JPS6331109A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6331109A
JPS6331109A JP17358986A JP17358986A JPS6331109A JP S6331109 A JPS6331109 A JP S6331109A JP 17358986 A JP17358986 A JP 17358986A JP 17358986 A JP17358986 A JP 17358986A JP S6331109 A JPS6331109 A JP S6331109A
Authority
JP
Japan
Prior art keywords
sic
substrate
grown
laser beam
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17358986A
Other languages
Japanese (ja)
Inventor
Masahiko Toki
雅彦 土岐
Yuji Furumura
雄二 古村
Fumitake Mieno
文健 三重野
Tsutomu Nakazawa
中沢 努
Kikuo Ito
伊藤 喜久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17358986A priority Critical patent/JPS6331109A/en
Publication of JPS6331109A publication Critical patent/JPS6331109A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive accomplishment of the state of low temperature when an SiC film growth process is performed by a method wherein source gas consisting of silicon and carbon is blown against the prescribed part of a semiconductor substrate, and silicon carbide (SiC) is grown on the above-mentioned part by projecting an energy beam. CONSTITUTION:Reaction gas 17 is blown against the prescribed position of a substrate 21, and the single crystal of silicon carbide (SiC) is grown on the component position by projecting a laser beam 16 on said position. Source gas 17 consisting of Si and C is blown against an Si substrate, a laser beam 16 is projected on the region where SiC will be grown, a vapor phase reaction is generated by the energy of light, and SiC is deposited on the substrate 21. The irradiation spot of the laser beam 16 is small, but as intensive heat energy is generated there, SiC can be deposited on the substrate having the surface temperature of 1000-1300 deg.C. As a result, an SiC film can be grown at a low temperature in the SiC film growing process, the problem of exfoliation of the SiC film can be solved, and the SiC film having excellent crystallizability can be deposited on a microscopic part.

Description

【発明の詳細な説明】 〔概要〕 シリコン・カーバイト(SiC)の成長プロセスにレー
ザビームを使用し、5iC1l成長プロセスの低温化を
図る。
DETAILED DESCRIPTION OF THE INVENTION [Summary] A laser beam is used in the silicon carbide (SiC) growth process to reduce the temperature of the 5iC11 growth process.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に関するもので、さらに
詳しく言えば、レーザビームを用い半導体基板の所望の
領域にβ−5iC(3C−SiC)の単結晶膜を成長す
る方法に関するものである。
The present invention relates to a method for manufacturing a semiconductor device, and more specifically, to a method for growing a β-5iC (3C-SiC) single crystal film on a desired region of a semiconductor substrate using a laser beam.

〔従来の技術〕[Conventional technology]

SiCは硬度とか耐熱性(融点2800℃)とかが優れ
ているために、過去には研摩材などの特殊目的のために
用いられたものであるが、半導体材料としては、熱的、
化学的に強いので高温や衝撃の強い条件下でも使用でき
、さらにエネルギー間隔が大で、PN接合が形成されう
るので、注目されている材料である。
SiC has excellent hardness and heat resistance (melting point 2800°C), so in the past it was used for special purposes such as abrasives, but as a semiconductor material, it has excellent thermal,
It is a material that is attracting attention because it is chemically strong and can be used under conditions of high temperatures and strong impact, and it has a large energy interval and can form a PN junction.

従来SiCの成長法としては、2500℃前後での昇華
法、気相エピタキシャル(VPE )成長、液相エピタ
キシャル成長(LPE)が研究され、気相エピタキシャ
ル成長としては、常圧でSiα、+C便、。
Conventional methods for growing SiC include sublimation at around 2500°C, vapor phase epitaxial (VPE) growth, and liquid phase epitaxial growth (LPE).

