JPS63310536A - Electron tube cathode - Google Patents

Electron tube cathode

Info

Publication number
JPS63310536A
JPS63310536A JP62146644A JP14664487A JPS63310536A JP S63310536 A JPS63310536 A JP S63310536A JP 62146644 A JP62146644 A JP 62146644A JP 14664487 A JP14664487 A JP 14664487A JP S63310536 A JPS63310536 A JP S63310536A
Authority
JP
Japan
Prior art keywords
electron
cathode
electron emitting
emitting material
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62146644A
Other languages
Japanese (ja)
Other versions
JPH0821308B2 (en
Inventor
Etsuji Kimura
木村 悦治
Toshio Nakanishi
中西 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Metal Corp filed Critical Mitsubishi Electric Corp
Priority to JP14664487A priority Critical patent/JPH0821308B2/en
Priority to KR1019880006792A priority patent/KR910002969B1/en
Priority to IN391/MAS/88A priority patent/IN171832B/en
Priority to FR888807798A priority patent/FR2616586B1/en
Priority to US07/204,818 priority patent/US4980603A/en
Priority to DE3819852A priority patent/DE3819852A1/en
Publication of JPS63310536A publication Critical patent/JPS63310536A/en
Publication of JPH0821308B2 publication Critical patent/JPH0821308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a stable electron emitting property for a long time by providing an electron emitting substance layer including Sc2O3 which has columnar polyhedron crystal structure including no chlorine atom. CONSTITUTION:This cathode is composed of a cathode base body metal 1 including Ni as the main component and Si, and an electron emitting substance layer 5 consisting of an alkaline earth metal oxide including Ba, and Sc2O3. The Sc2O3 4 has columnar polyhedron crystal structure, including no chlorine atom, and scattered in the electron emitting substance layer 5 at 0.1 to 20wt.%. Since the Sc2O3 scattered in the substance layer 5 includes no impure chlorine, it never extenguishes doners of free atoms such as Ba, and a stable electron emitting current can be obtained. Moreover, an intermediate layer which consists of a complex oxide of the reducing agent is prevented from forming concentrically near the interface 11 between the base body metal 1 and the substance layer 5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、受像管などに用いられる電子管陰極に関する
もので、陰極から放出される電子の放射特性の向上が図
られたものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron tube cathode used in a picture tube or the like, and is intended to improve the radiation characteristics of electrons emitted from the cathode.

[従来の技術] 従来、受像管などに用いられる電子管陰極には、ニッケ
ル(Ni)を主成分としてマグネシウム(Hり)、シリ
コン(Si)などの還元剤を微量含有させた基体金属上
に、バリウム(Ba)を含むアルカリ土類金属の酸化物
層を被着形成したいわゆる酸化物陰極が多用されている
[Prior Art] Conventionally, electron tube cathodes used in picture tubes and the like have a metal base made of nickel (Ni) as a main component and a small amount of a reducing agent such as magnesium (H) or silicon (Si). A so-called oxide cathode in which an oxide layer of an alkaline earth metal containing barium (Ba) is deposited is often used.

この酸化物陰極はアルカリ土類金属の炭酸塩を熱分解し
て酸化物に変換せしめたもので、のちに還元剤と酸化物
とを反応させて酸化物から遊離原子を生成させ、この遊
離原子を電子放射のドナー(源)として電子を放射せし
めるようにしたものである。前記炭酸塩には炭酸バリウ
ム(BaCO3)の単元のものと(Ba、 Sr、 C
a)CO3などの復元のものとがあるが、活性化してド
ナーを形成する基本的な機構は同じであるから、理解を
容易にするために単元炭酸塩を例にとって詳細に説明す
る。
This oxide cathode is made by thermally decomposing an alkaline earth metal carbonate to convert it into an oxide.The oxide is then reacted with a reducing agent to generate free atoms from the oxide. is used as an electron emission donor (source) to emit electrons. The carbonates include barium carbonate (BaCO3) units and (Ba, Sr, C
a) Although there are restored ones such as CO3, the basic mechanism of activation and formation of a donor is the same, so for ease of understanding, a detailed explanation will be given using a monocarbonate as an example.

第4図は従来の酸化物陰極の一例を示す概略断面図であ
って、基体金属(1)からなる陰極帽体と筒(2とで構
成される陰極筒内部にはヒーター(3)が配備され、加
熱昇温される構造になっており、基体金a(1)の表面
には酸化バリウム(Bad)からなる電子放射物質El
(55)が形成されている。
FIG. 4 is a schematic cross-sectional view showing an example of a conventional oxide cathode, and a heater (3) is installed inside the cathode tube, which is composed of a cathode cap body made of a base metal (1) and a tube (2). It has a structure in which the temperature is increased by heating, and the surface of the gold base a (1) is coated with an electron emitting substance El made of barium oxide (Bad).
(55) is formed.

この電子放射物質層(55)は、つぎのような工程によ
って形成される。すなわち、有機溶剤に溶解したニトロ
セルロースなどの樹脂溶液にBaCO3を混合せしめた
のち、吹き付け、電着、塗布などの方法で基体金属(1
)上に被着形成させる。
This electron emitting material layer (55) is formed by the following steps. That is, after BaCO3 is mixed with a resin solution such as nitrocellulose dissolved in an organic solvent, a base metal (1
).

