JPS63311157A - Ion sensor - Google Patents

Ion sensor

Info

Publication number
JPS63311157A
JPS63311157A JP62146781A JP14678187A JPS63311157A JP S63311157 A JPS63311157 A JP S63311157A JP 62146781 A JP62146781 A JP 62146781A JP 14678187 A JP14678187 A JP 14678187A JP S63311157 A JPS63311157 A JP S63311157A
Authority
JP
Japan
Prior art keywords
sensor
electrode
group
hydrogen ions
ion sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62146781A
Other languages
Japanese (ja)
Inventor
Eiji Ofuku
大福 英治
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP62146781A priority Critical patent/JPS63311157A/en
Publication of JPS63311157A publication Critical patent/JPS63311157A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To broaden the region in which the concentration of hydrogen ions can be measured, by using a specified copolymer as a sensitive material. CONSTITUTION:A copolymer film comprising two or more kinds of compounds (A), which have atoms. (atomic group) in a molecule, is deposited on the surface of a substrate comprising a conductor, a semiconductor or nonconductor. Hydrogen ions can be added to or eliminated from said atoms. It is desirable that the atoms. (atomic group) of the compound A are the radical of -NH2, -NH-, =N-, -OH or -O-. Aniline, 1,2 diaminobenzene and the like can be used as the compound A. It is desirable that the film is formed by an electrolytic oxidation copolymerization method. In this way, an ion sensor, which can measure the concentration of hydrogen ions stably in a broad rage and whose detecting part can be miniaturized, is obtained.

Description

【発明の詳細な説明】 産業上の利用分野   ゛ 本発明は新規なイオンセンサに関し、更に詳述すると、
水素イオンの付加及び脱離を行なうことのできる2種以
上の化合物の共重合体を感応物質としたことにより、水
素イオン濃度を広範囲にわたって安定に測定し得ると共
に、検出部を微小化することが可能なイオンセンサに関
する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a novel ion sensor, and more specifically,
By using a copolymer of two or more compounds that can add and desorb hydrogen ions as a sensitive material, hydrogen ion concentration can be stably measured over a wide range, and the detection part can be miniaturized. Regarding possible ion sensors.

従来の技術及び発明が解決しようとする問題点従来、溶
液中等のイオン濃度を測定する手段として、イオンセン
サの一種であるイオン電極を使用することが知られてお
り、これまで各種のイオン電極が開発され、排水計測や
環境汚染の監視、工場での工程管理、病院での臨床検査
などの種々の分野で利用されている。
Conventional techniques and problems to be solved by the invention Conventionally, it has been known to use an ion electrode, which is a type of ion sensor, as a means of measuring the ion concentration in a solution, etc. Until now, various ion electrodes have been used. It has been developed and used in a variety of fields, including wastewater measurement, environmental pollution monitoring, process control in factories, and clinical testing in hospitals.

これらの中で水素イオン濃度を測定する電極としては、
水素電極、キンヒドロン電極、ガラス電極などが知られ
ており、特にガラス電極はその性能の点で広範に利用さ
れているが、このガラス電極はその構造上電極内部に基
準液室を設ける必要があるため検出部が大型化し、現在
要求されいるセンサの微小化に対応することができない
。また、ガラス電極はガラス膜の膜抵抗が太きくpH測
定には高入力インピーダンスの増幅器を要する上、ガラ
ス膜に付着するような物質が存在する溶液中 、では測
定困難となる等の欠点を有する。
Among these electrodes for measuring hydrogen ion concentration,
Hydrogen electrodes, quinhydrone electrodes, glass electrodes, etc. are known, and glass electrodes in particular are widely used for their performance, but due to their structure, it is necessary to provide a reference liquid chamber inside the electrode. Therefore, the detection section becomes large, and it is not possible to meet the current demand for miniaturization of sensors. In addition, glass electrodes have drawbacks such as the large membrane resistance of the glass membrane, which requires an amplifier with high input impedance for pH measurement, and measurement difficult in solutions where there are substances that may adhere to the glass membrane. .

これに対し、上記ガラス電極の問題点を解消した微小化
可能なイオンセンサとして、導電体表面にヒドロキシ芳
香族化合物の重合体膜を直接被着したもの(特開昭57
−118153号公報)、及び導電体表面に窒素含有芳
香族化合物又はヒドロキシ芳香族化合物の重合体膜を直
接被着したもの(特開昭58−32155号公報)が提
案されている。
On the other hand, as an ion sensor that can be miniaturized and eliminates the above-mentioned problems of the glass electrode, a polymer film of hydroxy aromatic compound is directly deposited on the surface of the conductor (Japanese Patent Laid-Open No. 57
118153), and one in which a polymer film of a nitrogen-containing aromatic compound or a hydroxy aromatic compound is directly deposited on the surface of a conductor (Japanese Patent Laid-Open No. 58-32155) has been proposed.

