JPS6331197B2 - - Google Patents

Info

Publication number
JPS6331197B2
JPS6331197B2 JP9759080A JP9759080A JPS6331197B2 JP S6331197 B2 JPS6331197 B2 JP S6331197B2 JP 9759080 A JP9759080 A JP 9759080A JP 9759080 A JP9759080 A JP 9759080A JP S6331197 B2 JPS6331197 B2 JP S6331197B2
Authority
JP
Japan
Prior art keywords
sugar solution
ultra
fructose
isomerized sugar
precision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9759080A
Other languages
Japanese (ja)
Other versions
JPS5722700A (en
Inventor
Hiroshi Hirashiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP9759080A priority Critical patent/JPS5722700A/en
Publication of JPS5722700A publication Critical patent/JPS5722700A/en
Publication of JPS6331197B2 publication Critical patent/JPS6331197B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はブドウ糖液を異性化して得られる果糖
を含有する異性化糖液の処理方法、特に異性化糖
液の仕上げの部分の処理方法に関する。 異性化糖液はブドウ糖と果糖の混合糖液であつ
て、全糖分に対する果糖の割合が約45%から約90
%のものまで種々のものがあり、近年になつて甘
味嗜好製品の甘味料として砂糖に替つて工業的に
多量に用いられるようになつてきた。異性化糖液
は、澱粉溶液を酸あるいは酵素によつて処理する
糖化工程、糖化工程によつて得られるブドウ糖液
中に含まれる不純物を過、吸着、イオン交換な
どで除去する精製工程などを経て得られるブドウ
糖液を、異性化酵素で異性化して、ブドウ糖と果
糖の混合糖液として製造するか、場合によつては
更にクロマト分離を行なつて果糖分を濃縮させた
ものとして製造するものであるが、この異性化糖
液を液糖として製品化するためには、従来では更
に以下の工程により処理している。 まずブドウ糖液を異性化酵素で異性化する際に
添加される塩類、あるいは残留している色素など
を除去するために再度イオン交換処理し、次いで
製品の清澄度をよくするための仕上げ処理工程と
して当該イオン交換処理液に粉末活性炭を添加し
て懸濁物を吸着させた後、この粉末活性炭を過
機で除き、さらに精密過器にて除菌過を行な
い、そして濃縮缶で適当な濃度に濃縮して最終製
品としている。 しかしながら、従来行なわれている粉末活性炭
−過−精密過による仕上げ処理工程は以下に
述べるような欠点を有する。すなわち使用する粉
末活性炭は純度の高いものを選定する必要があ
り、またこの添加工程の自動化が困難であり、か
つ粉炭で作業環境が汚染されるなどの欠点がある
他に、添加した粉末活性炭を除く過機としては
異性化工程以降の運転管理上、甘水が発生するタ
イプのものは使用しにくく、したがつて一般にフ
イルタープレス式の過機が使用されるが、当該
過機は自動化が困難であり、かつ微生物による
汚染を受け易い。また精密過についても通常は
カートリツジタイプの使い棄てのものか、あるい
は逆洗により再使用が可能な、たとえば焼結金属
で成形された再生式の過機を用いるが、前者は
ランニングコストが高く、後者は逆にイニシヤル
コストが高いという欠点を有している。 またこのような従来の仕上げ処理工程は懸濁
物、菌類の除去効果についても決して満足できる
ものではない。 本発明は従来の異性化糖液の仕上げ処理工程に
おける前述したような欠点を解決し、懸濁物およ
び菌類の除去性能が良く、かつ自動運転が可能な
処理方法を提供するもので、粒子径が0.1μmの粒
子を90%以上除去可能な超精密過膜をハウジン
グ内に有する超精密過装置に、イオン交換処理
を行なうことによつて脱塩した異性化糖液を圧入
して、当該過膜に異性化糖液を通過させること
により、異性化糖液中に含まれている懸濁物、菌
類等を過する第一工程、第一工程における過
により超精密過装置の圧力損失が増加した際に
過を中断し、ハウジング内に滞留している異性
化糖液中に気体を流入させてバブリングすること
により、超精密過膜の表面に付着した懸濁物、
菌類等を剥離させる第二工程、第二工程の剥離に
より生じたハウジング内の懸濁物、菌類等を高濃
度に含む異性化糖液をハウジング内から取りだ
し、当該異性化糖液を精密フイルターで過し、
その過液を超精密過装置で過する前の異性
化糖液に混合する第三工程からなる異性化糖液の
処理方法に関する。 以下に本発明の処理方法を図面に従つて詳細に
説明する。 図面は本発明の実施態様の一例を示すフローの
説明図であり、イオン交換装置(図示せず)で処
理した異性化糖液1を異性化糖液槽2に滞留さ
せ、当該異性化糖液1をポンプ3により超精密
過装置4に圧入し、異性化糖液1中に含まれる懸
濁物、菌類等を除去し、精製異性化糖液5を得
る。 当該超精密過装置4はハウジング6内に、粒
子径が0.1μmの粒子を90%以上除去可能な超精密
過膜7を内設し、異性化糖液を当該超精密過
膜7の外側から通過させて、その内側から過液
である精製異性化糖液を得るものである。 超精密過膜7としては粒子径が0.1μmの粒子
を90%以上除去可能なものであれば種々のものが
使用でき、たとえばポリビニールアルコールを基
材とした中空繊維を無数本束ねてモジユールとし
たものを用いる。異性化糖液中に含まれる懸濁
物、菌類等の粒子径はいづれも1μmのものが80
%以上も占め、0.1μm以下の粒子径のものはほと
んど存在しない。したがつて超精密過膜7の性
能として粒子径が0.1μmの粒子を90%以上除去可
能なものを選定することにより、異性化糖液1中
に含まれる懸濁物、菌類等はほとんど除去するこ
とができる。異性化糖液1を超精密過装置4で
処理する際の条件としては、ブリツクス30〜60程
度の異性化糖液1を温度40〜60℃で流入圧力3
Kg/cm2G前後、流入速度10〜50/m2−膜面積/
H前後とするとよく、このような処理条件で処理
すると超精密過膜7の初期差圧は1.5Kg/cm2
前後程度となる。このような過処理を続行する
につれて超精密過膜7の表面に懸濁物、菌類等
がしだいに付着し、差圧が徐々に上昇するが、差
圧計8の目盛が3.5Kg/cm2G前後となつた点で異
性化糖液1の流入を中断する。次いで空気流入管
9を介してハウジング6の下部に付設したデイス
トリビユータ10から空気を流入し、ハウジング
6内に滞留している異性化糖液をバブリングし、
このバブリングにより超精密過膜7の表面に付
着していた懸濁物、菌類等の大部分を膜面から剥
離し、ハウジング6内に滞留させた異性化糖液内
に分散する。なおバブリングに要した空気はハウ
ジング6の上部から外部に放出する。当該バブリ
ングに使用する空気は除菌、除油した純度の高い
ものを使用することが好ましく、流入圧力は2〜
3Kg/cm2G前後とするとよい。なお空気量は5〜
10N/m2−膜面積/min前後とし、バブリング
時間は2〜5分程度で充分である。このバブリン
グ工程終了後の濃縮異性化糖液は、処理する異性
化糖液が前述したような製造工程で製造されたも
ので、最終のイオン交換装置を経てきたものであ
れば、超精密過装置6で処理した異性化糖液の
約5%前後となり、したがつて異性化糖液1に含
まれる懸濁物および菌類等を約20倍前後に濃縮し
た状態になる。 次にハウジング6内の濃縮異性化糖液を抜き取
り管11を介して濃縮液槽12に流出させ、その
後ふたたびポンプ3を稼動させて異性化糖液1を
ハウジング6内に流入し、前述の過を再開す
る。 一方濃縮液槽12に取りだした濃縮異性化糖液
13をポンプ3′により精密フイルター14で
過し、濃縮異性化糖液13に含まれている懸濁
物、菌類等の大部分を除去し、その過液を循環
管15を用いて異性化糖液槽2にもどし、異性化
糖液1と混合する。なお当該過液を場合によつ
ては超精密過装置4の、さらに前の工程である
イオン交換処理装置(図示せず)の被処理液と混
合してもさしつかえない。 精密フイルター14としては、細孔径が1μm
以下のものを用いることが好ましく、通常は使い
棄てのカートリツジタイプのものを用いる。なお
逆洗により再使用が可能な、たとえば焼結金属で
成形したようなフイルター、あるいはプレコート
タイプのフイルターなども使用することができ
る。 なお、精密フイルター14として、たとえば細
孔径が1μmのものを用いた場合、粒子径が1μm
以上の懸濁物、菌類は完全に除去できることは云
うまでもないが、たとえ1μm以下の粒子でも粒
子どうしの凝集作用、あるいは精密フイルター表
面に付着した懸濁物によるケーキ過作用により
除去することができる。たとえば精密フイルター
として1μmのカートリツジタイプのものを使用
すると、濃縮異性化糖液中に含まれる懸濁物の約
80%を除去することができる。 なお本発明に用いる超精密過装置4は超精密
過膜7に付着した懸濁物あるいは菌類をバブリ
ングで除去するが当該バブリングのみでは徐々に
懸濁物等が蓄積することがあるので、このような
場合は定期的に温水洗浄あるいは温か性ソーダ溶
液等の薬品で洗浄するとよい。 本発明は以上説明したように超精密過装置で
異性化糖液を過し、異性化糖液中に含まれてい
る懸濁物および菌類を除去するとともに、これら
の不純物を濃縮し、当該濃縮液を精密フイルター
で過し、その過液を工程に循環するものであ
り、従来の処理方法に比較して種々の利点があ
る。 第1の本発明は粉末活性炭を一切用いないの
で、ランニングコストを低下させると共に、添加
した粉末活性炭を別する過装置の設置が不要
