JPS63310331A - Arrester for spark gap type high sensitivity low voltage circuit - Google Patents

Arrester for spark gap type high sensitivity low voltage circuit

Info

Publication number
JPS63310331A
JPS63310331A JP14615887A JP14615887A JPS63310331A JP S63310331 A JPS63310331 A JP S63310331A JP 14615887 A JP14615887 A JP 14615887A JP 14615887 A JP14615887 A JP 14615887A JP S63310331 A JPS63310331 A JP S63310331A
Authority
JP
Japan
Prior art keywords
circuit
spark gap
lightning arrester
voltage
lightning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14615887A
Other languages
Japanese (ja)
Inventor
Giichiro Kato
加藤 儀一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14615887A priority Critical patent/JPS63310331A/en
Publication of JPS63310331A publication Critical patent/JPS63310331A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To protect a thermo-switch by inserting an inductance to the part of the connecting line of a circuit in which the switch is connected in series with a gas discharge tube to absorb an abnormal voltage. CONSTITUTION:A series circuit II of a gas discharge tube H and a thermo- switch S is connected in parallel with a spark gap G to form an arrester. A ferrite tube F is inserted to work as an inductance to the part of the connecting line of the circuit II. The tube H is initially operated by means of a lightning surge, a voltage between the terminals of the circuit II temporarily extremely drops. Thus, it is difficult to fire a lightning surge current at the gap G as it is. However, the switch S is opened immediately before the tube H is thermally broken down due to an increase in the current to protect the tube H, and the gap G is fired by a high voltage generated at both ends of the tube F at the moment that the current is interrupted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 近年は、工場や研究所をはじめ、ゴルフ場その他のスポ
ーツ施設、農業関係の施設など広い範囲に自動化が汗及
しており、それに伴ってエレクトロニクス関係の機器が
多く使用されている。それらの機器は雷サージ電圧に対
し真に弱体である。
[Detailed Description of the Invention] [Field of Industrial Application] In recent years, automation has spread to a wide range of areas, including factories and research institutes, golf courses and other sports facilities, and agricultural facilities. Many electronics-related devices are used. Those devices are truly vulnerable to lightning surge voltages.

サージ電圧は電源側ばかりでな(、信号回路など弱電回
路側からも浸入するので、当然ながらそれら2つの側に
避雷対策が必要である。上記した施設の多くは多雷地帯
にあるため、施設のごく付近に落雷する機会も多い。そ
のうえ山間部や河川敷であれば、その場所の大地抵抗率
が高くなるので、*S電流は地中にケぐ消散されず、電
線路を伝わり広#a囲に伝播するので被害も大きくなる
Surge voltages infiltrate not only from the power supply side (but also from the side of weak electric circuits such as signal circuits), so of course lightning protection measures are required on both sides.Many of the facilities mentioned above are located in lightning-rich areas, so There are many opportunities for lightning to strike in the vicinity of the ground.Furthermore, in mountainous areas or riverbeds, the ground resistivity of that location is high, so the *S current is not dissipated underground, but travels along power lines and spreads across a wide area. As the virus spreads to surrounding areas, the damage will be greater.

一方、自動化が進むと同時に無人施設も多くなる。無人
化により避雷器が故障しても保守要員を遠方から派遣し
なければならなくなる。従って、今後はm*器の需要は
増加の一途にあるが、従来のものに比べてかなり大きい
エネルギーに耐えるもので、強大な雷サージの反復侵入
から機器を保護するだけでな(、避′Ji器自身の焼損
ら防ぐよう配慮されたものが、保守、管理費の軽城から
要望されている。
On the other hand, as automation progresses, the number of unmanned facilities will also increase. Due to unmanned systems, even if a lightning arrester malfunctions, maintenance personnel will have to be dispatched from afar. Therefore, the demand for m* devices will continue to increase in the future, but they can withstand considerably more energy than conventional ones, and are useful not only for protecting equipment from repeated penetration of powerful lightning surges. Light castles are requesting for maintenance and management costs to be made to prevent the Ji ware itself from burning out.