しかし、上記公報の実施例に記載された窒素含有芳香族
化合物又はヒドロキシ芳香族化合物の単独重合体膜を用
いたセンサは、測定値のネルンスト式を満足する範囲が
良好なものでもpH2〜10程度であり、測定可能な水
素イオン濃度の領域が狭い。このため、上記センサは未
だ実用化されるに至っていないのが実情である。
However, the sensor using a homopolymer film of a nitrogen-containing aromatic compound or a hydroxy aromatic compound described in the examples of the above publication has a pH of about 2 to 10 even if the measured value satisfies the Nernst equation. Therefore, the measurable hydrogen ion concentration range is narrow. For this reason, the reality is that the above-mentioned sensor has not yet been put into practical use.

本発明は上記事情に鑑みなされたもので、特定化合物の
重合体を感応膜として用いたイオンセンサにおいて、水
素イオン濃度の測定可能領域が広く、実用的に有用なイ
オンセンサを提供することを目的とする。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a practically useful ion sensor that has a wide measurable range of hydrogen ion concentration in an ion sensor using a polymer of a specific compound as a sensitive membrane. shall be.

問題点を解決するための手段及び作用 即ち、本発明者らは、上記目的を達成するために鋭意検
討を行なった結果、分子内に−NH2基、−NH−基、
−OH基等の水素イオンの付加及び脱離を行なうことが
できる原子又は原子団(以下、場合により単に水素イオ
ン官能部という。)を有する芳香族系化合物の2種以上
のモノマーを共重合し、この共重合物を感応膜として導
電体、半導体又は不導体からなる基体に被着することに
よりセンサを構成した場合、窒素含有芳香族化合物又は
ヒドロキシ芳香族化合物の単独重合体膜を用いた場合に
比べ幅広い濃度領域でネルンスト応答を示すセンサを得
ることができることを知見し、本発明をなすに至った。
Means and Effects for Solving the Problems In order to achieve the above object, the inventors of the present invention conducted intensive studies and found that -NH2 group, -NH- group,
Copolymerizing two or more monomers of an aromatic compound having an atom or atomic group (hereinafter simply referred to as a hydrogen ion functional part in some cases) capable of adding and desorbing hydrogen ions such as -OH group. , when a sensor is constructed by applying this copolymer as a sensitive film to a substrate made of a conductor, semiconductor, or nonconductor; when a homopolymer film of a nitrogen-containing aromatic compound or a hydroxyaromatic compound is used; The present inventors have discovered that it is possible to obtain a sensor that exhibits a Nernst response in a wider concentration range than in the conventional method, and have accomplished the present invention.

従って、本発明は、分子内に水素イオンの付加及び脱離
を行なうことができる原子又は原子団を有する芳香族系
化合物の2種以上の共重合膜を導電体、半導体又は不導
体からなる基体の表面に被着してなることを特徴とする
イオンセンサを提供する。
Therefore, the present invention provides a method for applying a copolymer film of two or more aromatic compounds having atoms or atomic groups capable of adding and desorbing hydrogen ions to a substrate made of a conductor, a semiconductor, or a nonconductor. An ion sensor is provided, characterized in that the ion sensor is formed by adhering to the surface of the ion sensor.

本発明センサは、上述した構成としたことにより、単独
重合物膜を用いたセンサの起電力が水素イオン濃度に対
しpH2〜10程度の範囲でしか良好な直線性を示さな
いのに対し、pno、5〜13.5という幅広い濃度範
囲で起電力とpHとの間に直線関係が成立し、ガラス電
極とほぼ同様の測定領域を有するものである。
By having the above-described structure, the sensor of the present invention has a pno. A linear relationship is established between electromotive force and pH over a wide concentration range of , 5 to 13.5, and the measurement range is almost the same as that of a glass electrode.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明センサは、水素イオン官能部を有する芳香族系化
合物の共重合膜を基体表面に被着するものである。
The sensor of the present invention has a copolymer film of an aromatic compound having a hydrogen ion functional moiety adhered to the surface of a substrate.

この場合、共重合に用いる芳香族系化合物の種類に限定
はないが、分子内にイオン官能部として−NH2基、−
NH−基、二N−基、−OH基及び−〇−基の1種以上
を有する化合物の2種以上を用いることが好ましく、特
に下記一般式(1)(但し、(1)〜(3)式において
Arは芳香核、R,R’は置換基、mはO又は1以上の
整数、nは1以上の整数で、m+nはArの有効原子価
数を超えない。但し、Arは窒素原子を含む複素芳香環
であってもよく、その場合nは0でもよい。) で示される化合物の2種以上が好適に使用される。
In this case, there are no limitations on the type of aromatic compound used for copolymerization, but there are -NH2 groups, -
It is preferable to use two or more types of compounds having one or more types of NH- group, diN- group, -OH group, and -〇- group, and in particular, the following general formula (1) (however, (1) to (3) ) In the formula, Ar is an aromatic nucleus, R and R' are substituents, m is O or an integer of 1 or more, n is an integer of 1 or more, and m+n does not exceed the effective valence number of Ar.However, Ar is nitrogen It may be a heteroaromatic ring containing atoms, in which case n may be 0.) Two or more of the compounds shown below are preferably used.