このようにして形成された陰極はついで電子管内に組込
まれ、電子管内を真空にするための排気工程でヒーター
(3)によって約1000℃に加熱昇温せしめられ、B
aCO3を次式で示されるように熱分解せしめられ、B
aOに変換せしめられる。
The cathode thus formed is then incorporated into an electron tube, heated to approximately 1000°C by a heater (3) during an evacuation process to create a vacuum inside the electron tube, and
aCO3 is thermally decomposed as shown by the following formula, and B
It is converted to aO.

aaco3 →BaO+ CO2(1)この反応によっ
て生成した炭酸ガス(CO2)は、ニトロセルロースの
熱分解によって生じた気体とともに電子管外に排出され
る。
aaco3 →BaO+ CO2 (1) Carbon dioxide gas (CO2) generated by this reaction is discharged outside the electron tube together with the gas generated by thermal decomposition of nitrocellulose.

第5図は基体金ff (11と電子放射物質層(55)
の界面近傍を詳細に説明するための、該界面近傍の断面
の一部分を拡大した模式図である。一般に電子放射物質
Im(55)を構成するBaOは棒状の微小な結晶(8
)が凝集して数理〜数十−の大きさの結晶粒(9)とな
る。電子放射物質層(55)を構成する結晶粒(9)間
には適度の間隙色があり、多孔質となっている。
Figure 5 shows the base gold ff (11 and the electron emitting material layer (55)).
FIG. 2 is a schematic diagram enlarging a portion of a cross section near the interface for explaining the vicinity of the interface in detail. In general, BaO, which constitutes the electron emitting material Im (55), is a rod-shaped microcrystal (8
) aggregates to form crystal grains (9) with a size of several tens of digits. There are moderate gaps between the crystal grains (9) constituting the electron emitting material layer (55), making it porous.

このBaOは基体金属(1)と接触する界面(Illに
おいて、前記還元剤の81やN9と反応し、遊離の88
が生成する。これらの還元剤は基体金属(1)のN1の
結晶粒(6)の間の結晶粒界(刀を拡散移動し、界面(
I+)近傍でつぎのような還元反応がおこる。
This BaO reacts with the reducing agent 81 and N9 at the interface (Ill) in contact with the base metal (1), and free 88
is generated. These reducing agents diffuse through the grain boundaries (swords) between the N1 crystal grains (6) of the base metal (1), and move through the interfaces (
The following reduction reaction occurs near I+).

2BaO+ St−+ 28a + 5i02    
     (KIBaO+Hg−* Ba +HgO(
110この遊離Baが電子放射のドナーとして作用する
2BaO+ St-+ 28a + 5i02
(KIBaO+Hg-*Ba+HgO(
110 This free Ba acts as a donor for electron emission.

また、この際式N: 5i02 + 2BaO−) Ba25in4(N)で
示される反応も同時おこる。
Further, at this time, a reaction represented by the formula N: 5i02 + 2BaO-) Ba25in4(N) also occurs simultaneously.

以上のようにドナーとして作用する遊離8aは電子放射
物質層(55)と基体金属(1)との界面で生成し、電
子放射物質層(55)の間隙色を移動し、その表面に出
て電子放射するという役割を担うが、該ドナーは蒸発し
たり、電子管内に残留するガスのC01CO2,02,
820などのガスと反応して消滅したりするので、絶え
ず上記のような反応を行なわせてドナーを補給する必要
があり、陰極では、作動中宮にこの還元反応が行なわれ
ている必要がある。
As described above, the free 8a that acts as a donor is generated at the interface between the electron emitting material layer (55) and the base metal (1), moves through the gaps in the electron emitting material layer (55), and comes out to the surface. The donor plays the role of emitting electrons, but the donor evaporates or becomes a gas remaining in the electron tube, such as CO1CO2,02,
Since it reacts with a gas such as 820 and disappears, it is necessary to constantly carry out the above-mentioned reaction to replenish the donor, and this reduction reaction must be carried out at the cathode during operation.

この補給と消滅のバランスをとるため、この種の陰極は
一般に約800℃の高温で使用される。
In order to balance this replenishment and depletion, this type of cathode is generally used at high temperatures of about 800°C.

しかしながら、陰極の作動中に、式([1またはNに示
されるSio2、aa2sho、などの反応生成物O2
が電子放射物質I!(55)と基体金属(1)との接合
面である界面01)において生成するので、この反応生
成物021が界面01)や結晶粒界(7)にどんどん蓄
積して結晶粒界(力を移動する31などの障壁(一般に
、これを中間層という)となり、反応は次第に遅くなり
、ドナーであるBaの生成が困難となる。また、この中
間層が高抵抗値を有し、故+31電子電流の流れを妨げ
るという問題も生じる。
However, during operation of the cathode, the reaction products O2 such as Sio2, aa2sho, shown in the formula ([1 or N
is an electron-emitting substance I! (55) and the base metal (1), which is the interface 01), this reaction product 021 accumulates rapidly at the interface 01) and the grain boundaries (7), causing the grain boundaries (force It becomes a barrier for moving 31 (generally referred to as an intermediate layer), and the reaction gradually slows down, making it difficult to generate Ba, which is a donor.In addition, this intermediate layer has a high resistance value, and therefore +31 electrons The problem of blocking current flow also arises.