本発明の火花ギャップ式高感度低圧回路用避雷器は、か
かる目的で提案されたものであるから、各方面で広い利
用分町がある。
Since the spark gap type high-sensitivity low-voltage circuit lightning arrester of the present invention was proposed for such a purpose, it has wide application in various fields.

〔従来の技術〕[Conventional technology]

従来は次ぎのような5種類の型式の避雷器に大別される
Conventionally, lightning arresters are broadly classified into the following five types.

1、火花ギャップ 2、ガス放電管 3、半導体型避雷素子 4、(2)と(3)の直列回路 5、(2)と(3)の並列回路 しかし、(I)は多重雷撃や連続放電に伴う雷サージ、
近傍落雷など大きいエネルギーにも耐えられるものを容
易に得られるが、動作開始時の応答時間が遅れるという
欠点があり、(2)は静電容量が小さく比較的電流容量
の大きいしのが容易に得られるが、電源回路に使用した
場合に、放電直後、電源電圧による続流が遮断できない
という弱点がある。(3)では原理旧雷す−ノに対応が
敏感であるが、制限電圧をこえる電圧が頻繁に作用すれ
ば、素子の動作開始は圧がドがり、回路の印加電■だけ
で突然発火し、短絡状態になる危険がある。サージ耐量
の大きいものは静’:Hg mが太くなり、素子の容積
が大となる欠点がある。(4)では1u源回路に使用し
ても続流の心配もなく、静電容量ら小さくできるが、酸
度や電圧幅が比較的小さく、反対に通電時間が長いとい
う連続放電による雷サージが侵入した場合や、多重雷撃
の雷サージにはエネルギー耐量が不足するので焼損する
という問題が残る。(5)では適当な組み合わせが得ら
れるなら、敏感でしかも比較的大きいエネルギー耐量の
ものが得られるか、電源回路ではやはり続Aが遮断でき
ないという欠点があり、弱電回路に使用した場合でも、
多重雷撃のサージに十分耐えられるという保証がない。
1.Spark gap 2.Gas discharge tube 3.Semiconductor type lightning arrester 4.Series circuit of (2) and (3) 5.Parallel circuit of (2) and (3)However, (I) is not suitable for multiple lightning strikes or continuous discharge. lightning surge associated with
Although it is easy to obtain a device that can withstand large amounts of energy such as a nearby lightning strike, it has the disadvantage of slow response time when starting operation, and (2) has a small capacitance and a relatively large current capacity. However, when used in a power supply circuit, it has the disadvantage that follow-on current due to the power supply voltage cannot be interrupted immediately after discharge. (3) is sensitive to the principle of lightning, but if a voltage that exceeds the limit voltage is applied frequently, the voltage at which the element starts to operate will be too low, and a sudden ignition will occur just by the voltage applied to the circuit. , there is a risk of a short circuit condition. A device with a large surge resistance has the disadvantage that the static ':Hgm' becomes large and the volume of the element becomes large. In (4), there is no fear of follow-on current even when used in a 1u source circuit, and the capacitance can be reduced, but the acidity and voltage width are relatively small, and on the other hand, lightning surges due to continuous discharge can invade due to the long energization time. However, there remains the problem of burnout due to insufficient energy resistance against lightning surges caused by multiple lightning strikes or multiple lightning strikes. In (5), if a suitable combination can be obtained, a sensitive and relatively large energy capacity can be obtained, or a power supply circuit still has the disadvantage that the continuation A cannot be cut off, even when used in a weak current circuit.
There is no guarantee that it will be able to withstand multiple lightning surges.

〔解決しようとする問題点〕[Problem to be solved]

あらゆる線路と大地間に使用して、線路に支障をきたさ
ず、かつ機器の動作を妨げる心配もなくて、あらゆる波
形の雷サージや近傍落雷による異常高電圧の侵入にたい
し、いかなる時ら速やかに回路の電圧を一定に制限する
ため安全確実に動作し、保護対象物件に損害を及ぼさな
いことは勿論、避雷器自身ら爆発や発火することなく、
性能Fの劣化も実用上全くないことを目的としている。
It can be used between any line and the ground, without disturbing the line or interfering with the operation of equipment, and can be used to quickly protect against lightning surges of all waveforms and abnormal high voltages caused by nearby lightning strikes. Since the voltage of the circuit is limited to a certain level, it operates safely and reliably, and not only does it not cause damage to the protected property, but also does not cause the lightning arrester itself to explode or catch fire.
The objective is to have no deterioration in performance F at all in practical terms.