5iHCJ! 3+ C4Hrp、Sin< + C4
Hy、Stα味+C6’llj+SiC[! 4 千C
3)117  などノカスノ組合せ、CH35iCIl
! 3分解などにより、1300〜1800℃の高温で
のSiCへテロエピタキシャル成長が報告されている(
松波弘之、 St(:のエピタキシャル成長と固体素子
への応用、応用物理(1979) pp、 565−5
71.)。
5iHCJ! 3+ C4Hrp, Sin< + C4
Hy, Stα taste + C6'llj + SiC[! 4,000C
3) Nokasuno combination such as 117, CH35iCIl
! SiC heteroepitaxial growth at high temperatures of 1,300 to 1,800 °C has been reported by 3 decomposition, etc. (
Hiroyuki Matsunami, Epitaxial growth of St(:) and its application to solid-state devices, Applied Physics (1979) pp, 565-5
71. ).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

常圧化学気相成長法(CVD法)によるSiCの成長に
は従来技術においては1300〜1800℃の高温を必
要とし、シリコンウェハを用いる半導体装置の製造プロ
セスには通しない。本発明者の実験によると、スパッタ
による場合には成長したsic膜の結晶性が良くないこ
とが認められ、他方昇華法は高温でカーボンソースを気
相ガスにしてSi基板に付けるのであるが、大面積のS
iC膜が作られない問題がある。
Conventional techniques require a high temperature of 1,300 to 1,800° C. to grow SiC by atmospheric pressure chemical vapor deposition (CVD), and cannot be used in semiconductor device manufacturing processes using silicon wafers. According to the inventor's experiments, it has been found that the crystallinity of the SIC film grown by sputtering is not good, while in the sublimation method, the carbon source is made into a vapor phase gas at high temperature and attached to the Si substrate. Large area S
There is a problem that an iC film cannot be formed.

また、いずれの方法においても格子定数の不整合、熱膨
張係数および熱伝導率の違いのために結晶性の良いSi
C膜が堆積されず、成長したSiC膜が剥離しやすい問
題がある。
In addition, in both methods, Si with good crystallinity is
There is a problem that the C film is not deposited and the grown SiC film is likely to peel off.

本発明はこのような点に鑑みて創作されたもので、Si
Cの単結晶を選択的に堆積(deposit )する方
法を提供することを目的とする。また、ベース拡散を防
ぐこともメリットの1つである。
The present invention was created in view of these points.
It is an object of the present invention to provide a method for selectively depositing single crystals of C. Another advantage is that it prevents base diffusion.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明実施例の部分的断面図であり、図中、1
1はCO2レーザ発振器、12は前記レーザ発振器のシ
ャッタ部、13はレーザビーム(スポット径0.3μm
)、14はレーザビームの方向を90°曲げるためのミ
ラー、15はガリウム砒素(GaAs)レンズ(集光レ
ンズ)、16はレンズ15によって集光されたレーザビ
ーム、17は反応ガス(5iH1+C3H#+H2) 
、21は半導体基板(例えばシリコンウェハ)22はx
Yテーブルである。
FIG. 1 is a partial sectional view of an embodiment of the present invention, and in the figure, 1
1 is a CO2 laser oscillator, 12 is a shutter section of the laser oscillator, and 13 is a laser beam (spot diameter 0.3 μm).
), 14 is a mirror for bending the direction of the laser beam by 90 degrees, 15 is a gallium arsenide (GaAs) lens (condensing lens), 16 is the laser beam focused by the lens 15, and 17 is a reactive gas (5iH1+C3H#+H2 )
, 21 is a semiconductor substrate (for example, a silicon wafer) 22 is x
This is a Y table.

本発明においては、反応ガス17を基板21の所定の位
置に吹き付け、同位置にレーザビーム16を照射して当
該位置にシリコン・カーバイト(SiC)の単結晶を成
長する。
In the present invention, a reactive gas 17 is sprayed onto a predetermined position on the substrate 21, and the same position is irradiated with a laser beam 16 to grow a single crystal of silicon carbide (SiC) at the position.

〔作用〕[Effect]

上記の方法において、Sl基板にSiとCのソースガス
を吹き付け、SiCを成長すべき領域にレーザビームを
照射し光のエネルギーで気相反応させて基板上にSiC
を堆積するのであるが、レーザビームはスポットは小で
あるがそこに大なる熱エネルギーが発生するので、表面
温度がtooo〜1300℃の基板上にSiCが堆積さ
れる。
In the above method, a source gas of Si and C is sprayed onto the Sl substrate, a laser beam is irradiated onto the region where SiC is to be grown, and the energy of the light causes a vapor phase reaction to form SiC on the substrate.
Although the laser beam has a small spot, it generates a large amount of thermal energy, so SiC is deposited on a substrate whose surface temperature is between 1,300°C and 1,300°C.