このような問題点を解決するために、特開昭61−26
9828号公報や特開昭61−271732号公報など
には酸化スカンジウム(5C203)の粉末が分散した
電子放射物質層を形成することにより、 ■5c2o3とアルカリ土類金属酸化物との反応で生成
する複合酸化物(たとえばBa3 SC409)が陰極
、の動作中に熱分解をおこしてドナーである遊離Baを
生成し、補給する。
In order to solve these problems,
9828 and JP-A No. 61-271732, etc., by forming an electron emitting material layer in which scandium oxide (5C203) powder is dispersed, A composite oxide (for example, Ba3 SC409) causes thermal decomposition during operation of the cathode to generate and replenish free Ba, which is a donor.

■遊離した金属スカンジウム(Sc)が電子放射物質層
の導電性を高める ■界面に生成するBaz SiO+などの反応生成物を
解離させる ことなどが開示されている。
It has been disclosed that (1) liberated metal scandium (Sc) increases the conductivity of the electron emitting material layer; (2) dissociates reaction products such as Baz SiO+ generated at the interface;

[発明が解決しようとする問題点] このように、5c2o3の粉末を分散させた電子放射物
質層を設けることにより、高電流密度で作動させうる電
子管陰極が開示されているが、かかる5c2o3として
、通常の製法、すなわちScを含む塩酸溶液からシュウ
酸により沈澱させてシュウ酸スカンジウムとし、ぽい焼
して製造された5C203を用いたばあい、このような
5c2o3は不純物として塩素を含みやすく、式M: Ba + 2CI−+BaCl z         
(V)で示される反応がおこり、ドナーを消滅させると
いう問題がある。このドナーの消滅が大きいばあいには
、電子放射電流が大きく減少するスランプ現象となる。
[Problems to be Solved by the Invention] As described above, an electron tube cathode that can be operated at a high current density by providing an electron emitting material layer in which 5c2o3 powder is dispersed has been disclosed. When 5C203 produced by the usual manufacturing method, that is, precipitated with oxalic acid from a hydrochloric acid solution containing Sc to obtain scandium oxalate and then roasted, is used, such 5c2o3 tends to contain chlorine as an impurity, and the formula M : Ba + 2CI-+BaClz
There is a problem in that the reaction shown in (V) occurs and the donor is annihilated. If this donor disappearance is large, a slump phenomenon occurs in which the electron emission current decreases significantly.

本発明は上記のような問題点を解消するためになされた
もので、柱状多面体結晶構造を有し、かつ塩素原子を含
有しない5c2o3を含有する電子放射物質層を設ける
ことによって、長時間にわたって安定した電子放射特性
がえられる電子管陰極をうろことを目的とする。
The present invention has been made to solve the above-mentioned problems, and by providing an electron emitting material layer containing 5c2o3, which has a columnar polyhedral crystal structure and does not contain chlorine atoms, it can be stabilized for a long time. The purpose of this study is to develop an electron tube cathode that can provide the desired electron emission characteristics.

[問題点を解決するための手段] 本発明は、Xiを主成分とし、少なくともSiを含有し
た陰極基体金属と、Baを含有したアルカリ土類金属酸
化物および5C203からなる電子放射物質層とから構
成された電子管陰極であって、該5C20sが柱状多面
体の結晶形を有し、かつ塩素原子を含有しない5c2o
3で、電子放射物質層中に0.1〜20重量%分散して
いる電子管陰極に関する。
[Means for Solving the Problems] The present invention comprises a cathode base metal mainly composed of Xi and containing at least Si, and an electron emitting material layer consisting of an alkaline earth metal oxide containing Ba and 5C203. An electron tube cathode constructed of 5C2O, in which the 5C20s has a columnar polyhedral crystal form and does not contain chlorine atoms.
3 relates to an electron tube cathode having 0.1 to 20% by weight dispersed in the electron emitting material layer.

[作 用] 本発明の電子管陰極における電子放射物質層に分散した
柱状多面体の結晶構造を有する5C203は、不純物の
塩素を含有していないので、遊離原子のBaなどのドナ
ーを消滅させることがなく安定した電子放射電流をうる
ことができる。また還元剤の複合酸化物からなる中間層
が基体金属と電子放射物質層との界面近傍に集中して形
成されることが防止される。
[Function] Since 5C203 having a columnar polyhedral crystal structure dispersed in the electron emitting material layer in the electron tube cathode of the present invention does not contain chlorine as an impurity, it does not annihilate donors such as free atoms of Ba. A stable electron emission current can be obtained. In addition, the intermediate layer made of the composite oxide of the reducing agent is prevented from being concentrated near the interface between the base metal and the electron emitting material layer.

[実施例] 本発明の一実施例を第1〜3図に基づいて説明する。[Example] An embodiment of the present invention will be described based on FIGS. 1 to 3.

第1図は、本発明の電子管陰極の一実流例を示す概略断
面図であって、基体金属(1)からなる陰極帽体と筒(
2)とで構成される陰極筒の内部にはヒーター(3)が
配備され、加熱昇温される構成となっている。陰極帽体
の表面には、電子放射物質層(Sが被着形成されている
FIG. 1 is a schematic cross-sectional view showing an example of an actual flow of the electron tube cathode of the present invention, showing a cathode cap body made of a base metal (1) and a tube (
A heater (3) is provided inside the cathode cylinder composed of (2) and (2), and is configured to heat and raise the temperature. An electron emitting material layer (S) is deposited on the surface of the cathode cap.