ε問題を解決するための手段〕 本発明は、エネルギー耐量が大きく信頼性の高い火花ギ
ャップと、動作開始時間の遅れがない半導体型避雷素子
またはガス放電管を並列に接続し、双方の動作上の協調
をはかることである。半導体型避雷素子と、サーモスイ
ッチ(温度上昇により、速やかに接点が開離するスイッ
チ)を直列接続した回路(I)に、半導体型避雷素子の
制限電圧の上限値が、火花ギャップの放電開始電圧と重
畳するような、火花ギャップを並列接続して一体に接続
したもの、あるいはガス放電管とサーモスイッチを並列
接続した回路(II)に、放電開始電圧が極力小さくな
るよう調整した火花ギャップを並列接続して一体にした
もので、それぞれ火花ギャップの放電を助長する目的で
、回路(I)または(II)の接続線の一部に、インダ
クタンスを挿入した火花ギャップ式高感度低圧回路用避
雷器を提案するものである。
Means for Solving the ε Problem] The present invention connects a highly reliable spark gap with a large energy capacity in parallel with a semiconductor lightning arrester element or a gas discharge tube with no delay in operation start time, thereby improving the operation of both. The aim is to promote cooperation between the two parties. In a circuit (I) in which a semiconductor lightning arrester element and a thermoswitch (a switch whose contacts quickly open due to temperature rise) are connected in series, the upper limit of the limiting voltage of the semiconductor lightning arrester element is the spark gap discharge starting voltage. A circuit (II) in which spark gaps are connected in parallel and connected together, or a gas discharge tube and a thermoswitch are connected in parallel, with a spark gap adjusted so that the discharge starting voltage is as small as possible is connected in parallel. A spark gap type high-sensitivity low-voltage circuit surge arrester with an inductance inserted into a part of the connection wire of circuit (I) or (II) for the purpose of promoting spark gap discharge. This is a proposal.

本発明の火花ギャップ式高感度低圧回路用避雷器におい
ては、サーモスイッチの動作時に接点に生じる異常電圧
を吸収してサーモスイッチを保護するのと同時に、上記
したインダクタンスの働きと同様火花ギャップの放電を
助長する目的で、サーモスイッチの接続端子の両端に半
導体型避雷素子を接続する方法も併せて提案するもので
ある。
The spark gap type high-sensitivity low-voltage circuit lightning arrester of the present invention protects the thermoswitch by absorbing the abnormal voltage that occurs at the contacts when the thermoswitch operates, and at the same time prevents discharge of the spark gap, similar to the function of the inductance described above. For the purpose of promoting this, we also propose a method of connecting semiconductor lightning arrester elements to both ends of the connection terminal of the thermoswitch.

〔作  用〕[For production]