この場合、上記(1)〜(3)式の化合物として、具体
的にはアニリン、2−メチルアニリン、3−メチルアニ
リン、4−メチルアニリン、1,2−ジアミノベンゼン
、1,3−ジアミノベンゼン、1.4−ジアミノベンゼ
ン、2−アミノベンゾトリフルオリド、2−アミノピリ
ジン、2,3−ジアミノピリジン、4,4′−ジアミノ
ジフェニルエーテル、4,4′−メチレンジアニリンチ
ラミン、4−ヒドロキシジフェニルアミン、ピロール、
フェノール、4−フェノキシアニリン、4−フェノキシ
フェノール、4−アミノジフェニルアミン、2−アミノ
フェノール、3−アミノフェノール、4−アミノフェノ
ール、ハイドロキノン、ジメチルフェノール、ヒドロキ
シピリジン、2−ヒドロキシベンズアルデヒド、3−ヒ
ドロキシベンズアルデヒド、4−ヒドロキシベンズアル
デヒド、2−ヒドロキシアセトフェノン、3−ヒドロキ
シアセトフェノン、4−ヒドロキシアセトフェノン、2
−ヒドロキシプロピオフェノン、3−ヒドロキシプロピ
オフェノン、4−ヒドロキシプロピオフェノン、2−ベ
ンゾフェノール、3−ベンゾフェノール、4−ベンゾフ
ェノール、2−ヒドロキシベンゾフェノン、3−ヒドロ
キシベンゾフェノン、4−ヒドロキシベンゾフェノン、
2−カルボキシフェノール、3−カルボキシフェノール
、4−カルボキシフェノール、ジフェニルフェノール、
2−メチル−8−ヒドロキノリン、1−ビレナミン、1
−アミノアントラセン等を挙げることができるが、これ
らに限定されるものではない。これらの中で、特に好ま
しいのは、アニリン、1,2−ジアミノベンゼン、4−
ヒドロキシジフェニルアミン、フェノール、4,4′−
ジアミノフェニルエーテル、ピリジン、2−アミノフェ
ノール、4−フェノキシフェノール、4−フェノキシア
ニリン、4−アミノジフェニルアミン、1−ピレナミン
の2種以上である。
In this case, the compounds of formulas (1) to (3) above are specifically aniline, 2-methylaniline, 3-methylaniline, 4-methylaniline, 1,2-diaminobenzene, 1,3-diaminobenzene. , 1,4-diaminobenzene, 2-aminobenzotrifluoride, 2-aminopyridine, 2,3-diaminopyridine, 4,4'-diaminodiphenyl ether, 4,4'-methylenedianilintyramine, 4-hydroxydiphenylamine, pyrrole,
Phenol, 4-phenoxyaniline, 4-phenoxyphenol, 4-aminodiphenylamine, 2-aminophenol, 3-aminophenol, 4-aminophenol, hydroquinone, dimethylphenol, hydroxypyridine, 2-hydroxybenzaldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, 2-hydroxyacetophenone, 3-hydroxyacetophenone, 4-hydroxyacetophenone, 2
-Hydroxypropiophenone, 3-hydroxypropiophenone, 4-hydroxypropiophenone, 2-benzophenol, 3-benzophenol, 4-benzophenol, 2-hydroxybenzophenone, 3-hydroxybenzophenone, 4-hydroxybenzophenone,
2-carboxyphenol, 3-carboxyphenol, 4-carboxyphenol, diphenylphenol,
2-methyl-8-hydroquinoline, 1-birenamine, 1
-aminoanthracene and the like, but are not limited thereto. Among these, particularly preferred are aniline, 1,2-diaminobenzene, 4-
Hydroxydiphenylamine, phenol, 4,4'-
They are two or more of diaminophenyl ether, pyridine, 2-aminophenol, 4-phenoxyphenol, 4-phenoxyaniline, 4-aminodiphenylamine, and 1-pyrenamine.

この場合、共重合させる化合物の組み合わせは限られな
いが、特にアニリン及び/又は1,2−ジアミノベンゼ
ンを含む2種以上を共重合させろことが好適であり、こ
れによりイオン濃度の測定可能領域が広いセンサを確実
に得ることができる。
In this case, the combination of compounds to be copolymerized is not limited, but it is particularly preferable to copolymerize two or more compounds containing aniline and/or 1,2-diaminobenzene, which widens the measurable range of ion concentration. A wide sensor can be reliably obtained.