本発明に用いられる基体金属としては、Niを主成分と
し、すくなとくもSiを含有したものであればいずれの
ものであってもよく、従来から陰極基体金属として用い
られているものが使用されうる。
The base metal used in the present invention may be any metal as long as it contains Ni as a main component and in particular contains Si, and those conventionally used as cathode base metals may be used. sell.

陰極基体金属の具体例としては、たとえばSiを含有し
、要すればHQ、W 、Zr、 /Vなどを含有したN
iやニクロム(Ni−Cr)などがあげられる。かかる
Siの含有率は、基体金属中0.01〜1.0%(重層
%、以下同様)であるのが好ましい。
Specific examples of the cathode base metal include N containing Si and optionally HQ, W, Zr, /V, etc.
Examples include i and nichrome (Ni-Cr). The content of Si in the base metal is preferably 0.01 to 1.0% (interlayer %, hereinafter the same).

本発明に用いられる筒にはとくに限定はなく、従来から
陰極筒に用いられているものが使用でき、たとえばニク
ロム(Ni−Cr)からなるものがあげられる。
There are no particular limitations on the cylinder used in the present invention, and those conventionally used for cathode cylinders can be used, such as those made of nichrome (Ni-Cr).

電子放射物質層はBaを含有したアルカリ土類金RM化
物を主体とする層であって、柱状多面体の結晶形を有し
、かつ不純物である塩素原子を含有していない5C20
3(やむなく砕けたものが含まれていてもよく、好まし
くは柱状多面体結晶が50%以上、さらに好ましくは7
0%以上、とくに好ましくは90%以上のものである)
が該層中に0.1〜20%、好ましくは3〜10%分散
したものである。該層の厚さは50〜200−であるの
が好ましい。
The electron emitting material layer is a layer mainly composed of alkaline earth gold RM compound containing Ba, has a columnar polyhedral crystal form, and does not contain chlorine atoms, which are impurities.
3 (may contain unavoidably broken crystals, preferably 50% or more columnar polyhedral crystals, more preferably 7
0% or more, particularly preferably 90% or more)
is dispersed in the layer in an amount of 0.1 to 20%, preferably 3 to 10%. The thickness of the layer is preferably from 50 to 200 mm.

なお、本明細書にいう塩素原子を含有しない5C203
とは、電子管陰極の電子の放射性能に悪影響を及ぼさな
い程度の量であれば塩素原子を含有したものであっても
よく、通常5C203に対し、塩素原子の含有率が10
0pp−以下のものをいう。
In addition, 5C203 which does not contain a chlorine atom as referred to in this specification
may contain chlorine atoms as long as it does not adversely affect the electron emission performance of the electron tube cathode.
0pp- or less.

前記アルカリ土類金属酸化物としては、たとえばBaC
O3、(8a、 Sr) CO3、(Ba、 Sr、 
Ca) CO3などを熱分解して酸化物に変換せしめた
ものなどがあげられる。また、Baの含有率が該層中4
0%以上のものが好ましい。
As the alkaline earth metal oxide, for example, BaC
O3, (8a, Sr) CO3, (Ba, Sr,
Ca) Examples include those obtained by thermally decomposing CO3 and converting it into oxides. Moreover, the content of Ba in the layer is 4
It is preferably 0% or more.

柱状多面体の結晶形を有するSC203は第2図(倍率
800倍の電子顕微鏡写真)に示されるような結晶であ
る。前記5c2o3の平均粒径は5〜50虜であるのが
好ましい。平均粒径が5−未満のばあい、電子放射物質
層中の間隔を埋めやすくなり、また50pをこえるばあ
い、電子放射物質層を吹き付は法によって形成すると吹
き付は時に5C203の結晶が沈澱しやすく、該層内の
分散状態がわるくなりやすい。
SC203, which has a columnar polyhedral crystal form, is a crystal as shown in FIG. 2 (electron micrograph at 800x magnification). The average particle size of the 5c2o3 is preferably 5 to 50 particles. If the average particle size is less than 5p, it becomes easier to fill the gaps in the electron emitting material layer, and if it exceeds 50p, the electron emitting material layer is formed by spraying. It tends to precipitate, and the dispersion state within the layer tends to deteriorate.

また、前記5C203が電子管陰極の電子の放射性能に
悪影響を及ぼす程度のmの塩素原子を含有しているばあ
いはドナーを消滅させやすく、スランプ現象をひきおこ
す原因となる。
Furthermore, if the 5C203 contains m chlorine atoms to the extent that it adversely affects the electron emission performance of the electron tube cathode, donors are likely to disappear, causing a slump phenomenon.

柱状多面体の結晶形を有し、かつ塩素原子を含有しない
5C)03は、Scを含有する硝!!(8H03)の溶
液からシュウ酸(C204)+2 )により沈澱させて
製造することができる。従来から一般に用いられてえら
れる5C203は不純物として塩素を含みやすく、この
不純物を除去するために洗浄、焼成などの特別な処理が
必要なことがわかった。
5C)03, which has a columnar polyhedral crystal shape and does not contain chlorine atoms, is a nitrate containing Sc! ! It can be produced by precipitation from a solution of (8H03) with oxalic acid (C204)+2). It has been found that 5C203, which has been commonly used in the past, tends to contain chlorine as an impurity and requires special treatment such as washing and firing to remove this impurity.