〔実施例〕〔Example〕

以下、図面を参照して本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明においては、第1図に示される如く、Stソース
ガス13とCソースガスからなる反応ガス17を通常の
技術で吹き付け、その部分をレーザビームでtooo〜
1300℃に加熱する。SiソースとしてはSiH幡 
(または5iJ6)を、またCソースとしてはC3Ht
 (またはCHI 、 CよH2もしくはC,H,)を
用いた。このように、基板11上のSiCを成長すべき
領域に、CO2レーザ16を照射し、基板21の前記領
域にβ−5iC膜を成長させた。光CVDV法において
は反応ガスをガス相でいかに活性化するかが問題である
が、本発明においてはレーザビームが小なるスポットに
大なる熱エネルギーを生ずることを利用すべく、CO2
レーザを用いた。CO2レーザに代えてArレーザまた
はその他のエネルギービームを用いることも可能である
In the present invention, as shown in FIG. 1, a reaction gas 17 consisting of an St source gas 13 and a C source gas is sprayed using a conventional technique, and the area is exposed to a laser beam.
Heat to 1300°C. SiHata is the Si source.
(or 5iJ6), and C3Ht as a C source
(or CHI, CyoH2 or C,H,) was used. In this way, the CO2 laser 16 was irradiated onto the region on the substrate 11 where SiC was to be grown, and the β-5iC film was grown on the region of the substrate 21. In the optical CVDV method, the problem is how to activate the reactive gas in the gas phase, but in the present invention, in order to take advantage of the fact that the laser beam generates a large amount of thermal energy in a small spot, CO2
A laser was used. It is also possible to use an Ar laser or other energy beam in place of the CO2 laser.

再び第1図を参照すると、CO2レーザ発振器11から
発振されるスポット径0.3μmのレーザビーム13を
、ミラー14を用いて90”向きを変え、次いでGaA
sレンズ15を用いて集光して最終的に50Wの出力の
レーザビーム16を得る。なお図中、18はレーザビー
ムがその内部を進む遮蔽筒、19はArガス導入管であ
る。第1図に示す装置はスループット向上と膜質向上の
ために0.1〜0,2 Torrの減圧状態に保たれる
よう図示しないチャンバ内に配置する。
Referring again to FIG. 1, the direction of the laser beam 13 with a spot diameter of 0.3 μm emitted from the CO2 laser oscillator 11 is changed by 90" using a mirror 14, and then
The light is focused using the S lens 15 to finally obtain a laser beam 16 with an output of 50W. In the figure, 18 is a shield tube through which the laser beam advances, and 19 is an Ar gas introduction tube. The apparatus shown in FIG. 1 is placed in a chamber (not shown) to maintain a reduced pressure of 0.1 to 0.2 Torr in order to improve throughput and film quality.

基板21はXY方向に可動なXYテーブル22上に配置
され、テーブル22は300℃に加熱されている。Si
C膜を成長すべき基板21の部分に反応ガス(5il(
+十C3Ht (20%) + 82 )を吹き付け、
その同じ部分にレーザビーム16を照射し、基板の当該
部分を1000〜1300℃に加熱する。ガスの流速は
、SiH4は10 scc/ min % C3Hyは
10 scc/ win SH2は100 scc /
 minに設定した。
The substrate 21 is placed on an XY table 22 movable in the XY directions, and the table 22 is heated to 300°C. Si
A reactive gas (5il(
+10C3Ht (20%) +82),
The same portion is irradiated with a laser beam 16, and the portion of the substrate is heated to 1000 to 1300°C. The gas flow rate is 10 scc/min% for SiH4, 10 scc/win for C3Hy, and 100 scc/win for SH2.
It was set to min.

基板21は300℃に加熱され、その一部のみが100
0〜1300℃に加熱されるので、基板にストレスがか
かることが防止され、基板の反りなどが防止されるだけ
でなく、成長したSiC膜の剥離がないことが認められ
た。
The substrate 21 is heated to 300°C, and only a portion of it is heated to 100°C.
Since it was heated to 0 to 1300° C., stress was not applied to the substrate, and it was observed that not only was warping of the substrate prevented, but also that the grown SiC film did not peel off.

本発明においてはレーザビームを用いるため大面積のS
iC膜は堆積できない代りに、基板の所望の小面積の領
域にSiCPAを堆積することができる利点がある。
In the present invention, since a laser beam is used, a large area of S
Although an iC film cannot be deposited, there is an advantage in that SiCPA can be deposited on a desired small area of the substrate.