このような化合物の組み合わせとして、具体的にはアニ
リン及び1,2−ジアミノベンゼンの組み合わせ、アニ
リン、1,2−ジアミノベンゼン及び4−ヒドロキシジ
フェニルアミンの組み合わせ、アニリン、1,2−ジア
ミノベンゼン及び2−アミノフェノールの組み合わせ等
が挙げられる。
Examples of combinations of such compounds include a combination of aniline and 1,2-diaminobenzene, a combination of aniline, 1,2-diaminobenzene and 4-hydroxydiphenylamine, and a combination of aniline, 1,2-diaminobenzene and 2-diaminobenzene. Examples include combinations of aminophenols.

更に、共重合におけるモノマーの混合比は特に制限され
ないが、添加されるモノマーのうち最も添加量の少ない
モノマーの最も添加量の多いモノマーに対する比率(モ
ル比)が0.05以上、特に0.3〜1の範囲であるこ
とが好ましい。この比率が0.05未満の場合には添加
量の少ない方のモノマーによる効果が現れず、広い測定
可能なpH領域を得られない場合がある。
Furthermore, the mixing ratio of monomers in copolymerization is not particularly limited, but the ratio (molar ratio) of the monomer added in the least amount to the monomer added in the largest amount among the monomers added is 0.05 or more, particularly 0.3. It is preferable that it is in the range of 1 to 1. If this ratio is less than 0.05, the effect of the smaller monomer added may not be apparent, and a wide measurable pH range may not be obtained.

上記化合物のモノマーから共重合物膜を得る方法に特に
制限はなく、化学酸化重合法、電解酸化重合法等の公知
の重合手段を採用し得るが、特に電解酸化共重合法が好
ましい。例えば、上記化合物のモノマーを2種類又は3
種類以上含む溶液中に電極を挿入し、所望の電極に正電
圧をかけるように外部電源を接続することにより、該電
極上に電解酸化共重合物膜を得ることができる。この場
合、電解酸化重合の方法に限定はなく、定電流酸化重合
法、定電圧酸化重合法、電位掃引による酸化重合法等が
適宜採用される。
There is no particular restriction on the method for obtaining a copolymer film from the monomers of the above compounds, and known polymerization methods such as chemical oxidation polymerization method and electrolytic oxidation polymerization method may be employed, but electrolytic oxidation copolymerization method is particularly preferred. For example, two or three types of monomers of the above compound may be used.
An electrolytically oxidized copolymer film can be obtained on a desired electrode by inserting the electrode into a solution containing at least one type of electrode and connecting an external power source so as to apply a positive voltage to the desired electrode. In this case, the method of electrolytic oxidative polymerization is not limited, and a constant current oxidative polymerization method, a constant voltage oxidative polymerization method, a potential sweep oxidative polymerization method, etc. are appropriately employed.

また、本発明に用いる基体の材質に特に制限はなく、種
々材質の導電体、半導体又は不導体から適宜選択するこ
とができるが、白金、金等の貴金属、チタン、銀、銅、
ニッケル、ステンレススチール、アルミニウム、カーボ
ン、シリコン、ゲルマニウム、酸化けい素、酸化ゲルマ
ニウム、酸化錫又は酸化インジウ11を用いることが好
ましい。
Furthermore, the material of the substrate used in the present invention is not particularly limited and may be appropriately selected from various conductors, semiconductors, or nonconductors, but noble metals such as platinum, gold, titanium, silver, copper,
It is preferable to use nickel, stainless steel, aluminum, carbon, silicon, germanium, silicon oxide, germanium oxide, tin oxide or indium oxide 11.

更に、基体としては、導電体、半導体又は不導体の表面
に他の種類の導電体、半導体又は不導体を真空蒸着、高
周波スパッタリング等の手段によって積層したものを用
いてもよい。
Further, the substrate may be a conductor, a semiconductor, or a nonconductor with another type of conductor, semiconductor, or nonconductor laminated on the surface by vacuum deposition, high-frequency sputtering, or the like.

なお、基体に共重合物膜を被着する手段に限定はないが
、例えば−ヒ記電解酸化重合法において基体を電極とし
て用い、この基体−ヒに直接共重合物膜を析出形成させ
る方法や、共重合物膜を溶媒に溶解し、この溶液を基体
に塗布した後、溶媒を除去して共重合物膜とする方法等
を好適に採用することができる。
There is no limit to the method of applying the copolymer film to the substrate, but for example, a method in which the substrate is used as an electrode in the electrolytic oxidation polymerization method described in (b) and the copolymer film is directly deposited and formed on this substrate (b); , a method of dissolving a copolymer film in a solvent, applying this solution to a substrate, and then removing the solvent to form a copolymer film can be suitably employed.

