hire No. 4 map. Medicine 5 Figure 6 Figure 7 Figure 9

Claims (9)

【特許請求の範囲】[Claims] (1)少なくとも一部が支持され、電圧を加えると前記
支持された個所をたわみ軸として板厚方向にたわむ可動
板と、前記たわみ軸とほぼ平行な延長上に前記たわみ軸
に対して垂直に設けられた弁体と、前記弁体の移動経路
の一部に対向させた弁口とをそれぞれ複数有してなる圧
電弁。
(1) A movable plate, at least partially supported, which deflects in the thickness direction with the supported portion as the deflection axis when a voltage is applied; A piezoelectric valve comprising a plurality of valve bodies and a plurality of valve ports facing a part of a movement path of the valve body.
(2)複数の可動板のうち少なくとも何れかに加える電
圧は、共振周波数で加減できることを特徴とする特許請
求の範囲第1項記載の圧電弁。
(2) The piezoelectric valve according to claim 1, wherein the voltage applied to at least one of the plurality of movable plates can be adjusted based on the resonance frequency.
(3)複数の可動板に加える電圧の位相をずらして印加
できることを特徴とする特許請求の範囲第1項記載の圧
電弁。
(3) The piezoelectric valve according to claim 1, wherein the voltage applied to the plurality of movable plates can be applied with a phase shift.
(4)複数の弁口かまたはそれに通じる流路のうち少な
くとも何れかに流量を規制する一定の絞りを有した構成
の特許請求の範囲第1項記載の圧電弁。
(4) The piezoelectric valve according to claim 1, wherein at least one of the plurality of valve ports or the flow path leading thereto has a certain restriction for regulating the flow rate.
(5)複数の弁口のうち少なくとも何れかは異なる流路
断面積とした特許請求の範囲第1項記載の圧電弁。
(5) The piezoelectric valve according to claim 1, in which at least one of the plurality of valve ports has a different flow path cross-sectional area.
(6)複数の可動板を並列に配置した特許請求の範囲第
1項記載の圧電弁。
(6) The piezoelectric valve according to claim 1, wherein a plurality of movable plates are arranged in parallel.
(7)複数の可動板は、たわみ軸から弁体までの腕の長
さの異なる組合せで構成された特許請求の範囲第1項記
載の圧電弁。
(7) The piezoelectric valve according to claim 1, wherein the plurality of movable plates are configured with different combinations of arm lengths from the deflection shaft to the valve body.
(8)複数の可動板を放射状に配置した特許請求の範囲
第1項記載の圧電弁。
(8) The piezoelectric valve according to claim 1, wherein a plurality of movable plates are arranged radially.
(9)複数の可動板のうち少なくとも何れかは、たわみ
軸近傍側が圧電素子板で構成され、弁体近傍側は金属板
や樹脂板等のたわみやすいばね性を有した材料で構成さ
れた特許請求の範囲第1項記載の圧電弁。
(9) A patent in which at least one of the plurality of movable plates is composed of a piezoelectric element plate on the side near the deflection axis, and a flexible and springy material such as a metal plate or a resin plate on the side near the valve body. A piezoelectric valve according to claim 1.
JP14754887A 1987-06-12 1987-06-12 Piezoelectric valve Pending JPS63312582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14754887A JPS63312582A (en) 1987-06-12 1987-06-12 Piezoelectric valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14754887A JPS63312582A (en) 1987-06-12 1987-06-12 Piezoelectric valve

Publications (1)

Publication Number Publication Date
JPS63312582A true JPS63312582A (en) 1988-12-21

Family

ID=15432813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14754887A Pending JPS63312582A (en) 1987-06-12 1987-06-12 Piezoelectric valve

Country Status (1)

Country Link
JP (1) JPS63312582A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121378A (en) * 1983-11-09 1985-06-28 ザ・パーキン‐エルマー・コーポレイシヨン Shutter mechanism
JPS6114270B2 (en) * 1981-12-23 1986-04-17 Schieber Universal Maschf
JPS6132668B2 (en) * 1980-07-30 1986-07-28 Fuji Xerox Co Ltd

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6132668B2 (en) * 1980-07-30 1986-07-28 Fuji Xerox Co Ltd
JPS6114270B2 (en) * 1981-12-23 1986-04-17 Schieber Universal Maschf
JPS60121378A (en) * 1983-11-09 1985-06-28 ザ・パーキン‐エルマー・コーポレイシヨン Shutter mechanism

Similar Documents

Publication Publication Date Title
AU2015310896B9 (en) Mems having micromechanical piezoelectric actuators for realizing high forces and deflections
KR102036429B1 (en) MEMS transducers interacting with the volumetric flow of fluids and methods of manufacturing the same
JP3629405B2 (en) Micro pump
US6864618B2 (en) Method for operating a microelectromechanical system using a stiff coupling
KR100932458B1 (en) Micro rocking element
US7465023B2 (en) Micro-electromechanical ink ejection mechanism with electro-magnetic actuation
KR100286486B1 (en) Elastomeric Micro Electromechanical Systems
JP7331125B2 (en) MEMS with large fluidically effective surfaces
US20030174931A1 (en) Compliant push/pull connector microstructure
US5235225A (en) Linear electrostatic actuator with means for concatenation
CN111034223A (en) Micromechanical sound transducer
JPH04285378A (en) Micro valve
TWI821663B (en) Mems for highly efficient interaction with a volume flow and related method
GB2385989A (en) Piezoelectrically actuated liquid metal switch
EP1093685A1 (en) Solid-state receiver
US11770659B2 (en) MEMS device, assembly comprising the MEMS device, and method of operating the MEMS device
US6844657B2 (en) Microelectromechanical system and method for producing displacement multiplication
JPS63312582A (en) Piezoelectric valve
JPS59131006A (en) Conversion element for electricity-fluid pressure
US11569430B2 (en) Method for operating an ultrasonic motor
JPS63312583A (en) Piezoelectric valve
KR20120112354A (en) Electromechanical motor
JPH06288355A (en) Micro pump
JP2012057692A (en) Microvalve
JPWO2021223886A5 (en)