半導体型避雷素子の場合は応答電圧以下では良好な絶縁
体のごとく振る舞うが、それ以上では電流は電圧の15
〜30乗で増大する非直線形抵抗体として考えられるの
で、衝撃電圧にも応答速度が速く時間的遅れは殆んどな
い。火花ギャップに適当な半導体型避雷素子を並列接続
することにより、火花ギャップの不可避的な点弧遅れに
よる過電圧を実際り完全に避けることが出来る。りなわ
ちサージ電圧がずみゃかに上昇する際には、火花ギャッ
プの放電開始電圧はかなり高くなるが、実際には半導体
型避雷素子の制限電圧の上限値が、火花ギャップの放電
開始電圧と重畳するような避雷素子を組み合わせる方法
で、火花ギャップの応答時間遅れをカバーすることが出
来る。換言すれば急峻なサージ電圧では半導体型避雷素
子素子に流れる7[流は隻激に増大するから、半導体型
避雷素子の内部抵抗で端子電圧が高まり、それにより火
花ギャップが点弧される。点弧の後火花ギャップの内部
イノピーダンスが、半導体型避雷素子の内部インピーダ
ンスより小さく設計されていれば、避雷器電流は半導体
型避雷素子から火花ギャップへ転流する。火花ギャップ
は電流耐量の極めて大きなものを容易に設計出来るから
、かなり大きいサージ電流の場合でも、半導体型避雷素
子は火花ギャップへ点弧するまでの短い運転時間に対し
てのみの容量さえあれば、それらの過負荷による焼損を
完全に避けることが出来る。しかしながら実際の雷電圧
を例にとった場合は、電圧の大きさばかりでなく、電流
波形並びに多七度し大幅に異なる場合が多く、半導体型
層?it素子と火花ギャップの動作上の協調をとること
は難しく、半導体型避雷素子から火花ギャップへ転流す
る直航で、平導型避′、!I素子が過負荷に耐えきれ「
に焼損する場合らしばしば見受けられる。半導体型jl
′ilI!素子が破壊したとき、素子の内部短絡が起き
たり、モールド部が発火する恐れもある。しばしば半導
体型避雷素子が最大制限電圧を超えた点で動作すれば、
晴天時でも最大許容回路電圧以下で突然動作して、回路
電圧により連続した地絡電流か流れて素子か発火する場
合もある。
In the case of semiconductor lightning arrester elements, they behave like good insulators below the response voltage, but above that the current is 15% of the voltage.
Since it can be considered as a nonlinear resistor that increases by the 30th power, the response speed is fast and there is almost no time delay even in response to an impact voltage. By connecting a suitable semiconductor lightning arrester element in parallel to the spark gap, overvoltages due to the unavoidable ignition delay of the spark gap can in fact be completely avoided. In other words, when the surge voltage increases rapidly, the spark gap discharge starting voltage becomes quite high, but in reality, the upper limit of the limiting voltage of the semiconductor lightning arrester element is the same as the spark gap discharge starting voltage. The response time delay caused by the spark gap can be compensated for by combining overlapping lightning arrester elements. In other words, in the case of a steep surge voltage, the current flowing through the semiconductor type lightning arrester element increases dramatically, so the terminal voltage increases due to the internal resistance of the semiconductor type lightning arrester element, thereby igniting the spark gap. If the internal inopedance of the spark gap after ignition is designed to be smaller than the internal impedance of the semiconductor lightning arrester, the arrester current will be commutated from the semiconductor lightning arrester to the spark gap. Since the spark gap can be easily designed to have an extremely large current withstand capacity, even in the case of a fairly large surge current, the semiconductor lightning arrester element only needs to have the capacity for a short operating time until it ignites into the spark gap. Burnout due to overload can be completely avoided. However, when taking actual lightning voltage as an example, not only the magnitude of the voltage, but also the current waveform and multiplicity are often significantly different. It is difficult to coordinate the operation of the IT element and the spark gap, and it is difficult to achieve operational coordination between the semiconductor type lightning arrester element and the spark gap. The I element can withstand overload.
Burnout is often seen. semiconductor type jl
'ilI! If the device breaks down, there is a risk that an internal short circuit will occur in the device or the mold will catch fire. Often, if a semiconductor type lightning arrester operates at a point exceeding the maximum limiting voltage,
Even on sunny days, the device may suddenly start operating below the maximum allowable circuit voltage, causing a continuous ground fault current to flow due to the circuit voltage and causing the device to catch fire.

ガス放電管に火花ギャップを並列接続した避雷器では、
面部に述べたごとく動作時に続流か遮断されにくいとい
う欠点があった。
In a lightning arrester with a spark gap connected in parallel to a gas discharge tube,
As mentioned above, there was a drawback that it was difficult to follow or block the flow during operation.

半導体型避雷素子にサーモスイッチを直列接続した回路
(I)またはガス放電管にサーモスイッチを直列接続し
た回路(II)に適当な火花ギャップが並列接続されて
いれば前記した危険はない。
If an appropriate spark gap is connected in parallel to the circuit (I) in which a thermoswitch is connected in series to a semiconductor lightning arrester element or the circuit (II) in which a thermoswitch is connected in series to a gas discharge tube, the above-mentioned danger will not occur.