本発明イオンセンサを用いて水素イオン濃度を測定する
場合、イオン濃度を電極電位又は電流応答で検出するも
のであるが、この場合本発明センサはガラス電極のよう
に内部基準液室を必要としないため、検出部の微小化が
可能であり、例えば電解効果トランジスタと組み合わせ
ることにより超小型のセンサを作成することができる。
When measuring hydrogen ion concentration using the ion sensor of the present invention, the ion concentration is detected by electrode potential or current response, but in this case, the sensor of the present invention does not require an internal reference liquid chamber like a glass electrode. Therefore, it is possible to miniaturize the detection section, and for example, by combining it with a field effect transistor, it is possible to create an ultra-small sensor.

また、単独でpHセンサとして使用できるほか、他のセ
ンサと組み合わせて集積することにより複合センサを構
成することもできるなど、実用上極めて有用なものであ
る。
Moreover, it is extremely useful in practice, as it can be used alone as a pH sensor, and can also be integrated with other sensors to form a composite sensor.

更に、本発明のイオンセンサは、共重合物膜表面を水素
イオン透過能を有するポリスチレン、ポリカーボネート
、ポリ塩化ビニル、ポリ塩化ビニリデン等のフィルムで
被覆したり、ニュートラルキャリアやイオン感応物質を
担持させた高分子材料で被覆してもよく、これにより共
重合物膜の保護等を行なうことができる。
Furthermore, the ion sensor of the present invention can be made by coating the copolymer membrane surface with a film of polystyrene, polycarbonate, polyvinyl chloride, polyvinylidene chloride, etc. that has hydrogen ion permeability, or by supporting a neutral carrier or an ion-sensitive substance. It may be coated with a polymer material, which can protect the copolymer film.

発明の詳細 な説明したように、本発明のイオンセンサは、分子内に
水素イオンの付加及び脱離を行なうことができろ原子又
は原子団を有する芳香族系化合物の2種以上の共重合物
膜を感応膜としたことにより、水素イオン濃度の測定可
能領域が広いと共に、検出部を微小化することが可能で
、実用」−非常に有用なものである。
As described in detail, the ion sensor of the present invention is a copolymer of two or more aromatic compounds having atoms or atomic groups capable of adding and desorbing hydrogen ions in the molecule. By using a sensitive membrane, the hydrogen ion concentration can be measured over a wide range, and the detection section can be miniaturized, making it extremely useful for practical use.

以下、実施例及び比較例を示し、本発明を具体的に説明
するが、本発明は下記実施例に限定されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

実施例1 50mMのアニリンモノマー及び50mMの1.2−ジ
アミノベンゼンモノマーを含む0.2M硫酸ナトリウム
水溶液を硫酸によってpH1に調整したものを重合液と
して使用し、三電極法により白金板からなる作用極(基
体)上にアニリンと1,2−ジアミノベンゼンとが共重
合された電解酸化重合薄膜を形成し、センサを得た。こ
の場合、対極には白金板、参照電極には銀・塩化銀電極
(Ag/Ag”)を使用した。また、薄膜の作製は、電
位掃引法により−0,2v〜+1.2■vs、 A g
 / A g+の電位範囲を掃引速度50mV/Sで5
0サイクル電位掃引することにより行なった。
Example 1 A 0.2M aqueous sodium sulfate solution containing 50mM aniline monomer and 50mM 1,2-diaminobenzene monomer adjusted to pH 1 with sulfuric acid was used as the polymerization solution, and a working electrode made of a platinum plate was prepared by the three-electrode method. An electrolytically oxidized thin film in which aniline and 1,2-diaminobenzene were copolymerized was formed on a (substrate) to obtain a sensor. In this case, a platinum plate was used as the counter electrode, and a silver/silver chloride electrode (Ag/Ag'') was used as the reference electrode.The thin film was prepared using a potential sweep method with voltages ranging from -0.2v to +1.2■vs. A g
/A g+ potential range at a sweep rate of 50 mV/S
This was done by performing a 0 cycle potential sweep.

次に、得られた薄膜被覆センサを水洗した後、pHを調
整した試料溶液に浸漬し、参照電極を基準にして起電力
を測定した。この場合、試料溶液としては0.2M硫酸
ナトリウム水溶液に硫酸又は水酸化ナトリウ11を添加
してpHの値を調整したものを使用し、参照電極として
は銀・塩化銀電極を使用した。
Next, the obtained thin film coated sensor was washed with water, and then immersed in a pH-adjusted sample solution, and the electromotive force was measured using the reference electrode as a reference. In this case, the sample solution used was a 0.2 M sodium sulfate aqueous solution to which sulfuric acid or sodium hydroxide 11 was added to adjust the pH value, and the reference electrode was a silver/silver chloride electrode.