前記5c2o3の含有率が、電子放射物質中0.1%未
満のばあい、高電流作動下での電子放射の劣化を防止す
る効果が充分でなく、また20%をこえると電子管陰極
の活性化工程を終了した段階(初期特性)で充分な電子
放射電流をとることができず、実用的ではない。
If the content of 5c2o3 in the electron emitting material is less than 0.1%, the effect of preventing deterioration of electron emission under high current operation is insufficient, and if it exceeds 20%, the electron tube cathode may be activated. It is not practical because a sufficient electron emission current cannot be obtained at the stage where the process is completed (initial characteristics).

電子放射物質層の形成方法にはとくに限定はなく、電着
、塗布、吹き付けなどの方法によってもよいが、良好な
電子放射性能をうるためには多孔質の層膜に形成するこ
とが重要であるので吹き付は法が好ましい。たとえば有
機溶剤に溶解したニトロセルロースの溶液に8aCO3
と5c2o3を所望の割合で混合して懸濁液とし、吹き
付は法によって被着形成するのが好ましい。
There are no particular limitations on the method of forming the electron emitting material layer, and methods such as electrodeposition, coating, and spraying may be used, but in order to obtain good electron emitting performance, it is important to form the layer into a porous layer. Therefore, it is preferable to use the method of spraying. For example, in a solution of nitrocellulose dissolved in an organic solvent, 8aCO3
It is preferable to mix 5c2o3 and 5c2o3 in a desired ratio to form a suspension, and to form a coating by spraying.

以・上のようにして製作された排気工程や活性化工程に
より電子管陰極になるものは、電子放射源であるドナー
を生成させるための従来と同様の排気工程、活性化工程
により電子管陰極となる。
The electron tube cathode manufactured as described above through the evacuation process and activation process becomes an electron tube cathode through the conventional evacuation process and activation process to generate donors, which are electron emission sources. .

このようにして製造された電子管陰極の作用効果をドナ
ーの出発物質としてBaCO3を例にあげて説明する。
The effects of the electron tube cathode manufactured in this way will be explained using BaCO3 as an example of the starting material of the donor.

上記のようにして作製された排気工程・活性化工程によ
って電子管陰極となるものは電子管内に組込まれ、電子
管内を真空にするための排気工程でヒーター(3)によ
って約1000℃に昇温加熱されてBaCO3が次式の
ように熱分解される。
The electron tube cathode produced as described above is assembled into the electron tube through the evacuation process and activation process, and is heated to approximately 1000°C by the heater (3) during the evacuation process to create a vacuum inside the electron tube. BaCO3 is thermally decomposed as shown in the following equation.

BaC03−) aao+ CO2(1)この反応時に
生じたCO2は電子管外に排出される。電子放射物質層
の形成時にニトロセルロースの懸濁液を用いたばあいは
、同時にニトロセルロースも熱分解されて気体となり、
CO2とともに管外に排出される。この反応によって、
BaCO3は電子放射物質m1(5)を形成するBaO
に変換する。
BaC03-) aao+ CO2 (1) The CO2 generated during this reaction is discharged outside the electron tube. When a suspension of nitrocellulose is used to form the electron emitting material layer, the nitrocellulose is simultaneously thermally decomposed and becomes a gas.
It is discharged outside the tube along with CO2. By this reaction,
BaCO3 is BaO forming electron emitting material m1(5)
Convert to

第3図は、基体金属(1)と電子放射物質層(5)との
界面近傍を詳細に説明するための、該界面近傍の断面の
一部分を拡大した模式図である。電子放射物質層(5を
構成するBaOは棒状の微小な結晶(8)が凝集して数
−〜数士虜の大きさの結晶粒(9)となる。
FIG. 3 is a schematic enlarged view of a part of the cross section near the interface between the base metal (1) and the electron emitting material layer (5), for explaining the area near the interface in detail. In the BaO constituting the electron emitting material layer (5), minute rod-shaped crystals (8) aggregate to form crystal grains (9) with a size of several to several quarts.

電子放射物質層(5は、結晶粒間に適度の間隙色を有す
る多孔質であることが電子放射性能の点から望ましい。
From the viewpoint of electron emission performance, it is desirable that the electron emitting material layer (5) be porous with appropriate gap color between crystal grains.

このような特性は、BaC0,を被着形成する際にほぼ
決定される。電子放射物質11[5)内には、柱状多面
体の結晶形を有する5C203[41が分散している。
These characteristics are almost determined when BaC0 is deposited. 5C203[41 having a columnar polyhedral crystal form is dispersed in the electron emitting material 11[5].

還元剤のSiや旬は、基体金属(1)のNiを主成分と
する結晶粒(6)の間の結晶粒界(7)を拡散移動し、
式(11に示されるような反応で生成したBaOは、こ
のBaOを還元させる活性化工程中に界面01)におい
て、基体金属(1)から拡散してくる酸化性余病とたと
えば式(■): 2BaO+ Si→2Ba + 5i02      
   (I)に示される反応を行なう。この遊離Baが
電子M射のドナーとして電子を放射する。
The reducing agent Si and particles diffuse and move through the grain boundaries (7) between the crystal grains (6) mainly composed of Ni of the base metal (1).
BaO generated by the reaction shown in formula (11) is mixed with oxidative aftereffects diffusing from the base metal (1) at the interface 01 during the activation step to reduce this BaO, for example, formula (■). : 2BaO+ Si→2Ba+5i02
The reaction shown in (I) is carried out. This free Ba emits electrons as a donor for electron M radiation.