第2図(alと(blはβ−3iC膜の成長の従来例と
本発明実施例の断面図で、図中、23は5i02膜を示
し、 SiO2膜に開けた窓内にβ−5iCを成長する
場合、従来例では第2図(a)に示される如く窓内の中
央部分のみにβ−5iC24が成長し、そのまわりには
多結晶状(ポリクリスタルに似た、polycrys−
tal 1ike) SiC膜24aが成長したのであ
るが、本発明によると、第2図(b)に示される如く、
窓内にβ−5iC24のみを成長することが可能になっ
た。
Figure 2 (al and (bl) are cross-sectional views of a conventional example of growing a β-3iC film and an example of the present invention. When growing, in the conventional example, β-5iC24 grows only in the central part of the window, as shown in FIG.
According to the present invention, as shown in FIG. 2(b), the SiC film 24a has grown.
It became possible to grow only β-5iC24 within the window.

本発明者は上記した方法で成長したβ−5iCの高速反
射電子線回折(反射HEED、 I?)IEED )像
を観察した。第3図は実際に得られた回折像の写真に基
づいて作成した図であるが、この像にストリーク状のス
ポット28が観察され、このことから成長させたβ−5
iCが表面に僅かに凹凸のある単結晶であることが確認
された。
The present inventor observed a high-speed reflection electron diffraction (reflection HEED, I?)IEED) image of β-5iC grown by the method described above. FIG. 3 is a diagram created based on a photograph of an actually obtained diffraction image, and a streak-like spot 28 was observed in this image, which indicates that the grown β-5
It was confirmed that iC was a single crystal with a slightly uneven surface.

高温でエミッタ領域をエピタキシャル成長すると、急峻
化接合が得られず、またドープした不純物が熱拡散によ
って縦方向に不規則に拡がる問題があるが、本発明によ
るとこのような問題が解決される。
When the emitter region is epitaxially grown at high temperatures, there are problems in that a steep junction cannot be obtained and doped impurities spread irregularly in the vertical direction due to thermal diffusion, but the present invention solves these problems.

本発明応用例は第4図に示され、基板21には通常の技
術でn1型のコレクタ25、n型エピタキシャル層26
、ベース27となるp型エピタキシャル層が形成され、
基板表面には5i02膜23が形成されている。SiO
2膜23に図示の如く窓開けし、そこに前記した方法で
β−5iC24を堆積し、それをn+型にドープしてエ
ミッタを形成することができる。
An application example of the present invention is shown in FIG.
, a p-type epitaxial layer serving as the base 27 is formed,
A 5i02 film 23 is formed on the surface of the substrate. SiO
An emitter can be formed by opening a window in the 2 film 23 as shown in the figure, depositing β-5iC 24 therein by the method described above, and doping it to n+ type.

SiC24をn+型にドープするには、通常の気相ドー
ピングまたはイオン注入によることができる。
Doping the SiC 24 n+ type can be done by conventional vapor phase doping or ion implantation.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、SiC膜の成長
において、プロセスの低温化が可能となり、SiC膜の
剥離の問題が解決され、結晶性に優れたSiC膜を微細
部分に堆積することができる。
As described above, according to the present invention, it is possible to lower the process temperature in growing a SiC film, solve the problem of peeling of the SiC film, and deposit a SiC film with excellent crystallinity in minute parts. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の部分的断面図、第2図(alと
(blは従来例と本発明実施例におけるSiCの成長を
示す断面図、 第3図はSiCの高速反射電子線回折像を示す図、第4
図は本発明応用例の断面図である。 第1図ないし第4図において、 11はCO2レーザ発振器、 12はシャッタ部、 13はレーザビーム、 14はミラー、 15はGaAsレンズ、 16は集光されたレーザビーム、 17は反応ガス、 18は遮蔽筒、 19はArガス導入管、 21は基板、 22はXYテーブル、 23は SiO2N臭、 24はβ−5iC。 24aは多結晶状SiC膜、 25はコレクタ、 26はエピタキシャル層、 27はベース、 2日はストリーク状のスポットである。 代理人  弁理士  久木元   彰 復代理人 弁理士  大 菅 義 之 千t9g文胞θ・1呻倒助賭 第1 図 SiCaR’h昏*tlrrlJE4 第2図
Fig. 1 is a partial cross-sectional view of the embodiment of the present invention, Fig. 2 (al and (bl) are cross-sectional views showing the growth of SiC in the conventional example and the embodiment of the present invention, and Fig. 3 is a high-speed reflection electron diffraction analysis of SiC. Diagram showing the image, No. 4
The figure is a sectional view of an application example of the present invention. 1 to 4, 11 is a CO2 laser oscillator, 12 is a shutter section, 13 is a laser beam, 14 is a mirror, 15 is a GaAs lens, 16 is a focused laser beam, 17 is a reactant gas, 18 is a mirror 21 is a substrate, 22 is an XY table, 23 is a SiO2N odor, and 24 is β-5iC. 24a is a polycrystalline SiC film, 25 is a collector, 26 is an epitaxial layer, 27 is a base, and 2 is a streak-like spot. Agent Patent Attorney Akifuku Agent Patent Attorney Yoshio Suga