得られた起電力と試料のpHとの関係を第1図中Oで示
すが、本センサはpH0,5〜12の範囲で傾き61m
V/pHの直線性の良い応答を示し、本発明センサの測
定可能領域が広いことが確認された。
The relationship between the obtained electromotive force and the pH of the sample is shown by O in Figure 1, and this sensor has an inclination of 61 m in the pH range of 0.5 to 12.
It was confirmed that the sensor of the present invention had a wide measurable range, showing a highly linear V/pH response.

また、上記測定後、センサを水洗、乾燥して空気中に2
5日間保存した後、上記と同様にして起電力とpHとの
関係を調べた。結果を第1図中ムで示すが、25日間保
存後でも起電力とpHとの間にはネルンスト的応答が維
持され、pH0,5〜12の範囲で傾き59mV/pH
の直線性の良い応答を示した。従って、この結果より本
センサは空気中保存によっても劣化せず、水素イオン濃
度測定用センサとして極めて優れた性能を示すことが認
められる。
After the above measurement, the sensor was washed with water, dried, and placed in the air for 2 hours.
After storing for 5 days, the relationship between electromotive force and pH was investigated in the same manner as above. The results are shown in Figure 1 with a Nernstian response between the electromotive force and pH even after storage for 25 days, with a slope of 59 mV/pH in the pH range of 0.5 to 12.
It showed a response with good linearity. Therefore, from this result, it is recognized that the present sensor does not deteriorate even when stored in air and exhibits extremely excellent performance as a sensor for measuring hydrogen ion concentration.

実施例2 50mMのアニリンモノマー、50mMの1,2−ジア
ミノベンゼンモノマー及び50mMの4−ヒドロキシジ
フェニルアミンモノマーを含む0.2M硫酸ナトリウム
水溶液を硫酸によってpH0,8に調整したものを重合
液として使用し、三電極法により白金板からなる作用極
(基体)上にアニリンと1,2−ジアミノベンゼンと4
−ヒドロキシジフェニルアミンとが共重合された電解酸
化重合薄膜を形成し、センサを得た。なお、対極及び参
照電極は実施例1と同様のものを用いた。
Example 2 A 0.2M aqueous sodium sulfate solution containing 50mM aniline monomer, 50mM 1,2-diaminobenzene monomer and 50mM 4-hydroxydiphenylamine monomer was adjusted to pH 0.8 with sulfuric acid and used as a polymerization solution, Using the three-electrode method, aniline, 1,2-diaminobenzene, and 4
- Hydroxydiphenylamine was copolymerized to form an electrolytic oxidation polymerized thin film to obtain a sensor. Note that the same counter electrode and reference electrode as in Example 1 were used.

また、薄膜の作製は、電位掃引法により一〇、2V−+
 1 + 2 V vs、A g / A g+の電位
範囲を掃引速度50mV/Sで40サイクル電位掃引す
ることにより行なった。
In addition, the thin film was prepared by the potential sweep method at 10.2V-+
The measurement was carried out by sweeping the potential in a potential range of 1 + 2 V vs. A g /A g+ for 40 cycles at a sweep rate of 50 mV/S.

次に、得られた薄膜被覆センサを水洗した後、実施例1
と同様の方法で溶液のpHに対する起電力の応答を調べ
た。結果を第2図に示す。第2図から明らかなように、
本センサはpH0,5〜13の範囲で傾き33mV/p
Hの直線性の良い応答を示し、水素イオン濃度測定用セ
ンサとして極めて優れたものであった。
Next, after washing the obtained thin film coated sensor with water, Example 1
The response of the electromotive force to the pH of the solution was investigated using the same method. The results are shown in Figure 2. As is clear from Figure 2,
This sensor has a slope of 33 mV/p in the pH range of 0.5 to 13.
It exhibited a highly linear H response and was extremely excellent as a sensor for measuring hydrogen ion concentration.

比較例1 モノマーとして50mMのアニリンのみを含む0.2M
硫酸ナトリウム水溶液を硫酸によってpH1に調整した
ものを重合液として使用し、三電極法により白金板から
なる作用極(基体)上にポリアニリンからなる電解酸化
重合薄膜を形成し、センサを得た。なお、対極及び参照
電極は実施例1と同様のものを用いた。また、薄膜の作
製は、電位掃引法により一〇、IV−+0.8V  v
s。
Comparative Example 1 0.2M containing only 50mM aniline as monomer
Using an aqueous sodium sulfate solution adjusted to pH 1 with sulfuric acid as the polymerization solution, an electrolytically oxidized polymer thin film made of polyaniline was formed on a working electrode (substrate) made of a platinum plate by a three-electrode method to obtain a sensor. Note that the same counter electrode and reference electrode as in Example 1 were used. In addition, the thin film was prepared using the potential sweep method at 10, IV-+0.8V v
s.