また、この隔成N: 5f02+ 2BaO−+ Baz 5iOi    
     (IV)で示される反応もおこる。
Moreover, this separation N: 5f02+ 2BaO-+ Baz 5iOi
The reaction represented by (IV) also occurs.

以上のように、ドナーとなるBaは電子放射物質層(5
)と基体金属(1)との界面(II)で生成され、電子
放射物質層(5)の結晶粒(9)の間隙□□□を移動し
、その表面に出て電子放射の役割を担うが、蒸発したり
電子管内に残留するC01CO2,0,などのガスと反
応して消滅したりするので、絶えず上記のような反応を
行なって補給する必要があり、陰極では作動中宮にこの
還元反応が行なわれている。この補給と消滅のバランス
をとるために、作動中、陰極を約800℃に保持するこ
とが望ましい。
As described above, Ba, which becomes a donor, is used in the electron emitting material layer (5
) is generated at the interface (II) between the base metal (1), moves through the gaps □□□ of the crystal grains (9) of the electron emitting material layer (5), emerges on its surface, and plays the role of electron emission. However, it evaporates or disappears by reacting with gases such as CO1CO2,0, which remain in the electron tube, so it is necessary to constantly perform the above reaction to replenish the supply. is being carried out. To balance this replenishment and depletion, it is desirable to maintain the cathode at about 800° C. during operation.

本発明の電子管陰極では、分散した5C203は柱状多
面体の結晶形を有しているので、BaOの結晶形状と類
似のため、電子放射物質層(5)に分散しやすいという
特徴を有している。したがって、前記式■で示される反
応生成物であるBaz 5i04は、式@J: 5c203 +1ONi−+ 2ScNi、 +30 
     [で示される反応によって生成したScN 
i 5と式■:98a2 5i04 + 16ScNi
s  44Ba3 SC40g+EiBa +9Si 
+8ONi   (17IDで示されるように反応し、
5c203と旧とにより分解されるので、電子放射物質
層(Sと基体金属(1)との界面0ηに蓄積されにくく
なる。
In the electron tube cathode of the present invention, the dispersed 5C203 has a columnar polyhedral crystal shape, which is similar to the crystal shape of BaO, so it has the characteristic that it is easily dispersed in the electron emitting material layer (5). . Therefore, Baz 5i04, which is the reaction product represented by the above formula (1), has the formula @J: 5c203 +1ONi-+ 2ScNi, +30
ScN produced by the reaction shown in [
i 5 and formula ■: 98a2 5i04 + 16ScNi
s 44Ba3 SC40g+EiBa +9Si
+8ONi (reacts as shown by 17ID,
Since it is decomposed by 5c203 and old, it becomes difficult to accumulate at the interface 0η between the electron emitting material layer (S and base metal (1)).

したがって、従来の陰極のようにBa2SiO4などの
反応生成物が基体金属と電子放射物質層との界面に蓄積
してSiなどの還元剤の通る障壁となり、還元反応が次
第に遅くなり、ドナーとなる遊離8aの生成が困難にな
ることはない。そのうえ、高抵抗値の中間層がないので
、電子放射電流を妨げることもなく、電子管陰極を高い
電流密度で作動させることができる。また、塩酸溶液よ
りシュウ酸により沈澱生成させてえられるような5c2
03を分散させたばあいと異なり、該5C303に含有
されているハロゲンによる電子放射物質JI[5)中の
遊離原子の消滅がないので、充分な電子放射電流をうる
ことができる。さらに、本発明の電子管陰極は電子放射
物質の分解活性化工程が従来のものと同じでよいので、
電子管の製造工程が従来と同じでよいという利点がある
Therefore, as in a conventional cathode, reaction products such as Ba2SiO4 accumulate at the interface between the base metal and the electron emitting material layer and act as a barrier for reducing agents such as Si to pass through, gradually slowing down the reduction reaction and releasing free materials that become donors. There is no difficulty in producing 8a. Moreover, since there is no intermediate layer with high resistance, the electron tube cathode can be operated at high current density without interfering with the electron emission current. In addition, 5c2, which can be obtained by precipitating with oxalic acid from a hydrochloric acid solution,
Unlike the case where 5C303 is dispersed, free atoms in the electron emitting material JI[5] are not annihilated by the halogen contained in the 5C303, so a sufficient electron emission current can be obtained. Furthermore, in the electron tube cathode of the present invention, the step of decomposing and activating the electron emitting substance may be the same as that of conventional ones.
This has the advantage that the manufacturing process for the electron tube can be the same as the conventional method.

実施例1 水酸化スカンジウムを硝11 (HNO3)に溶解し、
シュウ酸(C204H2)により5C303を沈澱させ
、塩素原子を含有していない柱状多面体の結晶形を有す
るものが90%以上のもので、平均粒径10−の5C2
03をえた。
Example 1 Scandium hydroxide was dissolved in nitrate 11 (HNO3),
5C303 is precipitated with oxalic acid (C204H2), and 90% or more of the 5C303 has a columnar polyhedral crystal form that does not contain chlorine atoms and has an average particle size of 10-5C2.
I got 03.