となりイニシヤルコストも低下させることができ
る。 さらに粉末活性炭を使用しないので作業環境が
汚染されることもなく、かつ装置の自動化が容易
である。第2に処理装置を完全に密閉式とするこ
とができるため微生物による汚染がなく異性化糖
液を衛生的に処理できる。第3に0.1μmの粒子を
90%以上除去可能な超精密過膜を用いることに
より、従来では多少リークしていた菌類を完全に
除去することができるとともに、得られる懸濁
物、菌類等の濃縮液を精密フイルターで過する
ので、異性化糖液を直接精密フイルターで過す
る従来の処理方法と比較して、精密フイルターの
容量を小さくすることができ、設備費をさらに低
下させることができる。 以下に本発明の効果をより明確にするために実
施例を説明する。 実施例 本発明方法として、イオン交換装置で処理した
第1表に示す異性化糖液を、粒子径が0.1μmの粒
子を90%以上除去可能な超精密過膜(株式会社
クラレ製、ポリビニールアルコール系中空繊維
膜、SF−401、過面積7m2)をハウジングに有
する超精密過装置に、流入圧力3.1Kg/cm2G、
平均190/Hの流速で圧入して精製異性化糖液
を得た。なお超精密過装置の初期差圧は1.5
Kg/cm2Gであるが差圧が3.3Kg/cm2Gとなる時点
で過を中断し、ハウジングの下部より7N/
minの空気を2分間流入してハウジング内をバブ
リングし、その後ハウジング内の濃縮液を抜き、
再び前述の過を続行した。一方得られた濃縮液
を平均細孔が1μmのカートリツジタイプの精密
フイルターで過し、当該過液を超精密過装
置で過する前の異性化糖液に混合した。以上の
処理を繰り返すことにより得られた精製異性化糖
液、濃縮液、精密フイルターの過液の組成を第
1表に示す。
The present invention relates to a method for treating an isomerized sugar solution containing fructose obtained by isomerizing a glucose solution, and particularly to a method for treating the finishing portion of the isomerized sugar solution. Isomerized sugar solution is a mixed sugar solution of glucose and fructose, and the ratio of fructose to total sugar is about 45% to about 90%.
In recent years, it has come to be used industrially in large quantities as a sweetener in sweet-tasting products in place of sugar. Isomerized sugar solution is produced through a saccharification process in which starch solution is treated with acid or enzymes, and a purification process in which impurities contained in the glucose solution obtained in the saccharification process are removed by filtration, adsorption, ion exchange, etc. The resulting glucose solution is isomerized with an isomerase to produce a mixed sugar solution of glucose and fructose, or in some cases, it is further chromatographically separated to concentrate the fructose content. However, in order to commercialize this isomerized sugar solution as liquid sugar, conventionally, it is further processed through the following steps. First, the glucose solution is subjected to ion exchange treatment again in order to remove salts added when isomerizing with isomerase or residual pigments, etc., and then as a finishing process to improve the clarity of the product. After adding powdered activated carbon to the ion-exchange treatment liquid to adsorb suspended matter, remove the powdered activated carbon with a filtration machine, sterilize it with a precision filtration machine, and adjust it to an appropriate concentration in a concentrator. It is concentrated into the final product. However, the conventional finishing process using powdered activated carbon and precision filtration has the following drawbacks. In other words, the powdered activated carbon used must be of high purity, and this addition process is difficult to automate, and the working environment is contaminated by the powdered activated carbon. For operational management purposes after the isomerization process, it is difficult to use a type of filter that generates sweet water, and therefore a filter press type filter is generally used, but such a filter is difficult to automate. and susceptible to microbial contamination. In addition, precision filters are usually cartridge-type disposable ones, or reusable ones made of sintered metal that can be reused by backwashing, but the former has high running costs. However, the latter has the disadvantage of high initial cost. Moreover, such conventional finishing treatment steps are by no means satisfactory in terms of the effect of removing suspended matter and fungi. The present invention solves the above-mentioned drawbacks in the conventional finishing treatment process of isomerized sugar solution, and provides a treatment method that has good performance in removing suspended solids and fungi, and can be operated automatically. The isomerized high fructose solution that has been desalted by ion exchange treatment is pressurized into an ultra-precision filtration device that has an ultra-precision filtration membrane in the housing that can remove 90% or more of particles with a diameter of 0.1 μm. The first step is to pass the isomerized sugar solution through the membrane to remove suspended solids, fungi, etc. contained in the isomerized sugar solution.The pressure loss of the ultra-precision filtration device increases due to the passage in the first step. When this occurs, the filtration is interrupted and gas is introduced into the isomerized sugar solution remaining in the housing to cause bubbling.
In the second step of removing fungi, etc., the isomerized sugar solution containing a high concentration of suspended solids, fungi, etc. in the housing resulting from the removal in the second step is taken out from inside the housing, and the isomerized sugar solution is passed through a precision filter. passed,
The present invention relates to a method for treating an isomerized sugar solution, which includes a third step of mixing the filtrate with the isomerized sugar solution before being passed through an ultra-precise filtration device. The processing method of the present invention will be explained in detail below with reference to the drawings. The drawing is an explanatory diagram of a flow showing an example of an embodiment of the present invention, in which an isomerized high-fructose sugar solution 1 treated with an ion exchange device (not shown) is retained in an isomerized high-fructose sugar solution tank 2, and the isomerized high-fructose sugar solution is 1 is press-fitted into an ultra-precise filtration device 4 using a pump 3, suspended matter, fungi, etc. contained in the isomerized sugar solution 1 are removed, and a purified isomerized sugar solution 5 is obtained. The ultra-precision filtration device 4 has an ultra-precision filtration membrane 7 that can remove 90% or more of particles with a particle diameter of 0.1 μm inside the housing 6, and the isomerized sugar solution is passed from the outside of the ultra-precision filtration membrane 7. The purified isomerized sugar solution, which is a filtrate, is obtained from the inside of the container. Various types of ultra-precision membrane 7 can be used as long as they can remove 90% or more of particles with a particle diameter of 0.1 μm. Use the one you made. The particle size of suspended matter, fungi, etc. contained in the isomerized sugar solution is 1 μm.
% or more, and there are almost no particles with a particle size of 0.1 μm or less. Therefore, by selecting the ultra-precision membrane 7 that can remove 90% or more of particles with a particle diameter of 0.1 μm, most of the suspended solids, fungi, etc. contained in the isomerized sugar solution 1 can be removed. can do. The conditions for processing the isomerized sugar solution 1 with the ultra-precision filtration device 4 are as follows.
Kg/cm 2 G, inflow rate 10-50/m 2 - membrane area/
When processed under these processing conditions, the initial differential pressure of the ultra-precision membrane 7 is 1.5 Kg/cm 2 G.
It will be around about 100%. As such overtreatment continues, suspended matter, fungi, etc. gradually adhere to the surface of the ultra-precise membrane 7, and the differential pressure gradually increases, but the scale of the differential pressure gauge 8 reaches 3.5 Kg/cm 2 G. At this point, the flow of the high fructose sugar solution 1 is interrupted. Next, air is introduced from the distributor 10 attached to the lower part of the housing 6 through the air inflow pipe 9 to bubble the isomerized sugar solution remaining in the housing 6.
By this bubbling, most of the suspended matter, fungi, etc. adhering to the surface of the ultra-precision filter membrane 7 are peeled off from the membrane surface and dispersed in the isomerized sugar solution retained in the housing 6. Note that the air required for bubbling is released from the upper part of the housing 6 to the outside. It is preferable to use highly purified air that has been sterilized and deoiled for the bubbling, and the inflow pressure is 2 to 2.
It is recommended that it be around 3Kg/cm 2 G. The amount of air is 5~
The bubbling time is approximately 10 N/m 2 -membrane area/min, and approximately 2 to 5 minutes is sufficient. After completing this bubbling process, the concentrated isomerized high fructose liquid to be treated is manufactured using the above-mentioned manufacturing process and has passed through the final ion exchange device, then The amount is about 5% of the high-fructose sugar solution treated in step 6, and therefore, the suspended solids, fungi, etc. contained in the high-fructose sugar solution 1 are concentrated about 20 times. Next, the concentrated isomerized high-fructose liquid in the housing 6 is made to flow out into the concentrated liquid tank 12 through the extraction pipe 11, and then the pump 3 is operated again to cause the isomerized high-fructose liquid 1 to flow into the housing 6, and the above-mentioned resume. On the other hand, the concentrated isomerized sugar solution 13 taken out into the concentrated liquid tank 12 is passed through a precision filter 14 by the pump 3' to remove most of the suspended solids, fungi, etc. contained in the concentrated isomerized sugar solution 13, The filtrate is returned to the isomerized sugar solution tank 2 using the circulation pipe 15 and mixed with the isomerized sugar solution 1. Note that, depending on the case, the filtrate may be mixed with the liquid to be treated in the ion exchange treatment device (not shown), which is a step further preceding the ultra-precision filtration device 4. The precision filter 14 has a pore diameter of 1 μm.
It is preferable to use the following, and usually a disposable cartridge type. Note that it is also possible to use a filter that can be reused by backwashing, such as a filter made of sintered metal or a pre-coated type filter. Note that if the precision filter 14 is one with a pore diameter of 1 μm, for example, the particle diameter is 1 μm.
It goes without saying that the above suspended matter and fungi can be completely removed, but even particles of 1 μm or less can be removed by agglomeration of particles or by cake overeffect caused by suspended matter adhering to the surface of a precision filter. can. For example, if a 1 μm cartridge-type precision filter is used, approximately
80% can be removed. The ultra-precision filter device 4 used in the present invention removes suspended matter or fungi adhering to the ultra-precise membrane 7 by bubbling, but the bubbling alone may gradually accumulate suspended matter. In such cases, it is recommended to periodically wash with warm water or with chemicals such as warm soda solution. As explained above, the present invention filters an isomerized sugar solution using an ultra-precision filtration device, removes suspended matter and fungi contained in the isomerized sugar solution, and concentrates these impurities. The liquid is filtered through a precision filter and the filtrate is recycled to the process, which has various advantages compared to conventional processing methods. Since the first aspect of the present invention does not use powdered activated carbon at all, running costs are reduced, and there is no need to install a separate device for separating the added powdered activated carbon, thereby reducing initial costs. Furthermore, since powdered activated carbon is not used, the working environment is not contaminated and the equipment can be easily automated. Second, since the processing device can be completely closed, there is no contamination by microorganisms, and the high-fructose sugar solution can be processed hygienically. Thirdly, 0.1 μm particles
By using an ultra-precision filter membrane that can remove 90% or more, it is possible to completely remove bacteria that would otherwise leak to some extent, and the resulting concentrated solution of suspended matter and fungi is passed through a precision filter. Therefore, compared to the conventional processing method in which the isomerized sugar solution is directly passed through a precision filter, the capacity of the precision filter can be reduced, and equipment costs can be further reduced. Examples will be described below to make the effects of the present invention more clear. Example As the method of the present invention, the isomerized sugar solution shown in Table 1 treated with an ion exchange device was processed using an ultra-precision membrane (manufactured by Kuraray Co., Ltd., polyvinyl An inflow pressure of 3.1 Kg/ cm 2 G ,
A purified isomerized sugar solution was obtained by pressure injection at an average flow rate of 190/H. The initial differential pressure of the ultra-precision device is 1.5.
Kg/cm 2 G, but when the differential pressure reaches 3.3 Kg/cm 2 G, stop the heating and apply 7 N/cm from the bottom of the housing.
Bubble the inside of the housing by introducing min air for 2 minutes, then remove the concentrated liquid from the housing,
The above procedure was continued again. On the other hand, the obtained concentrate was filtered through a cartridge-type precision filter with an average pore size of 1 μm, and the filtrate was mixed with the isomerized sugar solution before being filtered through an ultra-precision filter device. Table 1 shows the compositions of the purified isomerized sugar solution, concentrate, and precision filter filtrate obtained by repeating the above treatment.

【表】 一方比較のために従来方法として、同じ異性化
糖液に固形分当り0.05%の水蒸気賦活の粉末活性
炭を添加して、30分間反応を行ない、フイルター
プレスで過し、当該過液を3μmと0.8μmとを
組み合せた精密フイルターで過して、精製異性
化糖液を得たところ、その濁度(100mmセルにお
ける波長720mμの吸光度)は0.033〜0.035、生
菌数は3〜4個/mlであつた。 以上の実施例のごとく本発明の処理方法は従来
の処理方法に比較して、処理液の濁度は40〜48%
に減少し、また除菌も完全であつた。
[Table] On the other hand, for comparison, as a conventional method, 0.05% steam-activated powdered activated carbon per solid content was added to the same high-fructose sugar solution, the reaction was carried out for 30 minutes, and the filtrate was filtered through a filter press. When a purified isomerized sugar solution was obtained by passing it through a precision filter that combines 3 μm and 0.8 μm filters, the turbidity (absorbance at a wavelength of 720 μm in a 100 mm cell) was 0.033 to 0.035, and the number of viable bacteria was 3 to 4. /ml. As shown in the above examples, the treatment method of the present invention has a turbidity of 40 to 48% of the treatment liquid compared to the conventional treatment method.
, and eradication was complete.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様の一例を示すフローの
説明図である。 1……異性化糖液、2……異性化糖液槽、3…
…ポンプ、4……超精密過装置、5……精製異
性化糖液、6……ハウジング、7……超精密過
膜、8……差圧計、9……空気流入管、10……
デイストリビユータ、11……抜き取り管、12
……濃縮液槽、13……濃縮異性化糖液、14…
…精密フイルター、15……循環管。
The drawing is an explanatory diagram of a flow showing an example of an embodiment of the present invention. 1...Isomerized sugar solution, 2...Isomerized sugar solution tank, 3...
...Pump, 4...Ultra precision filter device, 5...Purified isomerized sugar solution, 6...Housing, 7...Ultra precision filter membrane, 8...Differential pressure gauge, 9...Air inflow pipe, 10...
Distributor, 11...Extraction tube, 12
...Concentrated liquid tank, 13... Concentrated isomerized sugar solution, 14...
...Precision filter, 15...Circulation tube.

Claims (1)

【特許請求の範囲】[Claims] 1 粒子径が0.1μmの粒子を90%以上除去可能な
超精密過膜をハウジング内に有する超精密過
装置に、イオン交換処理した異性化糖液を圧入し
て当該超精密過膜を通過させることにより、異
性化糖液中に含まれている懸濁物、菌類等を過
する第一工程、過により超精密過装置の圧力
損失が増加した際に過を中断し、ハウジング内
に滞留している異性化糖液中に気体を流入させて
バブリングすることにより、超精密過膜の表面
に付着した懸濁物、菌類等を剥離させる第二工
程、剥離により生じたハウジング内の懸濁物、菌
類等を高濃度に含む異性化糖液をハウジング内か
ら取りだし、当該異性化糖液を精密フイルターで
過し、その過液を超精密過装置で過する
前の異性化糖液に混合する第三工程からなる異性
化糖液の処理方法。
1. Pressure-inject the ion-exchanged isomerized sugar solution into an ultra-precision filter device that has an ultra-precision filter membrane in the housing that can remove 90% or more of particles with a particle size of 0.1 μm and pass it through the ultra-precision filter membrane. As a result, when the pressure loss of the ultra-precision filter device increases due to the first step of filtering suspended matter, fungi, etc. contained in the isomerized sugar solution, the filtering is interrupted and the particles remain in the housing. The second step is to remove suspended solids, fungi, etc. that have adhered to the surface of the ultra-precision membrane by bubbling gas into the isomerized sugar solution. The high-fructose high-fructose solution containing a high concentration of fungi, etc. is taken out from inside the housing, the high-fructose high-fructose solution is filtered through a precision filter, and the filtrate is mixed with the high-fructose high-fructose solution before being passed through an ultra-precision filter device. A method for processing isomerized sugar solution consisting of a third step.
JP9759080A 1980-07-18 1980-07-18 Treatment of inverted sugar liquid Granted JPS5722700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9759080A JPS5722700A (en) 1980-07-18 1980-07-18 Treatment of inverted sugar liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9759080A JPS5722700A (en) 1980-07-18 1980-07-18 Treatment of inverted sugar liquid