Ag/Ag+の電位範囲を掃引速度50mV/Sで15
0サイクル電位掃引することにより行なった。
15 at a sweep rate of 50 mV/S over the Ag/Ag+ potential range.
This was done by performing a 0 cycle potential sweep.

次に、得られた薄膜被覆センサを水洗した後、実施例1
と同様の方法で溶液のpHに対する起電力の応答を調べ
た。その結果、本センサはp’H3〜9という狭い範囲
では傾き57mV/pHの直線関係を示したが、他の部
分ではネルンスト的応答を示さないものであった。
Next, after washing the obtained thin film coated sensor with water, Example 1
The response of the electromotive force to the pH of the solution was investigated using the same method. As a result, this sensor showed a linear relationship with a slope of 57 mV/pH in the narrow range of p'H3 to 9, but did not show a Nernstian response in other parts.

比較例2 モノマーとして50mMの1,2−ジアミノベンゼンの
みを含む0.2M硫酸ナトリウム水溶液を硫酸によって
p H1に調整したものを重合液として使用し、三電極
法により白金板からなる作用極(基体)上にポリ(1,
2−ジアミノベンゼン)からなる電解酸化重合薄膜を形
成し、センサを得た。なお、対極及び参照電極は実施例
1と同様のものを用いた。また、薄膜の作製は、電位掃
引法により一〇、2V−+ 1.2V vs、Ag/A
g+(7)電位範囲を掃引速度50mV/Sで150サ
イクル電位掃引することにより行なった。
Comparative Example 2 A 0.2M aqueous sodium sulfate solution containing only 50mM of 1,2-diaminobenzene as a monomer and adjusted to pH 1 with sulfuric acid was used as the polymerization solution, and a working electrode (substrate) made of a platinum plate was prepared by the three-electrode method. ) on poly(1,
A sensor was obtained by forming an electrolytically oxidatively polymerized thin film consisting of (2-diaminobenzene). Note that the same counter electrode and reference electrode as in Example 1 were used. In addition, the thin film was prepared by the potential sweep method at 10,2V-+ 1.2V vs. Ag/A
The test was carried out by sweeping the g+(7) potential range for 150 cycles at a sweep rate of 50 mV/S.

次に、得られた薄膜被覆センサを水洗した後、実施例1
と同様の方法で溶液のpHに対する起電力の応答を調べ
た。その結果、本センサはpH5〜10.5という狭い
範囲では傾き58mV/pHの直線関係を示したが、他
の部分ではネルンスト的応答を示さないものであった。
Next, after washing the obtained thin film coated sensor with water, Example 1
The response of the electromotive force to the pH of the solution was investigated using the same method. As a result, this sensor showed a linear relationship with a slope of 58 mV/pH in the narrow range of pH 5 to 10.5, but did not show a Nernstian response in other parts.

lb− 以上の結果より、共重合物膜を用いた本発明センサは単
独重合物膜を用いた従来のセンサに比べてイオン濃度の
測定可能範囲が広いことが確認された。
lb- From the above results, it was confirmed that the sensor of the present invention using a copolymer film has a wider measurable range of ion concentration than the conventional sensor using a homopolymer film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本発明センサによって試料
溶液のpHを測定した場合における試料溶液のpHと本
発明センサの起電力との関係を示すグラフである。 出願人  株式会社ブリデストン 代理人  弁理士 小 島 隆 司 タ           10           
ISUS;           IQ       
    IりP)−1 手続補正書(自発) 昭和62年7月14日 1、事件の表示 昭和62年特許願第146781号 2、発明の名称 イオンセンサ 3、補正をする者 事件との関係    特許出願人 住  所  東京都中央区京橋−丁目10番1号氏  
名  (527)株式会社  ブリデストン代表者  
家 入  昭 4、代理人 〒104 住  所  東京都中央区銀座3丁目11番14号ダパ
クリエートビル5階 電話(545)64546、補正
の内容 (2)同第15頁第16行目に「150サイクル」とあ
るのを「40サイクル」と訂正する。 以上
FIGS. 1 and 2 are graphs showing the relationship between the pH of a sample solution and the electromotive force of the sensor of the invention when the pH of the sample solution is measured by the sensor of the invention, respectively. Applicant Brideston Co., Ltd. Agent Patent Attorney Takashi Kojima 10
ISUS; IQ
IRIP)-1 Procedural amendment (voluntary) July 14, 1988 1, Indication of the case 1988 Patent Application No. 146781 2, Name of the invention Ion sensor 3, Person making the amendment Relationship to the case Patent Applicant address: 10-1 Kyobashi-chome, Chuo-ku, Tokyo
Name (527) Representative of Brideston Co., Ltd.
House: 4th year of Showa, Agent: 104 Address: 5th floor, Dapa Create Building, 3-11-14 Ginza, Chuo-ku, Tokyo Phone: (545) 64546 Contents of amendment (2) On page 15, line 16 of the same: "150 cycles" should be corrected to "40 cycles."that's all

Claims (1)

【特許請求の範囲】 1、分子内に水素イオンの付加及び脱離を行なうことが
できる原子又は原子団を有する芳香族系化合物の2種以
上の共重合物膜を導電体、半導体又は不導体からなる基
体の表面に被着してなることを特徴とするイオンセンサ
。 2、水素イオンの付加及び脱離を行なうことができる原
子又は原子団が−NH_2基、−NH−基、=N−基、
−OH基又は−O−基である特許請求の範囲第1項記載
のイオンセンサ。 3、共重合物膜が電解酸化共重合法で形成されたもので
ある特許請求の範囲第1項又は第2項記載のイオンセン
サ。 4、pHセンサとして構成した特許請求の範囲第1項乃
至第3項いずれか記載のイオンセンサ。
[Claims] 1. A copolymer film of two or more aromatic compounds having atoms or atomic groups capable of adding and desorbing hydrogen ions in the molecule as a conductor, semiconductor, or nonconductor. An ion sensor characterized by being adhered to the surface of a base made of. 2. The atom or atomic group capable of adding and desorbing hydrogen ions is -NH_2 group, -NH- group, =N- group,
The ion sensor according to claim 1, which is an -OH group or an -O- group. 3. The ion sensor according to claim 1 or 2, wherein the copolymer film is formed by an electrolytic oxidation copolymerization method. 4. The ion sensor according to any one of claims 1 to 3, configured as a pH sensor.
JP62146781A 1987-06-12 1987-06-12 Ion sensor Pending JPS63311157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62146781A JPS63311157A (en) 1987-06-12 1987-06-12 Ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62146781A JPS63311157A (en) 1987-06-12 1987-06-12 Ion sensor

Publications (1)

Publication Number Publication Date
JPS63311157A true JPS63311157A (en) 1988-12-19

Family

ID=15415388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62146781A Pending JPS63311157A (en) 1987-06-12 1987-06-12 Ion sensor

Country Status (1)

Country Link
JP (1) JPS63311157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039258A (en) * 1989-06-05 1991-01-17 Agency Of Ind Science & Technol Ion selective modification electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH039258A (en) * 1989-06-05 1991-01-17 Agency Of Ind Science & Technol Ion selective modification electrode

Similar Documents

Publication Publication Date Title
EP0228969B1 (en) Ion sensor
Bučková et al. Adsorptive stripping voltammetric detection of daunomycin at a bismuth bulk electrode
US4871442A (en) Ion sensor
Han et al. All solid state hydrogen ion selective electrode based on a tribenzylamine neutral carrier in a poly (vinyl chloride) membrane with a poly (aniline) solid contact
Pan et al. High performance NiOx extended-gate field-effect transistor biosensor for detection of uric acid
US5139626A (en) Ion concentration measurement method
JPS59142451A (en) Ion sensor
CN109254065B (en) Silicon dioxide/polyfurrfural modified electrode, preparation method thereof and application of silicon dioxide/polyfurrfural modified electrode in detection of lead and cadmium ions
JPS63311157A (en) Ion sensor
Li et al. All-solid-state carbonate-selective electrode based on screen-printed carbon paste electrode
EP0218530B1 (en) Ionic concentration measurement method
WO2007111654B1 (en) Field portable electrochemical sensor for uranium and other actinides
US5190636A (en) Ion-sensitive film, method of producing the same and ion sensor
Okada et al. Role of plasticizers on the characteristics of poly (vinyl chloride)-membrane lithium-selective electrodes based on phenanthroline derivatives
Staes et al. Properties of a low band gap conducting polymer electrode used for amperometric detection in liquid chromatography
JPS61194343A (en) Ph sensor
JPH0410985B2 (en)
JPH0376863B2 (en)
JPH0668481B2 (en) Ion-selective FET sensor
WO1988004424A1 (en) Ion-selective fet sensor
McLaughlin et al. Optimization of conditions for mercury‐coated carbon fiber electrode formation and their influence on the cathodic stripping voltammetry of Se (IV)
Liao et al. Comparison of polypyrrole-conducting polymer and Ag/AgCl reference electrodes used for ruthenium dioxide pH electrode
RU167544U1 (en) ELECTROCHEMICAL SENSOR FOR DOPAMINE DETERMINATION
JPS6252449A (en) Calcium ion sensor
JPH0339582B2 (en)