有機溶剤に溶解したニトロセルロースの溶液に電子放射
物質層中の5C203の含有率が5%になるようにBa
C0,と5C203を混合して懸濁液とした。
Ba was added to a solution of nitrocellulose dissolved in an organic solvent so that the content of 5C203 in the electron emitting material layer was 5%.
C0, and 5C203 were mixed to form a suspension.

この懸濁液をSiを0.03%含有し、8gを0.05
%含有したNiからなる陰極基体金属の表面に、厚さが
約100AII11となるように吹き付は法によって吹
き付けて電子放電物質層になる層を形成し、排気工程や
活性化工程により第1図に示され′るような電子管陰極
になるものを作製した。
This suspension contains 0.03% Si, and 8g is 0.05% Si.
A layer that will become an electron discharge material layer is formed by spraying on the surface of the cathode base metal made of Ni containing 100% Ni to a thickness of approximately 100AII11, and is then subjected to an evacuation process and an activation process to form a layer that will become an electron discharge material layer (Fig. 1). An electron tube cathode as shown in Figure 1 was fabricated.

えられた電子管陰極になるものを、3原色を有するカラ
ーブラウン管の3個の陰極に従来の電子管陰極になるも
の(比較例1:電子放射物質店としてSC20gを含有
していないものが設けられているほかは、実施例1と同
じもの)と組合わせて組込み、通常の排気工程および活
性化工程により電子管を製造した。
The resulting electron tube cathode was used as a conventional electron tube cathode (Comparative Example 1: An electron emitting material that did not contain 20 g of SC was installed in the three cathodes of a color cathode ray tube having three primary colors). (Other than that, the same as in Example 1) was assembled, and an electron tube was manufactured through the usual evacuation process and activation process.

検査工程で所定の放射電子流量に達するカラーブラウン
管の歩留は98%以上であった。また、カラーブラウン
管の使用中の電子放射電流劣化状態を調べるために、電
流密度3A/α2の強制加速条件で、6000fI f
itの寿命試験を行なった結果、5C20,3を分散さ
せていない従来の陰極は600G@間で初期値の50%
以下に劣化する特性を示したが、本発明の電子管陰極で
は6000時間で初期値の70%に保たれ、寿命時間で
表わせば約2.5倍の長寿命がえられた。
The yield of color cathode ray tubes that reached a predetermined flow rate of emitted electrons during the inspection process was 98% or more. In addition, in order to investigate the deterioration state of the electron emission current during use of color cathode ray tubes, we conducted a 6000 fI f
As a result of the IT life test, the conventional cathode without dispersing 5C20,3 was 50% of the initial value at 600G@
The deterioration characteristics are shown below, but the electron tube cathode of the present invention was maintained at 70% of its initial value after 6000 hours, and in terms of life time, it had a lifespan approximately 2.5 times longer.

[発明の効果] 以上のよ)に本発明の電子管陰極は、少なくともSiを
還元剤として含有する基体金属表面に、柱状多面体の結
晶形を有し、かつ塩素原子を含有していない5C203
が分散したアルカリ土類金属酸化物からなる電子放射物
質層を形成したものであり、艮時間にわたって安定した
電子放射特性がえられるという効果を奏する。また、常
に安定した電子t1i射電流がえられる電子管陰極をう
ろことができる。
[Effects of the Invention] As described above, the electron tube cathode of the present invention has 5C203, which has a columnar polyhedral crystal form and does not contain chlorine atoms, on the surface of the base metal containing at least Si as a reducing agent.
An electron emitting material layer made of an alkaline earth metal oxide dispersed therein is formed, and the effect is that stable electron emitting characteristics can be obtained over a period of time. In addition, the electron tube cathode can be used to constantly obtain a stable electron t1i emission current.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電子管陰極の一実施例の概略断面図、
第2図は本発明の電子管陰極に用いる酸化スカンジウム
の結晶構造を示す電子顕微鏡写真(倍率は800倍)、
第3図は本発明の電子管陰極における基体台風と電子放
射物質層との界面近傍を示す該界面近傍の断面の一部分
を拡大した模式図、第4図は従来の電子管陰極の概略断
面図、第5図は従来の電子管陰極における基体金属と電
子放射物質層との界面近傍を示す該界面近傍の断面の一
部分を拡大した模式図である。 (図面の主要符号) (1)二基体金属 (4):柱状多面体の結晶構造を有する酸化スカンジウ
ムの結晶 (S:電子放射物質層 第  2  図 沖30
FIG. 1 is a schematic cross-sectional view of an embodiment of the electron tube cathode of the present invention;
Figure 2 is an electron micrograph (magnification: 800x) showing the crystal structure of scandium oxide used in the electron tube cathode of the present invention.
FIG. 3 is a schematic diagram showing the vicinity of the interface between the substrate typhoon and the electron emitting material layer in the electron tube cathode of the present invention, in which a part of the cross section near the interface is enlarged; FIG. 4 is a schematic sectional view of a conventional electron tube cathode; FIG. 5 is a schematic diagram showing the vicinity of the interface between the base metal and the electron emitting material layer in a conventional electron tube cathode, enlarging a part of the cross section near the interface. (Main symbols in the drawings) (1) Bisubstrate metal (4): Scandium oxide crystal with a columnar polyhedral crystal structure (S: Electron emissive material layer No. 2 Oki 30