雷電流が半導体型避雷素子から火花ギャップに転流する
直航に、またはガス放電管が過負となる直航でサーモス
イッチが動作して、半導体型避雷素子やガス放電管は回
路より切断されるため保護される。サーモスイッチには
動作原理上、動作おくれがあるが、半導体素子もしくは
ガス放電管の破壊は多くの場合熱的破壊であり、それも
時間おくれが伴うので、両者の時間遅れを協調させるこ
とにより、あるいは回路(I)(II)の接続線の一部
分へインダクタンスを挿入して、サーモスイッチが切れ
る際に、インダクタンスの両端部に生じる高電圧により
積極的に火花ギャップを点弧できるから上記の目的が容
易に達成される。
When the lightning current is commutated from the semiconductor lightning arrester to the spark gap, or when the gas discharge tube is overloaded, the thermoswitch operates and the semiconductor lightning arrester or gas discharge tube is disconnected from the circuit. protected because of Thermoswitches have a delay due to their operating principle, but damage to semiconductor elements or gas discharge tubes is often caused by thermal damage, which also involves a time delay, so by coordinating the time delays of the two, Alternatively, by inserting an inductance into a part of the connection wire of circuits (I) and (II), when the thermoswitch is turned off, the high voltage generated at both ends of the inductance can actively ignite the spark gap, which achieves the above purpose. easily achieved.

サーモスイッチは動作した後すぐ自己復帰するため、火
花式高感度低圧回路用避雷器の性能に支障をきたすこと
はない。
Since the thermoswitch automatically resets immediately after activation, it does not affect the performance of the spark-type high-sensitivity low-voltage circuit lightning arrester.

本発明のサーモスイッチと半導体型避雷素子を直列接続
した回路(りあるいはガス放電管を直列接続した回路(
II)へ適当な火花ギャップを接続し、(I)(II)
の回路の接続線の一部分にリアクタンスを挿入した火花
ギャップ式高感度低圧回路用避雷器において、それぞれ
サーモスイッチの両端子の筒所へ、半導体型避雷素子を
並列接続した場合は、動作時に接点間に生じる高電圧を
容易に吸収出来る。回路(I)の場合では、急峻で大き
い雷サージ電流が作用すると、(I) 最初半導体型避
雷素子が一個動作し、(I−)  次ぎにサーモスイッ
チが動作してスイッチが開離すると、二つの半導体型j
!雷#−I−の直列と見なせる回路構成に変化する、(
iii )最後に火花ギャップへ転流する、と言うよう
に避雷器は3段階の順序で動作するから、雷サージの半
導体型避雷素子から火花ギャップへの転流が容易となる
A circuit in which the thermoswitch of the present invention and a semiconductor lightning arrester are connected in series (or a circuit in which gas discharge tubes are connected in series)
Connect a suitable spark gap to (II), (I) (II)
In a spark gap type high-sensitivity low-voltage circuit lightning arrester in which a reactance is inserted in a part of the connection line of the circuit, if semiconductor type lightning arrester elements are connected in parallel to the tubes of both terminals of the thermoswitch, there will be a drop between the contacts during operation. It can easily absorb the high voltage generated. In the case of circuit (I), when a steep and large lightning surge current acts, (I) one semiconductor lightning arrester operates first, (I-) then the thermoswitch operates, and when the switch opens, two two semiconductor types
! The circuit configuration changes to one that can be considered as a series of lightning #-I- (
iii) Since the lightning arrester operates in a three-step sequence, with the lightning surge finally being commutated to the spark gap, it becomes easy to transfer the lightning surge from the semiconductor type lightning arrester element to the spark gap.

〔実 施 例〕〔Example〕

ここで本発明に係わる火花ギャップ式高感度低圧回路用
避雷器の一実施例を図によって説明する。
Here, one embodiment of the spark gap type high-sensitivity low-voltage circuit lightning arrester according to the present invention will be described with reference to the drawings.