Publications (2)

Publication Number Publication Date
JPS5722700A JPS5722700A (en) 1982-02-05
JPS6331197B2 true JPS6331197B2 (en) 1988-06-22

Family

ID=14196446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9759080A Granted JPS5722700A (en) 1980-07-18 1980-07-18 Treatment of inverted sugar liquid

Country Status (1)

Country Link
JP (1) JPS5722700A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058100A (en) * 1983-09-09 1985-04-04 三菱化学株式会社 Saccharide purifying method
JP2010284133A (en) * 2009-06-15 2010-12-24 Nippon Rensui Co Ltd Method for producing purified sugar solution

Also Published As

Publication number Publication date
JPS5722700A (en) 1982-02-05

Similar Documents

Publication Publication Date Title
US4855494A (en) Process for producing citric acid
DE3827159C2 (en) Process for the production of L-amino acids from fermentation liquids
CN104673872B (en) A kind of method that DCPC is recycled in the resin adsorption waste liquid from cephalosporin
CN110343786A (en) A kind of purification process that syrup decolorization is deodorized
US3078188A (en) Filtration process
US5734046A (en) Method for manufacturing limonoid glucosides
JPS6331197B2 (en)
JPS6260942B2 (en)
JP4701539B2 (en) Sugar liquid purification equipment
JPH02277595A (en) Water treatment
JP2794304B2 (en) Cleaning method for hollow fiber membrane module
JPS5851904A (en) Method for washing membrane surface of membrane separation apparatus
JP3746803B2 (en) Semiconductor cleaning wastewater collection method
JP4065356B2 (en) Surfactant-containing wastewater treatment method
CN203728671U (en) Emission reduction system after washing with ultrapure water in clean production
US3711329A (en) Sugar recovery method and apparatus
Saravacos et al. Physical treatments of food processing wastewaters
JPH09225324A (en) Regeneration of ion exchange resin or synthetic adsorbing material for removing organic impurities
CN203139910U (en) Nanofiltration membrane system applied to fermentation liquor purification
JPH05317024A (en) Filtration of japanese wine
JPS5930443B2 (en) Membrane separation method
CN217947800U (en) A quality of water clarification plant for water lily is cultivated
JPH0686997A (en) Ultra pure water preparing device
CN209721754U (en) Constant pressure purifier
CN109534547B (en) Printing and dyeing wastewater treatment process