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板(21)の所定の部分にシリコンとカ
ーボンのソースガス(17)を吹き付け、当該部分にエ
ネルギービーム(16)を照射しその部分にシリコンカ
ーバイト(SiC)を成長することを特徴とする半導体
装置の製造方法。
(1) A silicon and carbon source gas (17) is sprayed onto a predetermined portion of a semiconductor substrate (21), and an energy beam (16) is irradiated onto the portion to grow silicon carbide (SiC) there. A method for manufacturing a featured semiconductor device.
(2)シリコンソースガスがSiH_4またはSi_2
H_6であり、カーボンソースガスがC_3H_8、C
H_4、C_2H_2またはC_2H_4であることを
特徴とする特許請求の範囲第1項記載の方法。
(2) Silicon source gas is SiH_4 or Si_2
H_6, and the carbon source gas is C_3H_8, C
2. A method according to claim 1, characterized in that it is H_4, C_2H_2 or C_2H_4.
JP17358986A 1986-07-25 1986-07-25 Manufacture of semiconductor device Pending JPS6331109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17358986A JPS6331109A (en) 1986-07-25 1986-07-25 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17358986A JPS6331109A (en) 1986-07-25 1986-07-25 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6331109A true JPS6331109A (en) 1988-02-09

Family

ID=15963385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17358986A Pending JPS6331109A (en) 1986-07-25 1986-07-25 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6331109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10956772B2 (en) 2015-08-03 2021-03-23 Hy-Ko Products Company High security key scanning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10956772B2 (en) 2015-08-03 2021-03-23 Hy-Ko Products Company High security key scanning system
US11842554B2 (en) 2015-08-03 2023-12-12 Hy-Ko Products Company Llc High security key scanning system

Similar Documents

Publication Publication Date Title
EP0232082B1 (en) Semiconductor deposition method and device
CA1225571A (en) Growth of oriented single crystal semiconductor on insulator
US4910167A (en) III-V Semiconductor growth initiation on silicon using TMG and TEG
JPH04184979A (en) Solar cell and manufacture of solar cell
US4526632A (en) Method of fabricating a semiconductor pn junction
JPS6329928A (en) Method of making gallium arsenite grow on silicon by epitaxial growth
JP2001044123A (en) Method for growing semiconductor layer
JP2596547B2 (en) Solar cell and method of manufacturing the same
JP2002249400A (en) Method for manufacturing compound semiconductor single crystal and utilization thereof
WO1989011897A1 (en) Silicon dioxide films on diamond
CA1102013A (en) Molecular-beam epitaxy system and method including hydrogen treatment
JP4772271B2 (en) Method for producing a zinc oxide (ZnO) semiconductor having a wide band gap doped positively
JPS6331109A (en) Manufacture of semiconductor device
JPS63188977A (en) Light emitting element of gallium nitride compound semiconductor
US5326424A (en) Cubic boron nitride phosphide films
JPS60140813A (en) Manufacture of semiconductor device
CA1333248C (en) Method of forming crystals
US5254211A (en) Method for forming crystals
JPH0624900A (en) Preparation of single crystal silicon carbide layer
JPH04298020A (en) Manufacture of silicon thin film crystal
JPS638296A (en) Formation of 3c-sic crystal
JP3062603B1 (en) Manufacturing method of single crystal member
JP2009149472A (en) Manufacturing method of needle crystal, and cantilever of scanning type probe microscope
JPS6325914A (en) Manufacture of semiconductor device
JP2618408B2 (en) Manufacturing method of single crystal alloy film