第1図は最も基本的な回路を示す、図において(L)は
線路接続端子、(E)は接地で、半導体型避雷素子(A
、)とサーモスイッチ(S)の直列回路Iと、火花ギャ
ップ(G)が並列接続されて一体になった型式の避雷器
で、回路■の接続線の一部分にインダクタンスの役目と
してフェライト管(F)が挿入されているが、都合によ
りコイル、フェライト管のうらいずれも使用出来る。サ
ーモスイッチは空気中で動作するもの、あるいは真空ま
たは特殊ガス封止管内に収納したものなどかあるが、型
式についてはいずれも適用できる。火花ギャップ(G)
は金属性のもの、あるいはカーボン電極など適用できる
。通常半導体型避雷素子(A、)の動作開始電圧は弱電
機器の耐圧以下で、かつ適用回路電圧を上回るものでな
ければならない。火花ギャップ(G)の放電開始電圧は
、半導体型避雷素子(A+)の制限電圧以下が望ましい
Figure 1 shows the most basic circuit. In the figure, (L) is the line connection terminal, (E) is the ground, and the semiconductor lightning arrester (A
,), a thermoswitch (S), a series circuit I, and a spark gap (G) are connected in parallel to form an integrated unit.A ferrite tube (F) is used as an inductance in a part of the connecting wire of the circuit (■). is inserted, but you can use either the coil or the back of the ferrite tube depending on your convenience. There are thermoswitches that operate in air, or those that are housed in a vacuum or special gas-sealed tube, but any type of thermoswitch is applicable. Spark gap (G)
can be applied to metal electrodes or carbon electrodes. Normally, the operating voltage of the semiconductor lightning arrester (A) must be lower than the withstand voltage of the light electrical equipment and higher than the applied circuit voltage. The discharge starting voltage of the spark gap (G) is preferably equal to or lower than the limiting voltage of the semiconductor lightning arrester (A+).

第2図はサーモスイッチ(S)とガス放1′ti管(I
1)とを直列接続した回路■に、火花ギャップ(G)が
並列接続されて一体とされた型式の避雷器において、回
路■の接続線の一部分にインダクタンスとしてフェライ
ト管(F)が挿入されている。各々の材質については1
紀の考えを適用する。
Figure 2 shows the thermo switch (S) and gas release 1'ti pipe (I).
In a type of lightning arrester in which a spark gap (G) is connected in parallel to a circuit (■) connected in series with (1), a ferrite tube (F) is inserted as an inductance in a part of the connecting wire of the circuit (■). . 1 for each material
Applying the ideas of KI.

雷サージにより、最初ガス放電管(H)が動作して、回
路Hの端子間電圧は一時的に極端に下がり、そのままだ
と雷サージ電流を火花ギャップ(G)へ点弧させること
は難しいけれど、電流の増加によりガス放電管(I1)
が熱的破壊する直前でサーモスイッチが開離し、ガス放
電管([■)は保護され、電流が切れる瞬間にフェライ
ト管の両端に生じた高電圧により火花ギャップ(G)が
点弧される。
Due to the lightning surge, the gas discharge tube (H) first operates, and the voltage between the terminals of circuit H temporarily drops to an extreme level. If this continues, it will be difficult to ignite the lightning surge current into the spark gap (G) , due to the increase in current the gas discharge tube (I1)
Just before thermal breakdown occurs, the thermoswitch opens, protecting the gas discharge tube (■), and at the moment the current is cut off, the spark gap (G) is ignited by the high voltage generated across the ferrite tube.

サーモスイッチ(S)は、半導体型避雷素子(Ad)や
、ガス放電管(I1)を効果的に保護することが出来る
けれど、スイッチの接点が開離する際の高電圧には弱体
であるから、第3図(a)(b)のごとく、サーモスイ
ッチ(S)の両端子間に半導体型避雷素子(A2)を接
続するなら、サーモスイッチ(S)の動作時、接点箇所
に生じる高電圧が吸収出来るため、サーモスイッチは保
護され、さらに第3図(a)の場合を例にとると、サー
モスイッチ(S)が開離されれば、半導体型避雷素子(
八〇(A2)は直列接続になるので、火花ギャップの放
電開始電圧に相当する分を、二つの避雷素子(A+) 
(Az)で分担できるから(通常、火花ギャップの最小
放電開始電圧は300■より小さく出来ないといわれる
)、第1図の避雷器の場合より、第一段階の避雷素子(
八〇は動作開始電圧の小さい素子を選ぶことが出来るの
で、避雷器の信頼性かより向りする。
Although thermoswitches (S) can effectively protect semiconductor lightning arresters (Ad) and gas discharge tubes (I1), they are weak against the high voltage that occurs when the switch contacts open. , if a semiconductor type lightning arrester (A2) is connected between both terminals of the thermoswitch (S) as shown in Fig. 3 (a) and (b), the high voltage generated at the contact point when the thermoswitch (S) is operated. can be absorbed, so the thermoswitch is protected.Furthermore, taking the case of Fig. 3(a) as an example, if the thermoswitch (S) is opened, the semiconductor lightning arrester (S) is protected.
80 (A2) is connected in series, so the voltage corresponding to the discharge starting voltage of the spark gap is connected to the two lightning arresters (A+).
(Az) (usually it is said that the minimum discharge starting voltage of the spark gap cannot be made smaller than 300μ), the first stage lightning arrester element (
80 allows you to select elements with a low activation voltage, which improves the reliability of the lightning arrester.

〔効 果〕〔effect〕

本発明の火花ギャップ式高感度低圧回路用避雷器は、火
花ギャップの間隙を慎重に調節し、半導体型!!雷;A
T−とサーモスイッチを直列接続した回路11あるいは
ガス放電管とサーモスイッチを直列接続した回路■と、
接続する際の組み合わせを選定すれば、前節に述べた理
由により銘々の避雷素子を別々に使うよりも、敏感かつ
巧妙に動作する上、更に電流耐Mが大きいJl雷器を構
成することができるので、かなり大きいサージ電圧が侵
入した場合、あるいは標準の波形と異なり、峻度、電流
値が比較的小さいが通電時間の大なるもの、または多重
雷撃の場合でも避雷器は焼損することなく、幅広い防護
効果を発揮して弱電機器をふくむ多くの電気設備を雷の
被害から容易に保護することが出来る。従って避雷器自
身が焼損するというケースは目立って減少し、避雷器を
保守するための労力が大幅に減少して省力化に貢献する
ところが大である。
The spark gap type high-sensitivity low-voltage circuit lightning arrester of the present invention carefully adjusts the spark gap gap and is a semiconductor type! ! Lightning; A
A circuit 11 in which T- and a thermoswitch are connected in series, or a circuit ■ in which a gas discharge tube and a thermoswitch are connected in series,
If the combination of connections is selected, it is possible to construct a Jl lightning arrester that operates more sensitively and skillfully and has a larger current resistance M than using each lightning arrester separately for the reasons stated in the previous section. Therefore, the arrester will not burn out and provide a wide range of protection even if a fairly large surge voltage enters, or if the waveform is different from the standard waveform and the steepness or current value is relatively small but the energization time is long, or if multiple lightning strikes occur. It is effective and can easily protect many electrical equipment, including light electrical equipment, from damage caused by lightning. Therefore, the number of cases in which the lightning arrester itself burns out is significantly reduced, and the effort required to maintain the lightning arrester is greatly reduced, greatly contributing to labor savings.

【図面の簡単な説明】[Brief explanation of the drawing]

本発明に係る火花ギャップ式高感度低圧回路用避雷器の
一実施例を第1図〜第3図(a)(b)に、いずれも実
際の回路図で示したものである。
An embodiment of the spark gap type high-sensitivity low-voltage circuit lightning arrester according to the present invention is shown in FIGS. 1 to 3(a) and 3(b), both of which are actual circuit diagrams.

【符号の簡単な説明】[Brief explanation of symbols]

(A+)・・・・・・半導体型避雷素子(A2)・・・
・・・同上 (II)・・・・・・ガス放電管 (S)・拳◆・魯・サーモスイッチ (G)・・・・・・火花ギャップ (L)・・・・・・線路接続端子 (E)・・・・・・接地 ε 系1圀 (qン 肇3図 ゐ 第2G 乙 <b)
(A+)...Semiconductor type lightning arrester (A2)...
...Same as above (II)...Gas discharge tube (S), fist◆, lug, thermoswitch (G)...Spark gap (L)...Line connection terminal (E)...Earth ε System 1 area (Qn 过3 fig. 2nd G O<b)

Claims (1)

【特許請求の範囲】 1)サーモスイッチと半導体型避雷素子を直列接続した
回路( I )に、火花ギャップを 並列接続して一体とした型式の避雷器にお いて、回路( I )の接続線の一部にインダ クタンスを挿入した高感度低圧回路用避雷 器。 2)サーモスイッチとガス放電管を直列接続した回路(
II)に火花ギャップを並列接続 して一体とした型式の避雷器において、回 路(II)の接続線の一部にインダクタンス を挿入した高感度低圧回路用避雷器。 3)サーモスイッチの接続端子の箇所へ、半導体型避雷
素子を並列接続した、上記特許 請求の範囲第一項、第二項記載の高感度低 圧回路用避雷器。
[Claims] 1) In a lightning arrester integrated with a circuit (I) in which a thermoswitch and a semiconductor lightning arrester are connected in series, and a spark gap connected in parallel, a part of the connection line of the circuit (I). A lightning arrester for high-sensitivity low-voltage circuits with an inductance inserted into it. 2) A circuit in which a thermoswitch and a gas discharge tube are connected in series (
A lightning arrester for high-sensitivity low-voltage circuits in which an inductance is inserted in a part of the connection wire of circuit (II) in a type of lightning arrester that is integrated with circuit (II) and a spark gap connected in parallel. 3) A lightning arrester for a high-sensitivity low-voltage circuit according to claims 1 and 2, wherein a semiconductor lightning arrester element is connected in parallel to the connection terminal of the thermoswitch.
JP14615887A 1987-06-11 1987-06-11 Arrester for spark gap type high sensitivity low voltage circuit Pending JPS63310331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14615887A JPS63310331A (en) 1987-06-11 1987-06-11 Arrester for spark gap type high sensitivity low voltage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14615887A JPS63310331A (en) 1987-06-11 1987-06-11 Arrester for spark gap type high sensitivity low voltage circuit

Publications (1)

Publication Number Publication Date
JPS63310331A true JPS63310331A (en) 1988-12-19

Family

ID=15401442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14615887A Pending JPS63310331A (en) 1987-06-11 1987-06-11 Arrester for spark gap type high sensitivity low voltage circuit

Country Status (1)

Country Link
JP (1) JPS63310331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104659776A (en) * 2014-12-04 2015-05-27 国家电网公司 Lightning counterattack protection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104659776A (en) * 2014-12-04 2015-05-27 国家电网公司 Lightning counterattack protection device

Similar Documents

Publication Publication Date Title
US4683514A (en) Surge voltage protective circuit arrangements
US9941691B2 (en) Arrangement for overload protection for overvoltage protection equipment
US20120068806A1 (en) Surge protective device with thermal decoupler and arc suppression
CN105981241B (en) The drive circuit of overvoltage protection with asymmetric component
JP2006230197A (en) Power supply system
US6930871B2 (en) Lightning arrester device for low-voltage network
JP2791979B2 (en) Protection circuit to protect against overvoltage and overcurrent
US4385338A (en) Power connector with overvoltage protection
US5289335A (en) Compound lightning arrester for low voltage circuit
JPS63310331A (en) Arrester for spark gap type high sensitivity low voltage circuit
JP2006109681A (en) Lightning arrester
JPS63294218A (en) Spark gap type high-speed arrester
JP6936547B1 (en) Current breaker
JP5020054B2 (en) Low power protector
KR102582296B1 (en) Surge protection apparatus for LED
US3911322A (en) Method and circuit arrangement for an improved low cost lightning arrester
JPH02193528A (en) Lightning arrestor for high-sensitivity, large-capacity and low-pressure circuit
JPH07184319A (en) Protective circuit
CN210404733U (en) Alternating current power supply lightning protection device with overcurrent and overvoltage protection functions
CN210430915U (en) DC power supply lightning protection device with overcurrent and overvoltage protection function
EP4057457A1 (en) Bimetallic spark gap arrangement
KR930000644Y1 (en) Lighting arrestor
KR930000645Y1 (en) Lighting arrestor
JPH0684614A (en) Electric machinery
JPH08213146A (en) Creeping discharge facilitating duplex spark gap