Claims (2)

【特許請求の範囲】[Claims] (1)ニッケルを主成分とし、少なくともシリコンを含
有した陰極基体金属と、バリウムを含有したアルカリ土
類金属酸化物および酸化スカンジウムからなる電子放射
物質層とから構成された電子管陰極であつて、該酸化ス
カンジウムが柱状多面体の結晶形を有し、かつ塩素原子
を含有しない酸化スカンジウムで、電子放射物質層中に
0.1〜20重量%分散している電子管陰極。
(1) An electron tube cathode comprising a cathode base metal mainly composed of nickel and containing at least silicon, and an electron emitting material layer consisting of an alkaline earth metal oxide containing barium and scandium oxide, which An electron tube cathode in which scandium oxide has a columnar polyhedral crystal form and does not contain chlorine atoms, and is dispersed in an electron emitting material layer in an amount of 0.1 to 20% by weight.
(2)柱状多面体の結晶形を有する酸化スカンジウムが
、水酸化スカンジウムを硝酸に溶解し、シュウ酸による
沈澱によって合成されたものである特許請求の範囲第(
1)項記載の電子管陰極。
(2) Scandium oxide having a columnar polyhedral crystal form is synthesized by dissolving scandium hydroxide in nitric acid and precipitating it with oxalic acid.
The electron tube cathode described in section 1).
JP14664487A 1987-06-12 1987-06-12 Electron tube cathode Expired - Fee Related JPH0821308B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP14664487A JPH0821308B2 (en) 1987-06-12 1987-06-12 Electron tube cathode
KR1019880006792A KR910002969B1 (en) 1987-06-12 1988-06-07 Electron tube cathode
IN391/MAS/88A IN171832B (en) 1987-06-12 1988-06-08
FR888807798A FR2616586B1 (en) 1987-06-12 1988-06-10 CATHODE FOR AN ELECTRONIC TUBE
US07/204,818 US4980603A (en) 1987-06-12 1988-06-10 Cathode for an electron tube
DE3819852A DE3819852A1 (en) 1987-06-12 1988-06-10 CATHODE FOR AN ELECTRON TUBE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14664487A JPH0821308B2 (en) 1987-06-12 1987-06-12 Electron tube cathode

Publications (2)

Publication Number Publication Date
JPS63310536A true JPS63310536A (en) 1988-12-19
JPH0821308B2 JPH0821308B2 (en) 1996-03-04

Family

ID=15412390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14664487A Expired - Fee Related JPH0821308B2 (en) 1987-06-12 1987-06-12 Electron tube cathode

Country Status (1)

Country Link
JP (1) JPH0821308B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122707A (en) * 1988-02-02 1992-06-16 Mitsubishi Denki Kabushiki Kaisha Cathode in a cathode ray tube
US5216320A (en) * 1990-10-05 1993-06-01 Hitachi, Ltd. Cathode for electron tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4716994U (en) * 1971-04-01 1972-10-27
JPS5560648U (en) * 1978-10-20 1980-04-24
JPS6222347A (en) * 1985-07-19 1987-01-30 Mitsubishi Electric Corp Cathode for electron tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4716994U (en) * 1971-04-01 1972-10-27
JPS5560648U (en) * 1978-10-20 1980-04-24
JPS6222347A (en) * 1985-07-19 1987-01-30 Mitsubishi Electric Corp Cathode for electron tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122707A (en) * 1988-02-02 1992-06-16 Mitsubishi Denki Kabushiki Kaisha Cathode in a cathode ray tube
US5216320A (en) * 1990-10-05 1993-06-01 Hitachi, Ltd. Cathode for electron tube

Also Published As

Publication number Publication date
JPH0821308B2 (en) 1996-03-04

Similar Documents

Publication Publication Date Title
KR930011964B1 (en) Electron tube cathode
US2041802A (en) Electron emitter
EP0327074B1 (en) Cathode for a cathode ray tube
US4980603A (en) Cathode for an electron tube
JP2001189145A (en) Gas discharge lamp
JPS63310536A (en) Electron tube cathode
JP3301881B2 (en) Cathode for electron tube
JP2928155B2 (en) Cathode for electron tube
US6181058B1 (en) Cathode in electron tube with actinoid metal(s) or compound(s) thereof
US5982083A (en) Cathode for electron tube
JPH03133021A (en) Cathode for electronic tube and its manufacture
JPS63310535A (en) Electron tube cathode
JP2835023B2 (en) Manufacturing method of cathode for electron tube
EP0639848B1 (en) Oxide cathode for electron tube
KR920003186B1 (en) Manufacturing method of oxide cathode
JPH04220924A (en) Cathode for electron tube
JPS63285839A (en) Electron tube cathode
JP2730260B2 (en) Cathode for electron tube
JPH0275128A (en) Electron tube cathode
KR100625959B1 (en) Method for manufacturing cathode for electron tube
JP2001357770A (en) Negative electrode of cathode-ray tube and its alloy
JPH01311531A (en) Electronic tube cathode
JPH01169827A (en) Cathode of electron tube and its manufacture
JPS63307636A (en) Cathode of electron tube
JPH09320449A (en) Cathode for electron tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees